Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Oct;172(10):5789–5794. doi: 10.1128/jb.172.10.5789-5794.1990

Nucleotide sequence and expression in Escherichia coli of the Lactococcus lactis citrate permease gene.

S David 1, M E van der Rest 1, A J Driessen 1, G Simons 1, W M de Vos 1
PMCID: PMC526896  PMID: 2120190

Abstract

The plasmid-encoded citrate determinant of the Lactococcus lactis subsp. lactis var. diacetylactis NCDO176 was cloned and functionally expressed in a Cit- Escherichia coli K-12 strain. From deletion derivative analysis, a 3.4-kilobase region was identified which encodes the ability to transport citrate. Analysis of proteins encoded by the cloned fragment in a T7 expression system revealed a 32,000-dalton protein band, which correlated with the ability of cells to transport citrate. Energy-dependent [1,5-14C]citrate transport was found with membrane vesicles prepared from E. coli cells harboring the citrate permease-expressing plasmid. The gene encoding citrate transport activity, citP, was located on the cloned fragment by introducing a site-specific mutation that abolished citrate transport and resulted in a truncated form of the 32,000-dalton expression product. The nucleotide sequence for a 2.2-kilobase fragment that includes the citP gene contained an open reading frame of 1,325 base pairs coding for a very hydrophobic protein of 442 amino acids, which shows no sequence homology with known citrate carriers.

Full text

PDF
5789

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashton D. M., Sweet G. D., Somers J. M., Kay W. W. Citrate transport in Salmonella typhimurium: studies with 2-fluoro-L-erythro-citrate as a substrate. Can J Biochem. 1980 Oct;58(10):797–803. doi: 10.1139/o80-111. [DOI] [PubMed] [Google Scholar]
  2. Bergsma J., Konings W. N. The properties of citrate transport in membrane vesicles from Bacillus subtilis. Eur J Biochem. 1983 Jul 15;134(1):151–156. doi: 10.1111/j.1432-1033.1983.tb07545.x. [DOI] [PubMed] [Google Scholar]
  3. Büchel D. E., Gronenborn B., Müller-Hill B. Sequence of the lactose permease gene. Nature. 1980 Feb 7;283(5747):541–545. doi: 10.1038/283541a0. [DOI] [PubMed] [Google Scholar]
  4. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  5. David S., Simons G., De Vos W. M. Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Appl Environ Microbiol. 1989 Jun;55(6):1483–1489. doi: 10.1128/aem.55.6.1483-1489.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dimroth P., Thomer A. Citrate transport in Klebsiella pneumoniae. Biol Chem Hoppe Seyler. 1986 Aug;367(8):813–823. doi: 10.1515/bchm3.1986.367.2.813. [DOI] [PubMed] [Google Scholar]
  7. HARVEY R. J., COLLINS E. B. Citrate transport system of Streptococcus diacetilactis. J Bacteriol. 1962 May;83:1005–1009. doi: 10.1128/jb.83.5.1005-1009.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishiguro N., Hirose K., Sato G. Distribution of citrate utilization plasmids in Salmonella strains of bovine origin in Japan. Appl Environ Microbiol. 1980 Sep;40(3):446–451. doi: 10.1128/aem.40.3.446-451.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ishiguro N., Oka C., Hanzawa Y., Sato G. Plasmids in Escherichia coli controlling citrate-utilizing ability. Appl Environ Microbiol. 1979 Nov;38(5):956–964. doi: 10.1128/aem.38.5.956-964.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ishiguro N., Sato G., Sasakawa C., Danbara H., Yoshikawa M. Identification of citrate utilization transposon Tn3411 from a naturally occurring citrate utilization plasmid. J Bacteriol. 1982 Mar;149(3):961–968. doi: 10.1128/jb.149.3.961-968.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson C. L., Cha Y. A., Stern J. R. Citrate uptake in membrane vesicles of Klebsiella aerogenes. J Bacteriol. 1975 Feb;121(2):682–687. doi: 10.1128/jb.121.2.682-687.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kay W. W., Cameron M. Citrate transport in Salmonella typhimurium. Arch Biochem Biophys. 1978 Sep;190(1):270–280. doi: 10.1016/0003-9861(78)90276-x. [DOI] [PubMed] [Google Scholar]
  13. Kempler G. M., McKay L. L. Characterization of Plasmid Deoxyribonucleic Acid in Streptococcus lactis subsp. diacetylactis: Evidence for Plasmid-Linked Citrate Utilization. Appl Environ Microbiol. 1979 Feb;37(2):316–323. doi: 10.1128/aem.37.2.316-323.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Maiden M. C., Davis E. O., Baldwin S. A., Moore D. C., Henderson P. J. Mammalian and bacterial sugar transport proteins are homologous. Nature. 1987 Feb 12;325(6105):641–643. doi: 10.1038/325641a0. [DOI] [PubMed] [Google Scholar]
  17. McClure W. R. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171–204. doi: 10.1146/annurev.bi.54.070185.001131. [DOI] [PubMed] [Google Scholar]
  18. Nakao T., Yamato I., Anraku Y. Nucleotide sequence of putP, the proline carrier gene of Escherichia coli K12. Mol Gen Genet. 1987 Jun;208(1-2):70–75. doi: 10.1007/BF00330424. [DOI] [PubMed] [Google Scholar]
  19. O'Brien R. W., Stern J. R. Requirement for sodium in the anaerobic growth of Aerobacter aerogenes on citrate. J Bacteriol. 1969 May;98(2):388–393. doi: 10.1128/jb.98.2.388-393.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reynolds C. H., Silver S. Citrate utilization by Escherichia coli: plasmid- and chromosome-encoded systems. J Bacteriol. 1983 Dec;156(3):1019–1024. doi: 10.1128/jb.156.3.1019-1024.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sasatsu M., Misra T. K., Chu L., Laddaga R., Silver S. Cloning and DNA sequence of a plasmid-determined citrate utilization system in Escherichia coli. J Bacteriol. 1985 Dec;164(3):983–993. doi: 10.1128/jb.164.3.983-993.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sato G., Asagi M., Oka C., Ishiguro N., Terakado N. Transmissible citrate-utilizing ability in Escherichia coli isolated from pigeons, pigs and cattle. Microbiol Immunol. 1978;22(6):357–360. doi: 10.1111/j.1348-0421.1978.tb00380.x. [DOI] [PubMed] [Google Scholar]
  24. Schwarz E., Oesterhelt D. Cloning and expression of Klebsiella pneumoniae genes coding for citrate transport and fermentation. EMBO J. 1985 Jun;4(6):1599–1603. doi: 10.1002/j.1460-2075.1985.tb03823.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shinagawa M., Makino S., Hirato T., Ishiguro N., Sato G. Comparison of DNA sequences required for the function of citrate utilization among different citrate utilization plasmids. J Bacteriol. 1982 Aug;151(2):1046–1050. doi: 10.1128/jb.151.2.1046-1050.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith H. W., Parsell Z., Green P. Thermosensitive H1 plasmids determining citrate utilization. J Gen Microbiol. 1978 Dec;109(2):305–311. doi: 10.1099/00221287-109-2-305. [DOI] [PubMed] [Google Scholar]
  27. Soberon X., Covarrubias L., Bolivar F. Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325. Gene. 1980 May;9(3-4):287–305. doi: 10.1016/0378-1119(90)90328-o. [DOI] [PubMed] [Google Scholar]
  28. Somers J. M., Sweet G. D., Kay W. W. Flurorcitrate resistant tricarboxylate transport mutants of Salmonella typhimurium. Mol Gen Genet. 1981;181(3):338–345. doi: 10.1007/BF00425608. [DOI] [PubMed] [Google Scholar]
  29. Speckman R. A., Collins E. B. Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol. 1968 Jan;95(1):174–180. doi: 10.1128/jb.95.1.174-180.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  31. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tinoco I., Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. Improved estimation of secondary structure in ribonucleic acids. Nat New Biol. 1973 Nov 14;246(150):40–41. doi: 10.1038/newbio246040a0. [DOI] [PubMed] [Google Scholar]
  33. van der Rest M. E., Schwarz E., Oesterhelt D., Konings W. N. DNA sequence of a citrate carrier of Klebsiella pneumoniae. Eur J Biochem. 1990 Apr 30;189(2):401–407. doi: 10.1111/j.1432-1033.1990.tb15502.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES