Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Nov 15;88(22):10014–10017. doi: 10.1073/pnas.88.22.10014

Two-dimensional life?

Christian de Duve *,, Stanley L Miller
PMCID: PMC52857  PMID: 11538487

Abstract

A model [Wächtershäuser, G. (1988) Microbiol. Rev. 52, 452-484], according to which life started in the form of a monomolecular layer of interacting anionic metabolites electrostatically bound to a positively charged surface, is examined critically. The model raises a number of thermodynamic and kinetic difficulties.

Keywords: origin of life, surface chemistry

Full text

PDF
10014

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borowska Z. K., Mauzerall D. C. Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. Orig Life Evol Biosph. 1987;17:251–259. doi: 10.1007/BF02386465. [DOI] [PubMed] [Google Scholar]
  2. DAVIS B. D. On the importance of being ionized. Arch Biochem Biophys. 1958 Dec;78(2):497–509. doi: 10.1016/0003-9861(58)90374-6. [DOI] [PubMed] [Google Scholar]
  3. Joyce G. F. RNA evolution and the origins of life. Nature. 1989 Mar 16;338(6212):217–224. doi: 10.1038/338217a0. [DOI] [PubMed] [Google Scholar]
  4. MILLER S. L. A production of amino acids under possible primitive earth conditions. Science. 1953 May 15;117(3046):528–529. doi: 10.1126/science.117.3046.528. [DOI] [PubMed] [Google Scholar]
  5. Prigogine I., Nicolis G. Biological order, structure and instabilities. Q Rev Biophys. 1971 Aug;4(2):107–148. doi: 10.1017/s0033583500000615. [DOI] [PubMed] [Google Scholar]
  6. Stribling R., Miller S. L. Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph. 1987;17(3-4):261–273. doi: 10.1007/BF02386466. [DOI] [PubMed] [Google Scholar]
  7. Urey H. C. On the Early Chemical History of the Earth and the Origin of Life. Proc Natl Acad Sci U S A. 1952 Apr;38(4):351–363. doi: 10.1073/pnas.38.4.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Waldrop M. M. Goodbye to the warm little pond? Science. 1990 Nov 23;250(4984):1078–1080. doi: 10.1126/science.11536475. [DOI] [PubMed] [Google Scholar]
  9. Westheimer F. H. Why nature chose phosphates. Science. 1987 Mar 6;235(4793):1173–1178. doi: 10.1126/science.2434996. [DOI] [PubMed] [Google Scholar]
  10. Wolman Y., Haverland W. J., Miller S. L. Nonprotein amino acids from spark discharges and their comparison with the murchison meteorite amino acids. Proc Natl Acad Sci U S A. 1972 Apr;69(4):809–811. doi: 10.1073/pnas.69.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wächtershäuser G. Before enzymes and templates: theory of surface metabolism. Microbiol Rev. 1988 Dec;52(4):452–484. doi: 10.1128/mr.52.4.452-484.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wächtershäuser G. Evolution of the first metabolic cycles. Proc Natl Acad Sci U S A. 1990 Jan;87(1):200–204. doi: 10.1073/pnas.87.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES