Abstract
We propose a pathway leading from erythrose-4-phosphate and glutamate to nitrogen 1 and carbons 5,5', and 6 of the pyridoxine ring. This pathway, which parallels the phosphorylated pathway of serine biosynthesis, is predicted on the homology between PdxB and SerA, the structural similarity between serine and 4-hydroxythreonine, and the possible involvement of SerC in pyridoxine biosynthesis. Several predictions of this hypothetical scheme were tested. Consistent with the proposed pathway, supplement inhibition patterns strongly suggest that SerA enzyme acts in a an alternate pathway of pyridoxine biosynthesis in pdxB mutants. Direct enzyme assays detected erythrose-4-phosphate dehydrogenase activity in crude extracts, which again supports the proposed pathway. Chromosomal insertions in serC caused a requirement for pyridoxine, serine, and aromatic compounds, which directly verified that SerC functions in the pyridoxine biosynthetic pathway. Complementation analysis showed that pdxF and pdxC mutations reported previously are most likely alleles of serC. Growth of serC chromosomal insertion mutants on glycoalaldehyde was found to occur without acquisition of second-site mutations and confirmed that pdxB and serC, but not pdxA, function in the same branch of the pyridoxine pathway. In addition, serC::mini-Mu d insertions revealed that the complex serC-aroA operon lacks internal promoters, that the amino terminus of SerC is not strictly essential for activity, and that antisense transcription occurs in the serC-aroA operon. Growth responses of pdxA, pdxB, and serC mutants to beta-hydroxypyruvate, D-alanine, and glycolate could also be reconciled with the proposed pathway. Finally, the proposed scheme is consistent with previous isotope labeling data and accounts for several other observations about pyridoxine biosynthesis. Together, these physiological and biochemical analyses support the proposed pathway and an evolutionary scenario in which this branch of the pyridoxine pathway evolved from the serine pathway by gene recruitment.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arps P. J., Winkler M. E. An unusual genetic link between vitamin B6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12. J Bacteriol. 1987 Mar;169(3):1071–1079. doi: 10.1128/jb.169.3.1071-1079.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arps P. J., Winkler M. E. Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette. J Bacteriol. 1987 Mar;169(3):1061–1070. doi: 10.1128/jb.169.3.1061-1070.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banerjee S., Fraenkel D. G. Glucose-6-phosphate dehydrogenase from Escherichia coli and from a "high-level" mutant. J Bacteriol. 1972 Apr;110(1):155–160. doi: 10.1128/jb.110.1.155-160.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett D. H., Frantz B. B., Matsumura P. Flagellar transcriptional activators FlbB and FlaI: gene sequences and 5' consensus sequences of operons under FlbB and FlaI control. J Bacteriol. 1988 Apr;170(4):1575–1581. doi: 10.1128/jb.170.4.1575-1581.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
- Castilho B. A., Olfson P., Casadaban M. J. Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol. 1984 May;158(2):488–495. doi: 10.1128/jb.158.2.488-495.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christiansen L., Pedersen S. Cloning, restriction endonuclease mapping and post-transcriptional regulation of rpsA, the structural gene for ribosomal protein S1. Mol Gen Genet. 1981;181(4):548–551. doi: 10.1007/BF00428751. [DOI] [PubMed] [Google Scholar]
- DEMPSEY W. B. CONTROL OF PYRIDOXINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Bacteriol. 1965 Aug;90:431–437. doi: 10.1128/jb.90.2.431-437.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Characterization of pyridoxine auxotrophs of Escherichia coli: P1 transduction. J Bacteriol. 1969 Mar;97(3):1403–1410. doi: 10.1128/jb.97.3.1403-1410.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Control of vitamin B 6 biosynthesis in Escherichia coli. J Bacteriol. 1971 Oct;108(1):415–421. doi: 10.1128/jb.108.1.415-421.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Incorporation of radioactivity into pyridoxal phosphate by Escherichia coli B. Biochim Biophys Acta. 1972 Apr 21;264(2):344–353. doi: 10.1016/0304-4165(72)90299-1. [DOI] [PubMed] [Google Scholar]
- Dempsey W. B., Ito H. Characterization of pyridoxine auxotrophs of Escherichia coli: serine and pdxF mutants. J Bacteriol. 1970 Nov;104(2):658–667. doi: 10.1128/jb.104.2.658-667.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B., Pachler P. F. Isolation and characterization of pyridoxine auxotrophs of Escherichia coli. J Bacteriol. 1966 Feb;91(2):642–645. doi: 10.1128/jb.91.2.642-645.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempsey W. B. Role of vitamin B 6 biosynthetic rate in the study of vitamin B 6 synthesis in Escherichia coli. J Bacteriol. 1971 Dec;108(3):1001–1007. doi: 10.1128/jb.108.3.1001-1007.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncan K., Coggins J. R. The serC-aro A operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem J. 1986 Feb 15;234(1):49–57. doi: 10.1042/bj2340049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant G. A. A new family of 2-hydroxyacid dehydrogenases. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1371–1374. doi: 10.1016/0006-291x(89)92755-1. [DOI] [PubMed] [Google Scholar]
- Hill R. E., Horsewood P., Spenser I. D., Tani Y. Biosynthesis of vitamin B6. Incorporation of glycolaldehyde into pyridoxal. J Chem Soc Perkin 1. 1975;(16):1622–1627. doi: 10.1039/p19750001622. [DOI] [PubMed] [Google Scholar]
- Hill R. E., Iwanow A., Sayer B. G., Wysocka W., Spenser I. D. The regiochemistry and stereochemistry of the biosynthesis of vitamin B6 from triose units. J Biol Chem. 1987 Jun 5;262(16):7463–7471. [PubMed] [Google Scholar]
- Hoiseth S. K., Stocker B. A. Genes aroA and serC of Salmonella typhimurium constitute an operon. J Bacteriol. 1985 Jul;163(1):355–361. doi: 10.1128/jb.163.1.355-361.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen R. A. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30:409–425. doi: 10.1146/annurev.mi.30.100176.002205. [DOI] [PubMed] [Google Scholar]
- LeBlanc D. J., Mortlock R. P. Metabolism of D-arabinose: a new pathway in Escherichia coli. J Bacteriol. 1971 Apr;106(1):90–96. doi: 10.1128/jb.106.1.90-96.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORRIS J. G., WOODS D. D. Inter-relationships of serine, glycine and vitamin B6 in the growth of mutants of Escherichia coli. J Gen Microbiol. 1959 Jun;20(3):576–596. doi: 10.1099/00221287-20-3-576. [DOI] [PubMed] [Google Scholar]
- McKitrick J. C., Pizer L. I. Regulation of phosphoglycerate dehydrogenase levels and effect on serine synthesis in Escherichia coli K-12. J Bacteriol. 1980 Jan;141(1):235–245. doi: 10.1128/jb.141.1.235-245.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
- RACKER E. Enzymatic synthesis and breakdown of desoxyribose phosphate. J Biol Chem. 1952 May;196(1):347–365. [PubMed] [Google Scholar]
- Roa B. B., Connolly D. M., Winkler M. E. Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol. 1989 Sep;171(9):4767–4777. doi: 10.1128/jb.171.9.4767-4777.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoenlein P. V., Roa B. B., Winkler M. E. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12. J Bacteriol. 1989 Nov;171(11):6084–6092. doi: 10.1128/jb.171.11.6084-6092.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuller D. J., Fetter C. H., Banaszak L. J., Grant G. A. Enhanced expression of the Escherichia coli serA gene in a plasmid vector. Purification, crystallization, and preliminary X-ray data of D-3 phosphoglycerate dehydrogenase. J Biol Chem. 1989 Feb 15;264(5):2645–2648. [PubMed] [Google Scholar]
- Shimizu S., Dempsey W. B. 3-hydroxypyruvate substitutes for pyridoxine in serC mutants of Escherichia coli K-12. J Bacteriol. 1978 Jun;134(3):944–949. doi: 10.1128/jb.134.3.944-949.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sperry J. F., Robertson D. C. Erythritol catabolism by Brucella abortus. J Bacteriol. 1975 Feb;121(2):619–630. doi: 10.1128/jb.121.2.619-630.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugimoto E., Pizer L. I. The mechanism of end product inhibition of serine biosynthesis. I. Purification and kinetics of phosphoglycerate dehydrogenase. J Biol Chem. 1968 May 10;243(9):2081–2089. [PubMed] [Google Scholar]
- Tani Y., Dempsey W. B. Glycolaldehyde is a precursor of pyridoxal phosphate in Escherichia coli B. J Bacteriol. 1973 Oct;116(1):341–345. doi: 10.1128/jb.116.1.341-345.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobey K. L., Grant G. A. The nucleotide sequence of the serA gene of Escherichia coli and the amino acid sequence of the encoded protein, D-3-phosphoglycerate dehydrogenase. J Biol Chem. 1986 Sep 15;261(26):12179–12183. [PubMed] [Google Scholar]
- UMBARGER H. E., UMBARGER M. A., SIU P. M. BIOSYNTHESIS OF SERINE IN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Jun;85:1431–1439. doi: 10.1128/jb.85.6.1431-1439.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vella G. J., Hill R. E., Mootoo B. S., Spenser I. D. The status of glycolaldehyde in the biosynthesis of vitamin B6. J Biol Chem. 1980 Apr 10;255(7):3042–8. [PubMed] [Google Scholar]
- Vella G. J., Hill R. E., Spenser I. D. Biosynthesis of pyridoxol. The origin of the C2-unit, C-2',-2. J Biol Chem. 1981 Oct 25;256(20):10469–10474. [PubMed] [Google Scholar]
- Wood T. The detection and identification of intermediates of the pentose phosphate cycle and related compounds. J Chromatogr. 1968 Jun 18;35(3):352–361. doi: 10.1016/s0021-9673(01)82396-7. [DOI] [PubMed] [Google Scholar]
- van der Zel A., Lam H. M., Winkler M. E. Extensive homology between the Escherichia coli K-12 SerC(PdxF) aminotransferase and a protein encoded by a progesterone-induced mRNA in rabbit and human endometria. Nucleic Acids Res. 1989 Oct 25;17(20):8379–8379. doi: 10.1093/nar/17.20.8379. [DOI] [PMC free article] [PubMed] [Google Scholar]
