Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 15;88(20):8996–9000. doi: 10.1073/pnas.88.20.8996

Human auditory evoked gamma-band magnetic fields.

C Pantev 1, S Makeig 1, M Hoke 1, R Galambos 1, S Hampson 1, C Gallen 1
PMCID: PMC52638  PMID: 1924362

Abstract

We have discovered a ca. 40-Hz transient magnetic oscillatory response, evoked in the human brain by the onset of auditory stimuli, consisting of four or more cycles locked in phase to stimulus onset in approximately the 20- to 130-ms poststimulus interval. The response originates in the supratemporal auditory cortex, some millimeters deeper and anterior to the source of the larger-amplitude slow-wave M100 component of the evoked magnetic field and moves in a posterior arcing trajectory 1 cm or more in length. The oscillatory cortical activation elicited by auditory stimuli may be similar to the gamma-band cortical oscillations elicited by olfactory and visual stimuli and may represent an essential component of auditory perceptual processing.

Full text

PDF
8996

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian E. D. Olfactory reactions in the brain of the hedgehog. J Physiol. 1942 Mar 31;100(4):459–473. doi: 10.1113/jphysiol.1942.sp003955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barinaga M. The mind revealed? Science. 1990 Aug 24;249(4971):856–858. doi: 10.1126/science.2392677. [DOI] [PubMed] [Google Scholar]
  3. Bouyer J. J., Montaron M. F., Rougeul A. Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. Electroencephalogr Clin Neurophysiol. 1981 Mar;51(3):244–252. doi: 10.1016/0013-4694(81)90138-3. [DOI] [PubMed] [Google Scholar]
  4. Bressler S. L. The gamma wave: a cortical information carrier? Trends Neurosci. 1990 May;13(5):161–162. doi: 10.1016/0166-2236(90)90039-d. [DOI] [PubMed] [Google Scholar]
  5. Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboeck H. J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern. 1988;60(2):121–130. doi: 10.1007/BF00202899. [DOI] [PubMed] [Google Scholar]
  6. Freeman W. J., Skarda C. A. Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res. 1985 Dec;357(3):147–175. doi: 10.1016/0165-0173(85)90022-0. [DOI] [PubMed] [Google Scholar]
  7. Galambos R., Makeig S., Talmachoff P. J. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2643–2647. doi: 10.1073/pnas.78.4.2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray C. M., König P., Engel A. K., Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989 Mar 23;338(6213):334–337. doi: 10.1038/338334a0. [DOI] [PubMed] [Google Scholar]
  9. Gray C. M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698–1702. doi: 10.1073/pnas.86.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hari R., Hämäläinen M., Joutsiniemi S. L. Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am. 1989 Sep;86(3):1033–1039. doi: 10.1121/1.398093. [DOI] [PubMed] [Google Scholar]
  11. Mäkelä J. P., Hari R. Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol. 1987 Jun;66(6):539–546. doi: 10.1016/0013-4694(87)90101-5. [DOI] [PubMed] [Google Scholar]
  12. Pelizzone M., Hari R., Mäkelä J. P., Huttunen J., Ahlfors S., Hämäläinen M. Cortical origin of middle-latency auditory evoked responses in man. Neurosci Lett. 1987 Dec 4;82(3):303–307. doi: 10.1016/0304-3940(87)90273-4. [DOI] [PubMed] [Google Scholar]
  13. Romani G. L., Williamson S. J., Kaufman L. Tonotopic organization of the human auditory cortex. Science. 1982 Jun 18;216(4552):1339–1340. doi: 10.1126/science.7079770. [DOI] [PubMed] [Google Scholar]
  14. STERIADE M., DEMETRESCU M. Reticular facilitation of responses to acoustic stimuli. Electroencephalogr Clin Neurophysiol. 1962 Feb;14:21–36. doi: 10.1016/0013-4694(62)90004-4. [DOI] [PubMed] [Google Scholar]
  15. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987 Jan;32(1):11–22. doi: 10.1088/0031-9155/32/1/004. [DOI] [PubMed] [Google Scholar]
  16. Terhardt E. Warum hören wir Sinustöne? Naturwissenschaften. 1989 Nov;76(11):496–504. doi: 10.1007/BF00374121. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES