Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Oct;172(10):6145–6147. doi: 10.1128/jb.172.10.6145-6147.1990

Regulation of thiamine biosynthesis in Saccharomyces cerevisiae.

Y Kawasaki 1, K Nosaka 1, Y Kaneko 1, H Nishimura 1, A Iwashima 1
PMCID: PMC526944  PMID: 2170344

Abstract

A pho6 mutant of Saccharomyces cerevisiae, lacking a regulatory gene for the synthesis of periplasmic thiamine-repressible acid phosphatase activity, was found to be auxotrophic for thiamine. The activities of four enzymes involved in the synthesis of thiamine monophosphate were hardly detectable in the crude extract from the pho6 mutant. On the other hand, the activities of these enzymes and thiamine-repressible acid phosphatase in a wild-type strain of S. cerevisiae, H42, decreased with the increase in the concentration of thiamine in yeast cells. These results suggest that thiamine synthesis in S. cerevisiae is subject to a positive regulatory gene, PHO6, whereas it is controlled negatively by the intracellular thiamine level.

Full text

PDF
6145

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAMIENER G. W., BROWN G. M. The biosynthesis of thiamine. 2. Fractionation of enzyme system and identification of thiazole monophosphate and thiamine monophosphate as intermediates. J Biol Chem. 1960 Aug;235:2411–2417. [PubMed] [Google Scholar]
  2. Iwashima A., Nosaka K., Nishimura H., Kimura Y. Some properties of a Saccharomyces cerevisiae mutant resistant to 2-amino-4-methyl-5-beta-hydroxyethylthiazole. J Gen Microbiol. 1986 Jun;132(6):1541–1546. doi: 10.1099/00221287-132-6-1541. [DOI] [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. NOSE Y., TOKUDA Y., HIRABAYASHI M., IWASHIMA A. THIAMINE BIOSYNTHESIS FROM HYDROXYMETHYLPYRIMIDINE AND THIAZOLE BY WASHED CELLS AND CELL EXTRACTS OF ESCHERICHIA COLI AND ITS MUTANTS. J Vitaminol (Kyoto) 1964 Jun 10;10:105–110. doi: 10.5925/jnsv1954.10.105. [DOI] [PubMed] [Google Scholar]
  5. NOSE Y., UEDA K., KAWASAKI T. Enzymic synthesis of thiamine. Biochim Biophys Acta. 1959 Jul;34:277–279. doi: 10.1016/0006-3002(59)90270-7. [DOI] [PubMed] [Google Scholar]
  6. NOSE Y., UEDA K., KAWASAKI T., IWASHIMA A., FUJITA T. Enzymatic synthesis of thiamine. II. The thiamine synthesis from pyrimidine and thiazole phosphates and the enzymatic synthesis of pyrimidine mono- and diphosphate and thiazole monophosphate. J Vitaminol (Kyoto) 1961 Jun 10;7:98–114. [PubMed] [Google Scholar]
  7. Nishimura H., Sempuku K., Kawasaki Y., Nosaka K., Iwashima A. Photoaffinity labeling of thiamin-binding component in yeast plasma membrane with [3H]4-azido-2-nitrobenzoylthiamin. FEBS Lett. 1989 Sep 11;255(1):154–158. doi: 10.1016/0014-5793(89)81080-4. [DOI] [PubMed] [Google Scholar]
  8. Nosaka K., Kaneko Y., Nishimura H., Iwashima A. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast. FEMS Microbiol Lett. 1989 Jul 1;51(1):55–59. doi: 10.1016/0378-1097(89)90077-3. [DOI] [PubMed] [Google Scholar]
  9. Schweingruber M. E., Fluri R., Maundrell K., Schweingruber A. M., Dumermuth E. Identification and characterization of thiamin repressible acid phosphatase in yeast. J Biol Chem. 1986 Dec 5;261(34):15877–15882. [PubMed] [Google Scholar]
  10. Toh-e A., Kakimoto S. Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae. Mol Gen Genet. 1975 Dec 30;143(1):65–70. doi: 10.1007/BF00269421. [DOI] [PubMed] [Google Scholar]
  11. Toh-e A., Kakimoto S., Oshima Y. Two new genes controlling the constitutive acid phosphatase synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1975 Nov 3;141(1):81–83. doi: 10.1007/BF00332380. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES