Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1990 Oct;172(10):6162–6164. doi: 10.1128/jb.172.10.6162-6164.1990

Occurrence of D-rhamnan as the common antigen reactive against monoclonal antibody E87 in Pseudomonas aeruginosa IFO 3080 and other strains.

S Yokota 1, S Kaya 1, Y Araki 1, E Ito 1, T Kawamura 1, S Sawada 1
PMCID: PMC526949  PMID: 2120200

Abstract

S. Sawada and co-workers reported that a monoclonal antibody (MAb), E87, interacted with about 80% of Pseudomonas aeruginosa isolates, and they separated a rhamnose-rich polysaccharide as the probable antigen for MAb E87 from P. aeruginosa IFO 3080 (S. Sawada, T. Kawamura, Y. Masuho, and K. Tomibe, J. Infec. Dis. 152:1290-1299, 1985). In the present study, the rhamnose-rich polysaccharide was shown to be structurally and immunologically identical to the D-rhamnan of P. aeruginosa IID 1008 (S. Yokota, S. Kaya, S. Sawada, T. Kawamura, Y. Araki, and E. Ito, Eur. J. Biochem. 167:203-209, 1987). Furthermore, a set of enzymes responsible for the formation of GDP-rhamnose (probably in a D-form) from GDP-D-mannose was found in the 100,000 x g supernatant fractions obtained from all of nine P. aeruginosa strains reactive against MAb E87. The result strongly supports a possibility that lipopolysaccharides having a D-rhamnan chain widely occur as the common antigen among various P. aeruginosa isolates.

Full text

PDF
6162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Darveau R. P., Hancock R. E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J Bacteriol. 1983 Aug;155(2):831–838. doi: 10.1128/jb.155.2.831-838.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dutton G. G., Mackie K. L. Structural investigation of Klebsiella serotype K36 polysaccharide. Carbohydr Res. 1977 May;55:49–63. doi: 10.1016/s0008-6215(00)84442-0. [DOI] [PubMed] [Google Scholar]
  3. Kocharova N. A., Knirel' Iu A., Kochetkov N. K., Stanislavskii E. S. Kharakteristika ramnana, vydelennogo iz preparatov lipopolisakharidov Pseudomonas aeruginosa. Bioorg Khim. 1988 May;14(5):701–703. [PubMed] [Google Scholar]
  4. Kocharova N. A., Knirel Y. A., Shashkov A. S., Kochetkov N. K., Pier G. B. Structure of an extracellular cross-reactive polysaccharide from Pseudomonas aeruginosa immunotype 4. J Biol Chem. 1988 Aug 15;263(23):11291–11295. [PubMed] [Google Scholar]
  5. Lam M. Y., McGroarty E. J., Kropinski A. M., MacDonald L. A., Pedersen S. S., Høiby N., Lam J. S. Occurrence of a common lipopolysaccharide antigen in standard and clinical strains of Pseudomonas aeruginosa. J Clin Microbiol. 1989 May;27(5):962–967. doi: 10.1128/jcm.27.5.962-967.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MARKOVITZ A. BIOSYNTHESIS OF GUANOSINE DIPHOSPHATE D-RHAMNOSE AND GUANOSINE DIPHOSPHATE D-TALOMETHYLOSE FROM GUANOSINE DIPHOSPHATE ALPHA-D-MANNOSE. J Biol Chem. 1964 Jul;239:2091–2098. [PubMed] [Google Scholar]
  7. PRYDE J. Organic catalysts of the oxidation of ascorbic acid and of ketoses. Biochem J. 1950 Aug;47(2):xii–xii. [PubMed] [Google Scholar]
  8. Rivera M., Bryan L. E., Hancock R. E., McGroarty E. J. Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: analysis of lipopolysaccharide chain length. J Bacteriol. 1988 Feb;170(2):512–521. doi: 10.1128/jb.170.2.512-521.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rivera M., McGroarty E. J. Analysis of a common-antigen lipopolysaccharide from Pseudomonas aeruginosa. J Bacteriol. 1989 Apr;171(4):2244–2248. doi: 10.1128/jb.171.4.2244-2248.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sawada S., Kawamura T., Masuho Y., Tomibe K. A new common polysaccharide antigen of strains of Pseudomonas aeruginosa detected with a monoclonal antibody. J Infect Dis. 1985 Dec;152(6):1290–1299. doi: 10.1093/infdis/152.6.1290. [DOI] [PubMed] [Google Scholar]
  11. Smith A. R., Zamze S. E., Munro S. M., Carter K. J., Hignett R. C. Structure of the sidechain of lipopolysaccharide from Pseudomonas syringae pv. morsprunorum C28. Eur J Biochem. 1985 May 15;149(1):73–78. doi: 10.1111/j.1432-1033.1985.tb08895.x. [DOI] [PubMed] [Google Scholar]
  12. Winkler N. W., Markovitz A. Guanosine diphosphate-4-keto-D-rhamnose reductase. A non-stereoselective enzyme. J Biol Chem. 1971 Oct 10;246(19):5868–5876. [PubMed] [Google Scholar]
  13. Yokota S., Kaya S., Sawada S., Kawamura T., Araki Y., Ito E. Characterization of a polysaccharide component of lipopolysaccharide from Pseudomonas aeruginosa IID 1008 (ATCC 27584) as D-rhamnan. Eur J Biochem. 1987 Sep 1;167(2):203–209. doi: 10.1111/j.1432-1033.1987.tb13324.x. [DOI] [PubMed] [Google Scholar]
  14. Yokota S., Ochi H., Ohtsuka H., Kato M., Noguchi H. Heterogeneity of the L-rhamnose residue in the outer core of Pseudomonas aeruginosa lipopolysaccharide, characterized by using human monoclonal antibodies. Infect Immun. 1989 Jun;57(6):1691–1696. doi: 10.1128/iai.57.6.1691-1696.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES