Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1957 Jun 15;43(6):464–477. doi: 10.1073/pnas.43.6.464

MOLECULAR BASIS OF BIOLOGICAL STABILITY TO HIGH TEMPERATURES*

Henry Koffler 1,, G E Mallett 1,, Jimmy Adye 1
PMCID: PMC528481  PMID: 16590041

Full text

PDF
464

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN M. B. The thermophilic aerobic sporeforming bacteria. Bacteriol Rev. 1953 Jun;17(2):125–173. doi: 10.1128/br.17.2.125-173.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BIER M., NORD F. F. The effect of certain ions and of radiation on crystalline trypsin. Arch Biochem Biophys. 1951 Apr;31(2):335–336. doi: 10.1016/0003-9861(51)90228-7. [DOI] [PubMed] [Google Scholar]
  3. GORINI L. Rôle du calcium dans le système trypsine-sérumalbumine. Biochim Biophys Acta. 1951 Jul;7(2):318–334. doi: 10.1016/0006-3002(51)90033-9. [DOI] [PubMed] [Google Scholar]
  4. HARTMAN P. A., WELLERSON R., Jr, TETRAULT P. A. Bacillus stearothermophilus. I. Thermal and pH stability of the amylase. Appl Microbiol. 1955 Jan;3(1):7–10. doi: 10.1128/am.3.1.7-10.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KOBAYASHI T., KOFFLER H., MALLET G. E. Cysteine-cystine content and the free amino groups of flagellin. Arch Biochem Biophys. 1956 Oct;64(2):509–511. doi: 10.1016/0003-9861(56)90295-8. [DOI] [PubMed] [Google Scholar]
  6. KOFFLER H., GALE G. O. The relative thermostability of cytoplasmic proteins from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):249–251. doi: 10.1016/0003-9861(57)90267-9. [DOI] [PubMed] [Google Scholar]
  7. KOFFLER H., KOBAYASHI T. Purification of flagella and flagellin with ammonium sulfate. Arch Biochem Biophys. 1957 Mar;67(1):246–248. doi: 10.1016/0003-9861(57)90266-7. [DOI] [PubMed] [Google Scholar]
  8. MANSON E. E. D., POLLOCK M. R. The thermostability of penicillinase. J Gen Microbiol. 1953 Feb;8(1):163–167. doi: 10.1099/00221287-8-1-163. [DOI] [PubMed] [Google Scholar]
  9. MARSH C., MILITZER W. Thermal enzymes. VIII. Properties of a heat-stable inorganic pyrophosphatase. Arch Biochem Biophys. 1956 Feb;60(2):439–451. doi: 10.1016/0003-9861(56)90449-0. [DOI] [PubMed] [Google Scholar]
  10. McCoy E. Studies on Anaerobic Bacteria: XI. On the Properties of the H Agglutinogens of a Mesophilic and a Thermophilic Species. J Bacteriol. 1937 Sep;34(3):321–341. doi: 10.1128/jb.34.3.321-341.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROTH J. S. Ribonuclease. II. Activators and inhibitors for ribonuclease. Arch Biochem Biophys. 1953 Jun;44(2):265–270. doi: 10.1016/0003-9861(53)90043-5. [DOI] [PubMed] [Google Scholar]
  12. STARK E., TETRAULT P. A. Isolation of bacterial, cell-free, starch saccharifying enzymes from the medium at 70 C. J Bacteriol. 1951 Aug;62(2):247–249. doi: 10.1128/jb.62.2.247-249.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. STEWART B. T., HALVORSON H. O. Studies on the spores of aerobic bacteria. II. The properties of an extracted heat-stable enzyme. Arch Biochem Biophys. 1954 Mar;49(1):168–178. doi: 10.1016/0003-9861(54)90178-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES