Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Nov 1;88(21):9730–9733. doi: 10.1073/pnas.88.21.9730

Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit.

H Kondo 1, K Shiratsuchi 1, T Yoshimoto 1, T Masuda 1, A Kitazono 1, D Tsuru 1, M Anai 1, M Sekiguchi 1, T Tanabe 1
PMCID: PMC52793  PMID: 1682920

Abstract

Biotin carboxylase [biotin-carboxyl-carrier-protein:carbon-dioxide ligase (ADP-forming), EC 6.3.4.14] is the enzyme mediating the first step of the acetyl-CoA carboxylase [acetyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.2] reaction. We screened an Escherichia coli DNA library and a DNA fragment carrying the biotin carboxylase gene fabG, and its flanking regions were cloned. The gene for biotin carboxyl carrier protein was found 13 base pairs upstream of the fabG gene. Nucleotide sequencing of the recombinant plasmids revealed that the fabG codes for a 449-amino acid residue protein with a calculated molecular weight of 49,320, a value in good agreement with that of 51,000 determined by SDS/polyacrylamide gel electrophoresis of the purified enzyme. The deduced amino acid sequence of biotin carboxylase is also consistent with the partial amino acid sequence determined by Edman degradation. The primary structure of this enzyme exhibits a high homology with those of other biotin-dependent enzymes and carbamoyl-phosphate synthetase [carbon-dioxide:L-glutamine amino-ligase (ADP-forming, carbamate-phosphorylating), EC 6.3.5.5]; therefore, all these enzymes probably function through the same mechanism of reaction.

Full text

PDF
9730

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Nervi A. M., Vagelos P. R. Acetyl CoA carboxylase, II. Deomonstration of biotin-protein and biotin carboxylase subunits. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1319–1326. doi: 10.1073/pnas.63.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Browner M. F., Taroni F., Sztul E., Rosenberg L. E. Sequence analysis, biogenesis, and mitochondrial import of the alpha-subunit of rat liver propionyl-CoA carboxylase. J Biol Chem. 1989 Jul 25;264(21):12680–12685. [PubMed] [Google Scholar]
  3. Freund J. N., Jarry B. P. The rudimentary gene of Drosophila melanogaster encodes four enzymic functions. J Mol Biol. 1987 Jan 5;193(1):1–13. doi: 10.1016/0022-2836(87)90621-8. [DOI] [PubMed] [Google Scholar]
  4. Guchhait R. B., Polakis S. E., Dimroth P., Stoll E., Moss J., Lane M. D. Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem. 1974 Oct 25;249(20):6633–6645. [PubMed] [Google Scholar]
  5. Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
  6. Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
  7. Lim F., Morris C. P., Occhiodoro F., Wallace J. C. Sequence and domain structure of yeast pyruvate carboxylase. J Biol Chem. 1988 Aug 15;263(23):11493–11497. [PubMed] [Google Scholar]
  8. Lusty C. J., Widgren E. E., Broglie K. E., Nyunoya H. Yeast carbamyl phosphate synthetase. Structure of the yeast gene and homology to Escherichia coli carbamyl phosphate synthetase. J Biol Chem. 1983 Dec 10;258(23):14466–14477. [PubMed] [Google Scholar]
  9. López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Muramatsu S., Mizuno T. Nucleotide sequence of the fabE gene and flanking regions containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res. 1989 May 25;17(10):3982–3982. doi: 10.1093/nar/17.10.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nyunoya H., Broglie K. E., Widgren E. E., Lusty C. J. Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J Biol Chem. 1985 Aug 5;260(16):9346–9356. [PubMed] [Google Scholar]
  12. Nyunoya H., Lusty C. J. The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4629–4633. doi: 10.1073/pnas.80.15.4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ogita T., Knowles J. R. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations. Biochemistry. 1988 Oct 18;27(21):8028–8033. doi: 10.1021/bi00421a009. [DOI] [PubMed] [Google Scholar]
  14. Polakis S. E., Guchhait R. B., Lane M. D. On the possible involvement of a carbonyl phosphate intermediate in the adenosine triphosphate-dependent carboxylation of biotin. J Biol Chem. 1972 Feb 25;247(4):1335–1337. [PubMed] [Google Scholar]
  15. Powers S. G., Griffith O. W., Meister A. Inhibition of carbamyl phosphate synthetase by P1, P5-di(adenosine 5')-pentaphosphate: evidence for two ATP binding sites. J Biol Chem. 1977 May 25;252(10):3558–3560. [PubMed] [Google Scholar]
  16. Silbert D. F., Pohlman T., Chapman A. Partial characterization of a temperature-sensitive mutation affecting acetyl coenzyme A carboxylase in Escherichia coli K-12. J Bacteriol. 1976 Jun;126(3):1351–1354. doi: 10.1128/jb.126.3.1351-1354.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sternberg M. J., Taylor W. R. Modelling the ATP-binding site of oncogene products, the epidermal growth factor receptor and related proteins. FEBS Lett. 1984 Oct 1;175(2):387–392. doi: 10.1016/0014-5793(84)80774-7. [DOI] [PubMed] [Google Scholar]
  18. Sutton M. R., Fall R. R., Nervi A. M., Alberts A. W., Vagelos P. R., Bradshaw R. A. Amino acid sequence of Escherichia coli biotin carboxyl carrier protein (9100). J Biol Chem. 1977 Jun 10;252(11):3934–3940. [PubMed] [Google Scholar]
  19. Takai T., Yokoyama C., Wada K., Tanabe T. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. J Biol Chem. 1988 Feb 25;263(6):2651–2657. [PubMed] [Google Scholar]
  20. Tipton P. A., Cleland W. W. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase. Biochemistry. 1988 Jun 14;27(12):4325–4331. doi: 10.1021/bi00412a020. [DOI] [PubMed] [Google Scholar]
  21. Toh H., Hayashida H., Miyata T. Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus. 1983 Oct 27-Nov 2Nature. 305(5937):827–829. doi: 10.1038/305827a0. [DOI] [PubMed] [Google Scholar]
  22. Wada K., Takai T., Tanabe T. Amino acid sequence of chicken liver cathepsin L. Eur J Biochem. 1987 Aug 17;167(1):13–18. doi: 10.1111/j.1432-1033.1987.tb13298.x. [DOI] [PubMed] [Google Scholar]
  23. Wood H. G., Barden R. E. Biotin enzymes. Annu Rev Biochem. 1977;46:385–413. doi: 10.1146/annurev.bi.46.070177.002125. [DOI] [PubMed] [Google Scholar]
  24. Yoshimoto T., Tone H., Honda T., Osatomi K., Kobayashi R., Tsuru D. Sequencing and high expression of aminopeptidase P gene from Escherichia coli HB101. J Biochem. 1989 Mar;105(3):412–416. doi: 10.1093/oxfordjournals.jbchem.a122678. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES