Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Oct;172(10):5924–5928. doi: 10.1128/jb.172.10.5924-5928.1990

Sequence and uptake specificity of cloned sonicated fragments of Haemophilus influenzae DNA.

S H Goodgal 1, M A Mitchell 1
PMCID: PMC526913  PMID: 2170331

Abstract

Our data support the conclusion that all tight binding of DNA by competent cells of Haemophilus influenzae is due to 9 base pairs (bp) of the 11-bp motif 5'-AAGTGCGGTCA or its inverse complement, TGACCGCACTT. Sonicated chromosomal DNA of H. influenzae was absorbed and extracted from competent cells to prepare a subpopulation of uptake fragments enriched for single uptake (binding) sequences. This DNA was inserted into the plasmid pUC18 and cloned into Escherichia coli. Whole sonicated chromosomal DNA was also cloned in pUC18 as a population of control fragments. Seventy-one plasmids were labeled with 3H and tested for DNA binding, and the inserts of 28 of them were sequenced. The control plasmid pUC18 was absorbed to competent H. influenzae cells at low levels of 5 to 10% of DNA added. The plasmids containing uptake inserts were mostly absorbed at levels of 70 to 80%, but a significant number contained inserts with an intermediate level of binding, 20 to 30%. The inserts of 15 plasmids were excised and tested for DNA uptake to demonstrate good agreement between uptake of these plasmids and their insert fragments. Sequencing of inserts revealed that the presence of 9 bp of the 11-bp motif was associated with tight binding. Some inserts with intermediate levels of binding had no significant similarities to the 9-bp sequence. The 9-bp sequence appeared to account for most of the binding to competent cells, but appreciable binding occurred with fragments without 9-bp homology. About one-third of the 9-bp uptake sequences were found as inverted repeats that could form strong stem-loop structures. It has been suggested by Goodman and Scocca (Proc. Nal. Acad. Sci. USA 85:6982-6986, 1988) that in Neisseria gonorrhoeae, uptake sequences occur as palindromes and act as transcription terminators. Although consistent, the data are insufficient to make this conclusion for uptake sequence palindromes in H. influenzae.

Full text

PDF
5924

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  2. Chung B. C., Goodgal S. H. The specific uptake of cloned Haemophilus DNA. Biochem Biophys Res Commun. 1979 May 14;88(1):208–214. doi: 10.1016/0006-291x(79)91717-0. [DOI] [PubMed] [Google Scholar]
  3. Concino M. F., Goodgal S. H. Haemophilus influenzae polypeptides involved in deoxyribonucleic acid uptake detected by cellular surface protein iodination. J Bacteriol. 1981 Oct;148(1):220–231. doi: 10.1128/jb.148.1.220-231.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Danner D. B., Deich R. A., Sisco K. L., Smith H. O. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene. 1980 Nov;11(3-4):311–318. doi: 10.1016/0378-1119(80)90071-2. [DOI] [PubMed] [Google Scholar]
  5. Danner D. B., Smith H. O., Narang S. A. Construction of DNA recognition sites active in Haemophilus transformation. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2393–2397. doi: 10.1073/pnas.79.7.2393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fitzmaurice W. P., Benjamin R. C., Huang P. C., Scocca J. J. Characterization of recognition sites on bacteriophage HP1c1 DNA which interact with the DNA uptake system of Haemophilus influenzae Rd. Gene. 1984 Nov;31(1-3):187–196. doi: 10.1016/0378-1119(84)90209-9. [DOI] [PubMed] [Google Scholar]
  7. Goodgal S. H. DNA uptake in Haemophilus transformation. Annu Rev Genet. 1982;16:169–192. doi: 10.1146/annurev.ge.16.120182.001125. [DOI] [PubMed] [Google Scholar]
  8. Goodgal S. H., Mitchell M. Uptake of heterologous DNA by Haemophilus influenzae. J Bacteriol. 1984 Mar;157(3):785–788. doi: 10.1128/jb.157.3.785-788.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodman S. D., Scocca J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6982–6986. doi: 10.1073/pnas.85.18.6982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Graves J. F., Biswas G. D., Sparling P. F. Sequence-specific DNA uptake in transformation of Neisseria gonorrhoeae. J Bacteriol. 1982 Dec;152(3):1071–1077. doi: 10.1128/jb.152.3.1071-1077.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gromkova R., Goodgal S. Uptake of plasmid deoxyribonucleic acid by Haemophilus. J Bacteriol. 1981 Apr;146(1):79–84. doi: 10.1128/jb.146.1.79-84.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  13. Herriott R. M., Meyer E. M., Vogt M. Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol. 1970 Feb;101(2):517–524. doi: 10.1128/jb.101.2.517-524.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kahn M. E., Barany F., Smith H. O. Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6927–6931. doi: 10.1073/pnas.80.22.6927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kahn M. E., Maul G., Goodgal S. H. Possible mechanism for donor DNA binding and transport in Haemophilus. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6370–6374. doi: 10.1073/pnas.79.20.6370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kahn M., Concino M., Gromkova R., Goodgal S. DNA binding activity of vesicles produced by competence deficient mutants of Haemophilus. Biochem Biophys Res Commun. 1979 Apr 13;87(3):764–772. doi: 10.1016/0006-291x(79)92024-2. [DOI] [PubMed] [Google Scholar]
  17. Pifer M. L. Plasmid establishment in competent Haemophilus influenzae occurs by illegitimate transformation. J Bacteriol. 1986 Nov;168(2):683–687. doi: 10.1128/jb.168.2.683-687.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SCHAEFFER P. Interspecific reactions in bacterial transformation. Symp Soc Exp Biol. 1958;12:60–74. [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scocca J. J., Poland R. L., Zoon K. C. Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. J Bacteriol. 1974 May;118(2):369–373. doi: 10.1128/jb.118.2.369-373.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sisco K. L., Smith H. O. Sequence-specific DNA uptake in Haemophilus transformation. Proc Natl Acad Sci U S A. 1979 Feb;76(2):972–976. doi: 10.1073/pnas.76.2.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Youngman P., Zuber P., Perkins J. B., Sandman K., Igo M., Losick R. New ways to study developmental genes in spore-forming bacteria. Science. 1985 Apr 19;228(4697):285–291. doi: 10.1126/science.228.4697.285. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES