Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Oct 15;88(20):9307–9310. doi: 10.1073/pnas.88.20.9307

G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle.

T Kitazawa 1, M Masuo 1, A P Somlyo 1
PMCID: PMC52703  PMID: 1656467

Abstract

The mechanism of G protein-mediated sensitization of the contractile apparatus of smooth muscle to Ca2+ was studied in receptor-coupled alpha-toxin-permeabilized rabbit portal vein smooth muscle. To test the hypothesis that Ca2+ sensitization is due to inhibition of myosin light-chain (MLC) phosphatase activity, we measured the effect of guanosine 5'-[gamma-thio]triphosphate and phenylephrine on the rate of MLC dephosphorylation in muscles preactivated with Ca2+ and incubated in Ca(2+)- and ATP-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9) to block MLC kinase activity. Guanosine 5'-[gamma-thio]triphosphate alone (300 microM) or in combination (3 microM) with phenylephrine decreased the rates of relaxation and dephosphorylation of MLC to about half of control values; this inhibition is sufficient to account for maximal G protein-mediated Ca2+ sensitization of MLC phosphorylation. The rate of thiophosphorylation of MLC with adenosine 5'-[gamma-thio]-triphosphate was not affected by guanosine 5'-[gamma-thio]triphosphate. We suggest that inhibition of protein phosphatase(s) by G protein(s) may have important regulatory functions.

Full text

PDF
9307

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley A. B., Morgan K. G. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 1987 Apr;385:437–448. doi: 10.1113/jphysiol.1987.sp016500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cassidy P., Hoar P. E., Kerrick W. G. Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATP gamma S. J Biol Chem. 1979 Nov 10;254(21):11148–11153. [PubMed] [Google Scholar]
  3. Driska S. P., Stein P. G., Porter R. Myosin dephosphorylation during rapid relaxation of hog carotid artery smooth muscle. Am J Physiol. 1989 Feb;256(2 Pt 1):C315–C321. doi: 10.1152/ajpcell.1989.256.2.C315. [DOI] [PubMed] [Google Scholar]
  4. Edelman A. M., Lin W. H., Osterhout D. J., Bennett M. K., Kennedy M. B., Krebs E. G. Phosphorylation of smooth muscle myosin by type II Ca2+/calmodulin-dependent protein kinase. Mol Cell Biochem. 1990 Sep 3;97(1):87–98. doi: 10.1007/BF00231704. [DOI] [PubMed] [Google Scholar]
  5. Fujiwara T., Itoh T., Kubota Y., Kuriyama H. Effects of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery. J Physiol. 1989 Jan;408:535–547. doi: 10.1113/jphysiol.1989.sp017474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  7. Haeberle J. R., Sutton T. A., Trockman B. A. Phosphorylation of two sites on smooth muscle myosin. Effects on contraction of glycerinated vascular smooth muscle. J Biol Chem. 1988 Mar 25;263(9):4424–4429. [PubMed] [Google Scholar]
  8. Himpens B., Casteels R. Measurement by Quin2 of changes of the intracellular calcium concentration in strips of the rabbit ear artery and of the guinea-pig ileum. Pflugers Arch. 1987 Jan;408(1):32–37. doi: 10.1007/BF00581837. [DOI] [PubMed] [Google Scholar]
  9. Himpens B., Kitazawa T., Somlyo A. P. Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflugers Arch. 1990 Sep;417(1):21–28. doi: 10.1007/BF00370764. [DOI] [PubMed] [Google Scholar]
  10. Himpens B., Matthijs G., Somlyo A. P. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol. 1989 Jun;413:489–503. doi: 10.1113/jphysiol.1989.sp017665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishikawa T., Chijiwa T., Hagiwara M., Mamiya S., Saitoh M., Hidaka H. ML-9 inhibits the vascular contraction via the inhibition of myosin light chain phosphorylation. Mol Pharmacol. 1988 Jun;33(6):598–603. [PubMed] [Google Scholar]
  12. Kamm K. E., Stull J. T. Activation of smooth muscle contraction: relation between myosin phosphorylation and stiffness. Science. 1986 Apr 4;232(4746):80–82. doi: 10.1126/science.3754063. [DOI] [PubMed] [Google Scholar]
  13. Kamm K. E., Stull J. T. Myosin phosphorylation, force, and maximal shortening velocity in neurally stimulated tracheal smooth muscle. Am J Physiol. 1985 Sep;249(3 Pt 1):C238–C247. doi: 10.1152/ajpcell.1985.249.3.C238. [DOI] [PubMed] [Google Scholar]
  14. Kitazawa T., Gaylinn B. D., Denney G. H., Somlyo A. P. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991 Jan 25;266(3):1708–1715. [PubMed] [Google Scholar]
  15. Kitazawa T., Kobayashi S., Horiuti K., Somlyo A. V., Somlyo A. P. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem. 1989 Apr 5;264(10):5339–5342. [PubMed] [Google Scholar]
  16. Kitazawa T., Somlyo A. P. Desensitization and muscarinic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Ca2+ in smooth muscle. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1291–1297. doi: 10.1016/0006-291x(90)91589-k. [DOI] [PubMed] [Google Scholar]
  17. MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990 May 21;264(2):187–192. doi: 10.1016/0014-5793(90)80245-e. [DOI] [PubMed] [Google Scholar]
  18. Morgan J. P., Morgan K. G. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol. 1984 Jun;351:155–167. doi: 10.1113/jphysiol.1984.sp015239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mrwa U., Hartshorne D. J. Phosphorylation of smooth muscle myosin and myosin light chains. Fed Proc. 1980 Apr;39(5):1564–1568. [PubMed] [Google Scholar]
  20. Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
  21. Rembold C. M., Murphy R. A. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res. 1988 Sep;63(3):593–603. doi: 10.1161/01.res.63.3.593. [DOI] [PubMed] [Google Scholar]
  22. Sato K., Ozaki H., Karaki H. Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura 2. J Pharmacol Exp Ther. 1988 Jul;246(1):294–300. [PubMed] [Google Scholar]
  23. Somlyo A. V., Kitazawa T., Horiuti K., Kobayashi S., Trentham D., Somlyo A. P. Heparin-sensitive inositol trisphosphate signaling and the role of G-proteins in Ca2(+)-release and contractile regulation in smooth muscle. Prog Clin Biol Res. 1990;327:167–182. [PubMed] [Google Scholar]
  24. Stull J. T., Hsu L. C., Tansey M. G., Kamm K. E. Myosin light chain kinase phosphorylation in tracheal smooth muscle. J Biol Chem. 1990 Sep 25;265(27):16683–16690. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES