Skip to main content
Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry logoLink to Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry
. 1959 Aug 1;63A(1):1–18. doi: 10.6028/Jres.063A.001

Description and Analysis of the First Spectrum of Iodine

C C Kiess, C H Corliss
PMCID: PMC5287101  PMID: 31216140

Abstract

An extensive survey of the spectra of iodine has led to a list of more than 900 lines emitted by neutral atoms in the region from 23070 A in the infrared to 1195 A in the extreme ultraviolet. Wavelengths between 12304 A and 2061 A were derived from measurements of spectrograms obtained with gratings of high dispersion. Wavelengths of lines outside these limits are the computed values for lines observed on photometric tracings of the infrared, inaccessible to photography, and in the ultraviolet with a vacuum-grating spectrograph. For many of the lines Zeeman patterns were obtained in a magnetic field of about 37,000 oersteds. With these data many of the lines have been classified as combinations between odd levels from the electron configurations 5s2 5p4 np and 5s2 5p4 nf, and even levels from the configurations 5s2 5p4 ns and 5s2 5p4 nd. Among these levels several sets have been recognized as forming Rydberg sequences that are in close agreement in placing the ground state 5p5  2Po of I i at 84,340 cm−1 below the ground state 5p4 3P2 of I ii. This gives 10.45 electron-volts for the ionization potential of the neutral iodine atom. A strong infrared line at 13148.8 A is explained as a magnetic dipole transition between the levels of the ground term 5p5 2P°.

1. Introduction

The spectra absorbed and emitted by iodine in its atomic and molecular states have been the object of many investigations. In volumes 5 and 8 of his Handbuch der Spectroscopie, Kayser lists 352 papers, which appeared up to 1933, dealing with various aspects of the spectral behavior of this heavy member of the halogen family. Since that date additional papers have appeared, of which some are cited below. But in spite of this abundant material, representing a vast amount of work, knowledge of the first spectrum of iodine, I i, emitted by neutral atoms, has remained scanty and fragmentary, largely owing to the fact that important parts of the spectrum lie in the not easily accessible ultraviolet and infrared regions. It is the purpose of this paper to present a new description of the first spectrum of iodine and an analysis of its term structure.

2. Experimental Procedure

The investigations of the first spectrum of iodine at the Bureau were made at two different times under different experimental conditions. The first series of observations was made more than 30 years ago when chlorine and bromine [1]1 also were being investigated. The light source was a Geissler tube of Pyrex glass into which a small amount of dry iodine vapor could be admitted from time-to-time to replace that which was adsorbed on the walls of the tube or absorbed by its aluminum electrodes. The lamp was similar to that used in the experiments on chlorine and bromine, and was excited to luminescence in the same way, with an uncondensed discharge from the high-voltage side of a 40-kv transformer. The spectrograms were recorded on plates sensitized to the green, orange, red, and infrared regions of the spectrum by bathing ordinary photoplates in solutions of the photosensitizing dyes available at that time; namely, pinaverdol, pinacyanol, dicyanin, and the newly discovered kryptocyanin. The spectrographs carried concave gratings of 21-ft radius of curvature, ruled with 7,500 and 20,000 lines per in. and set up in Wadsworth mountings. Each exposure to the light source was made with one-half the length of the spectrograph slit covered with a colored-glass filter so that both the first-order spectrum and the overlapping second order could be obtained at the same time. Each plate was exposed also to light from the iron arc, in both the first and second orders, to obtain the necessary standard wavelengths for use in deriving the iodine wavelengths. Because the capillary of the discharge became discolored after a run of a few hours, it was necessary to make exposures of nearly 24-hr duration in order to photograph the lines of longest wavelength recorded on the plates.

Measurement of these spectrograms yielded a list of approximately 400 wavelengths, with estimated intensities, extending from 9732 A in the infrared to 3820 A in the ultraviolet. This list was seemingly the most extensive description of the first spectrum of iodine then available and was being prepared for publication when the paper, “The Arc Spectrum of Iodine,” by Evans [2] appeared. A comparison of his list and ours showed that they were essentially identical. This fact and also the fact that his paper contains the first real results for a classification of the iodine spectrum outside of the Schumann region induced us to defer publication of our results until a substantial addition could be made to the description and analysis of the spectrum.

The second series of observations was made at various times during the period from 1953 to 1957. Improved apparatus and new experimental procedures have made it possible to advance the description of the iodine spectrum beyond the limits reached in the earlier work, and also to obtain Zeeman-effect observations that have led to a revision and extension of its term structure. The new light source was an electrodeless discharge tube of the type described by Corliss, Westfall, and Bozman [3]. It was excited to luminescence in a field of 2,450 Me from a microwave oscillator. The plates used to record the spectra were EK types 103a–O–UV, 103 a–O, I–F, I–N, I–Q, and I–Z, according to the region investigated, and, where required, were hypersensitized in an ammonia bath by the method recommended by Burka [4]. Four concave-grating spectrographs and a Hilger E 1 quartz-prism spectrograph were used to obtain the spectrograms. The spectrographs carrying the gratings with 7,500 and 15,000 lines per in. were used for the infrared and red regions where many new strong lines were found. For the shorter regions the grating with 30,000 lines per in. was used as well as the one with 15,000. For the extreme ultraviolet both the Hilger E 1 instrument and a 2-m glass grating ruled with 30,000 lines per in. and mounted in a vacuum chamber were used. All the spectrograms bore exposures to the iron arc or other sources of standard lines to be used in the determination of the iodine wavelengths.

For the Zeeman-effect observations the Weiss water-cooled magnet of the Bureau was used. With a current of 160 amp through the coils and a gap of 5 mm between the pole pieces, a field of approximately 37,000 oersteds was produced. The source between the pole pieces was also an electrodeless lamp of the type mentioned above, but of diameter 4 mm. A Wollaston prism of quartz placed between the light source and the projection lens of the spectrograph separated the two polarizations on the slit, with space between them for a no-field exposure. On plates appropriate for the regions under investigation resolved magnetic patterns were recorded for nearly all the strong lines of I i from 2062 A in the ultraviolet out to 11246 A in the infrared. Zeeman patterns were recorded also for some I ii lines of long wavelength.

3. Results

The observational data and the deductions from atomic theory that are essential for the description of the spectrum of iodine and its term structure are embodied in the tables appended to this paper. In tables 1, 2, and 3 are listed, in the first three columns, the wavelengths of the lines of I i, their estimated intensities and characteristics, and their wave numbers in vacuum. The letters after the intensity numbers have the following significance: c=partially resolved hyperfine structure (hfs); d=double; w=widened line owing to unresolved hfs; h=hazy, diffuse; Z=Zeeman pattern given in table 4. The letters A and B indicate the type of shading displayed by unresolved patterns; thus: A=⩘|\; B=|\/|. The term combinations in the fourth column of the tables are based on g- and J-values derived from the Zeeman-effect patterns of table 4.

Table 1.

Wavelengths and term combinations of I i

Wave length Intensity Wave number Designation

12304.77           10(435) 8124.71 6p  4So—nd 6
12136.08             5w (180) 8237.65 nd 5. 1np 2o
12097.44             2 8263.96 nd 5—6p 2Po
12033.94           60 8307.57 6p  2Do—nd 10
12023.74             8 8314.61 6s 2P—6p  2Po
11996.92           75(510) 8333.20 6p  2Do—nd 10
11866.00             2 8425.14 nd 5.1—7p  2Po
11779.17          3045}(460) 8487.24 6p  4So—nd 7
11778.01   8488.08
11761.74             2 8499.82 nd 5.1—8p  2Do
11650.40             1w 8581.05 nd 5—8p  4Po
11610.60             5 8610.47 6s2D—7p  4Po
11588.23           40(365) 8627.09 6s 2P—6p  2So
11558.56         100(660) 8649.23 6p  4So—nd 8
11538.57             2 8664.22 nd 5—8p  4So
11498.65           15 8694.30 6s2D—7p  4So
11486.80             8 8703.27 {6p 4Do7d 4Pnd5 2Do
11465.76           25w 8719.25 nd 3—4f 1o
11458.07             6 8725.09 nd 3—4f 2o
11457.08             8 8725.84 nd 3—4f 2.1o
11451.13           50 8730.38 6p  4Pond 11
11447.72         100 8732.98 {6p 4Pond8nd33o
11429.56           15 8746.86
11428.40           50 8747.74 nd 4—4f 5o
11420.33           75 8753.92 nd 2—4f 0.1o
11415.66             3 8757.50 nd 2—4f 1o
11410.07           75 8761.79 6p  4Pond 16
11401.46             2 8768.42 nd 3—4f 4o
11397.98           10 8771.09
11397.28             8 8771.63 nd 3—4f 5o
11396.50           10c 8772.23 6p  2Dond 34
11375.25           75 8788.61 nd 4.1—4f 5.1o
11373.78             1 8789.75 6s 2P6p  4Do
11372.10         125 8791.05 nd 4.1—4f 6o
11366.90             1 8795.07 nd 4—4f 6o
11356.37         125 8803.23
11353.67           75 8805.32 {6p 4Sond96p 4Dond27
11351.81           18 8806.76 nd 2—4f 4o
11347.85         100d 8809.84 nd 2—4f 5o
11343.23           75 8813.42 6s 2P—6p  4Po
11313.27         100 8836.76 6p  4Po—nd 17
11298.66             4 8848.19 {nd5.18p 4Po6p 4Dond35
11293.40           65d? 8852.32 nd 5—8p  4Do
11290.54           25w 8854.56 nd 2—4f 5.1o
11287.49           75d 8856.95 nd 24f 6o
11271.03             1 8869.88 nd 5.1—8p  4Po
11246.77         125 8889.02 {6p 4Pond96p 2Do8d 4P
11236.56         400Z 8897.09 6s 2P—6p  4So
11187.21             5 8936.34
11179.11           10 8942.82 6p  2Do—nd 11
11176.21           50 8945.14 6s2D7p  4Po
11172.79             8 8947.87 6s2D—7p  4Po
11169.39           75 8950.60
11147.15           10 8968.46 6p  2So—nd 27
11140.20             6 8974.05 6p  2Pond 32.2
11138.10             2 8975.74
11116.62             7 8993.09
11093.70             4 9011.66
11084.16             2 9019.42 6p  2Po—ns 4P
11072.33           60 9029.06 6s2D—7p  4So
11059.56             4 9039.48 {6p 4Dond36.16p 2Pond33
11053.79           15 9044.20 6p  4Po—nd 18
11050.04             2 9047.27
11020.60         250Z 9071.44 6p  4Po—nd 10
11017.14         100Z 9074.29 6p  4Po—nd 19
10991.19             4 9095.71 6p  4Do—nd 28.2
10979.70             6 9105.23 6p  2Po—nd 34
10970.39             4 9112.95 6p  4Do—nd 31
10914.32           15 9159.77 6p  4Do—8d 4D
10897.87           65 9173.60 6s2D—7p  4Do
10894.66           70 9176.30
10891.47           75d? 9178.99 {6p 2Po7d 4P6p 2Dond13
10889.23           18 9180.88 6p  2Pond 35
10856.80             2 9208.31 6p  4Dond 32
10841.34             4 9221.43 6p  2Dond 32.2
10788.18           10 9266.87 {6s 2D7p 4Po6p 2Do7p 4P
10777.97             4 9275.65 6p  4Do—10s 4P
10777.79           20 9280.98 6p  2Pond 27
10722.07             2 9324.01 7s 4P6f 6o
10706.79           15 9337.31
10696.02         100 9346.72 nd 5.1—8p  2Po
10685.82         100Z 9355.64 6p  4Pond 19.1
10603.64             4 9428.15 {6p 2Dond357s 2P7p 4Do
10588.59             6 9441.55 6p  2Po—nd 38
10578.22           20 9450.80
10545.62           15 9480.02 nd 5.1—5f 1o
10539.72           50 9485.33 nd 5.1—5f 2o
10534.95           10 9489.62 nd 5.1—5f 3o
10515.40         100 9507.27 6p  4Do—nd 14
10494.08           30 w, + g? 9526.58 nd 5.1—5f 5o
10487.23           10 9532.80 6p  2Do—nd 14
10469.23             3 9549.19
10466.54       5000Z 9551.65 6s 2P—6p  2Do
10459.55             1 9558.03
10455.45             2 9561.77
10445.35             5 9571.03 6p  2Pond 28.2
10438.81             3, + g? 9577.02
10435.34           100d?Z 9580.10
10428.39             6 9586.60 6p  2Pond 39
10416.61           75Z 9597.44 6p  2Sond 11
10412.80           10 9600.95 6s2D—7p  4Po
10391.74         400Z 9620.40 {6s 2P6p 2Donp1ond38
10375.20         400Z 9635.74
10354.93             8 9654.60
10348.02             7 9661.04 6p  4Do—6s 2So
10343.20             3 9665.54 6p  4Dond 31
10326.53           75 9681.15 6p  4Pond 11
10325.90         100Z 9681.74 6s 4P—6p  2Po
10322.56         100 9684.87 {6p 2Dond37nd5.1np3o6s 2Pond20
10318.20           35 9688.96 {6s 2Pnp1o6p 2Dond38
10313.72             4 9693.17 nd 5—5f 3o
10310.20           50 9696.48 nd 5—5f 4o
10286.07             8 9719.23 6p  4Do—8d 4P
10274.34             4w 9730.32 nd 5—5f 5o
10266.04             5 9738.19
10242.83           10 9760.26 6p  4Do—9d 4D
10241.29           20 9761.73
10238.82       1000Z 9764.08 6s 2P—6p  4Po
10232.06           35 9770.53 nd 5.1np 4o
10211.60             5 9790.11 7s 4P—np 5o
10201.82             7 9799.49 nd 4.1—6p 2Po
10172.91         300Z 9827.34 nd 3—6p 2Po
10166.00             8 9834.02 {6p 2Dond396p 4Sond13
10158.64         400Z 9841.15 {6p 4Pond216p 4Do5d 4D
10147.70             1 9851.77 6p  2Sond 30
10141.83         100Z 9857.47 6p  4Pond 15
10133.56           40 9865.51 nd 2—6p 2Po
10132.38             3 9866.66 6p  2Do—5d 4D
10131.16         750Z 9867.85 6s 2P—6p  2Po
10126.07             7 9872.81 6p  2Pond 29
10109.70             5 9888.79 nd 5—np 3o
10074.13             7 9923.71 nd 4—np 1.1o
10066.72             7 9931.01 6p  2So—nd 32.1
10050.11             2w 9947.42 nd 3—np 1.1o
10034.64             2 9962.76 6p  4Do—nd 37
10030.35             2 9967.03 6p  4Po—nd 16
10023.10           22 9974.24 nd 5—np 4o
10011.68           20 9985.61 nd 2—np 1.1o
10003.05         500Z 9994.22 {6s 4P6p 2So6p 2Po6s 2S
9992.54           85 10004.72 nd 3—np 2o
9992.24             4 10005.02 nd 1—4f 0.1o
9963.30         400Z 10034.09 6p  4Do—5d 4F
9954.63         200d 10042.82 nd 2—np 2o
9939.30         100 10058.31 nd 1—4f 4o
9933.25             8 10064.44
9892.35           50 10106.05 nd 14f 5.1o
9889.95           40c 10108.46 nd 1—4f 6o
9855.04             1 10144.31 nd 3—8p  4Po
9842.75         150Z 10156.98 6s 4P—6p  4Do
9835.52             5 10164.45 6p  2Po—nd 30
9832.28             4 10167.80 nd 47p  2Po
9827.53             1 10172.71 np 1o—6s2S
9818.10             2 10182.48 nd 2—8p  4Po
9817.59             1 10183.01 6p  4Do—nd 34
9813.53         200Z 10187.22 6p  4Sond 14
9808.26             1 10192.70 6p  2Po—nd 31.1
9800.89         100Z 10200.36 6s 2P—6p  4Do
9787.21             2 10214.62 6p  2So—nd 32.2
9774.97           10c 10227.41 nd 3—8p  4So
9773.50             6 10228.94 6p  4Do—nd 17
9772.17             7c 10230.34 nd 27p  2Po
9749.20           40cZ 10254.44 6p  2Do—nd 17
9747.23             3c 10256.51
9733.56         300 10270.92 6p  4Po—nd 14
9731.73       5000Z 10272.85 6s 4P—6p  4Po
9725.47           30Z 10279.46 6p  4Po—nd 19
9710.58             8 10295.22
9701.28             5 10305.09 nd 2—8p  2Do
9673.43             1 10334.76 6p  4Do—5d 2F
9663.06             1 10345.86 6p  2So—nd 34
9653.06       3000dZ 10356.57 6s 4P—6p  4So
9649.61       2000Z 10360.27 6p  2Do—5d 2F
9623.21           15 10388.69 6p  4Po—8s 4P
9598.22       2000Z 10415.74 nd 3—8p  4Do
9593.62             2 10420.74 6p  4Do—nd 36
9579.02           20c 10436.62 6p  4Do—nd 18
9573.22             1 10442.94 nd 5.1—9p  2Do
9566.81             1 10449.94 6p  4Dond 36.1
9555.72           10 10462.07 6p  2Do—nd 18
9528.48           18 10491.98 6p  2Do—nd 19
9526.90           30 10493.72 6p  4Po—8s 2P
9516.92             1h 10504.72
9514.07             1 10507.86
9496.69             1 10527.09 6p  2Po—nd 32.2
9466.34           50cZ 10560.85 6p  4Po—nd 19.1
9438.25             1h 10592.28 6p  2Po—nd 33
9427.15       3000Z 10604.75 6p  4Po—5d 4D
9426.71       4000Z 10605.25 6s 4P—6p  4Po
9423.42             1 10608.94 nd 4.1—8p  4Po
9398.73         200c 10636.82 nd 3—8p  4Po
9390.14             1 10646.55 nd 5—9p  2Do
9379.77             2 10658.32 6p  2Pond 34
9374.34             3d 10664.49 6p  4Dond 39
9365.16           25c 10674.95 nd 2—8p  4Po
9358.69             1 10682.33 6p  2Sond 38
9335.05       1000Z 10709.38 6s 4P—6p  4Do
9321.95         200Z 10724.43 6p  4Sond 15
9313.64             5 10734.02 6p  2Pond 35
9227.74         600Z 10833.92 6p  4So—nd 16
9213.57             3 10850.58 nd 5.1—6f 1o
9201.90           12 10864.33 nd 5.1—6f 4o
9195.07             3d 10872.40 nd 5.1—6f 6o
9180.20           70Z 10890.02 6p  4Pond 20
9164.38           20 10908.82 6p  4So—nd 17
9156.91         500Z 10917.72 {6s 4P6p 2So6p 4Pond16
9150.63             3 10925.21 6p  2Pond 36.1
9128.03         600Z 10952.26 6s2D—4f 1o
9113.91       12000Z 10969.23 6s 2P—6p  4Po
9098.86       1000Z 10987.37 6s 4P—6p  2Do
9094.50         150 10992.64 6p  4Po—nd 17
9087.16         300Z 11001.52 6s2D—4f 4o
9084.70             6 11004.50 6s2D—4f 5o
9082.55             2 11007.10 6p  2Pond 38.2
9079.34           50Z 11010.99 6s 4P—6p  2Do
9058.33       15000Z 11036.53 6s 4P—6p  4Do
9047.91           20c 11049.24 6s2D—4f 5.1o
9046.90             3 11050.47
9046.36             5 11051.13
9043.85             1 11054.20 nd 5—6f 1o
9042.30           15 11056.10 {6s 4Pnp1ond56f2o
9034.43             2d? 11065.73 nd 5—6f 3o
9032.64             3 11067.92 nd 5—6f 4o
9022.40       5000Z 11080.48 6s 4P—6p  4Do
9018.05           10c 11085.83 nd 4.1—8p  2Po
9007.77           40 11098.48 6p  4Po—5d 2F
9004.39             6c 11102.65
8993.13         400Z 11116.55 6p  4Sond 18
8969.04         300Z 11146.41 6p  4Sond 19
8964.69         400Z 11151.81 {nd5.17p 2Sond28p 2Po
8925.97         225cZ 11200.20 6p  4Pond 18
8902.23           60c 11230.06 6p  4Pond 19
8899.72             3 11233.23 6p  4Dond 21
8898.50       1000dZ 11234.77 {6p 2So6s 2So6s 4P6p 2Po
8884.70           30c 11252.21
8879.55           90d 11258.74 6p  2Do—nd 21
8878.76           75c 11259.74 nd 3—5f 4o
8874.18           25 11265.56 nd 3—5f 4.1o
8873.86           30d 11265.97 6p  4Dond 21.1
8870.66             6 11270.03 nd 41—5f 5o
8868.00           75 11273.41
8865.53             1 11276.54 6s2D—4f 0o
8864.95             1c 11277.28 nd 3—5f 4.2o
8862.33             1 11280.61
8858.79             3c 11285.12 nd 2—5f 1o
8857.50       3000Z 11286.77 6s2D—4f 1o
8854.68             1c 11290.36 nd 2—5f 2o
8853.80       2000Z 11291.49 6p  2Dond 21.1
8853.24       1000Z 11292.20 6s2D—4f 2o
8852.65           50d 11292.95 6s2D—4f 2.1o
8851.30         100c 11294.68 nd 2—5f 3o
8848.33           80 11298.47
8847.14         250Z 11299.99 6s2D—4f 3°
8822.08           50c 11332.09 nd 2—5f 5o
8818.89         150c 11336.18 6s2D4f 4o
8816.65         275cZ 11339.07 6s2D—4f 5o
8812.40         100d 11345.82
8809.86           10 11347.80
8805.41           15d 11353.54 6p  4P°—7s 4P
8780.10         100c 11386.27 6s2D—4f 6°
8748.22         250dZ 11427.76 {6p 4Sond19.1nd4np3o
8729.70         200c 11452.01 nd 3—np 3°
8700.80         500cZ 11490.04 nd 2—np 3°
8680.36           10d 11517.10 nd 1—8p  4S°
8664.95       1500cZ 11537.60 nd 3np 4°
8642.60         200d 11567.42 6s 4P—6p  4D°
8636.40         175dZ 11575.72 nd 2—np 4°
8560.30           30d 11678.63 nd 5.1—7p  4D°
8551.60             1cw 11690.51
8545.52         300dZ 11698.82 6p  4P°—8s 2P
8503.32             2cw 11756.89 6p  4S°—nd 20
8490.67             1cw 11774.40
8486.11       1000Z 11780.73 6p  4D°—8s 4P
8467.80             5 11806.21 6p  2D°—8s 4P
8451.46           60d 11829.03 6p  4P°—7s 4P
8443.19             8c 11840.61
8427.41           20c 11862.80 6s 2P—7p  4S°
8418.95             4 11874.71 nd 5—7f 1°
8416.54           50 11878.11
8414.32           40 11881.24 6p  4P°6d 4P
8413.59             5c 11882.26 nd 5—7p  4D°
8393.30       1000cZ 11910.99 {6s 4P6p 2D°6p 2D°8s 2P
8391.70         200Z 11913.27 6p  4S°—nd 21
8382.49             2c 11926.36 nd 1—8p  4P°
8352.73           40 11968.85 6p  4P°nd 22
8333.19           50 11996.91 6p  4P°nd 21
8322.16             3c 12012.38 nd 4—9p  4P°
8305.80           40c 12036.47 nd 3—9p  4P°
8289.50           60d 12060.14 6s2D—6p 2P°
8285.18             8d 12066.42
8279.57             2d 12074.21 nd 2—9p  4P°
8262.54           30 12099.50
8260.04         200Z 12103.15
8258.84             1 12104.91 nd 4.1—9p  4S°
8257.74           15 12106.52
8251.08           80Z 12116.30 6s 2P—7p  4P°
8247.74           15d 12121.21
8240.05       4000Z 12132.52 nd 3—9p  4S°
8222.57         500dZ 12158.31 6s 4P—6p  2P°
8213.95           50d 12171.07 nd 2—9p  4S°
8206.49             2 12182.28 nd 4.1—9p  2D°
8187.94           30c 12209.73 nd 3—9p  2D°
8179.00           50d 12223.08 6p  4P°—7s 2P
8169.38         800cZ 12237.47 6s2D—np 2°
8162.22             1 12248.20 nd 2—9p  2D°
8105.60           50dZ 12333.76 6p  4P°—nd 24
8090.76       1000Z 12356.38 6p  4P°—nd 25
8065.70         300dZ 12394.77 6s2D—6p 2P°
8046.13             4 12424.75 6s2D—7p  2P°
8043.74   100000Z 12428.61 6s 4P6p  4P°
8039.85         100dZ 12434.62 6s 2P—7p  4P°
8023.01         300Z 12460.73 {6s 2D8p 4S°6p 4S°8s 4P
8009.61             2 12481.57
8003.63       1000Z 12490.90 6s 4P6p  4D°
7998.01           40 12499.68 6s2D—8p  2D°
7995.63             3 12503.40
7974.48         200Z 12536.56 nd 1—5f 1°
7969.48         500Z 12544.42 6p  4P°—8s 4P
7968.61             5 12545.80 nd 1—5f 3°
7960.43           50d 12558.68 6p  4P°7s 4P
7955.90           40dZ 12565.84 6p  4S°8s 2P
7951.99         200c 12572.01 6s2D—np 2°
7944.85         250cZ 12583.32 nd 1—5f 5°
7941.34             1 12588.87
7927.94           15c 12610.15
7927.10           50c 12611.49 nd 4.1—6f 6°
7922.23           20c 12619.24 nd 3—6f 2°
7914.70           15c 12631.25 nd 36f 4°
7909.08             3 12640.22
7907.86           25 12642.17
7904.45           10d 12647.63
7903.27             3 12649.51 6p  4P°8s 2P
7899.41             3c 12655.70 nd 2—6f 1°
7897.98         600 12657.99
7892.43           15c 12666.89 nd 26f 3°
7890.85           25c 12669 42 nd 2—6f 4°
7886.00             5c 12677.22
7885.72             5c 12677.66
7864.56             1 12711.77 6s2D—8p  4P°
7861.20           15 12717.21
7846.21           12c 12741.51
7813.39           50 12795.03 6s2D—8p  4S°
7792.51             4d 12829.31
7789.48             5 12834.30 6s2D—8p  2D°
7778.39           15 12852.60 6p  4P°—9s 4P
7768.13           25d 12869.57 6s2D8p  4P°
7758.80           40d 12885.05 6p  4P°—9s 2P
7728.92           25 12934.86
7715.72           15c 12956.99 nd 2—7p  2S°
7700.20       2000cZ 12983.11 6s2D—8p  4D°
7696.92           50c 12988.64
7671.01         200dZ 13032.51 6p  4P°nd 21.2
7670.02           10d 13034.19 6p  4P°—7s 4P
7611.16             5 13134.99 nd 3—7p  4D°
7604.88         200Z 13145.85 6s 4P7p  4P°
7588.60         400Z 13174.04 6p  4P°—nd 22
7571.25         100 13204.24 6s2D8p  4P°
7556.65         500dZ 13229.74 6s 4P7p  4S°
7554.18       2000Z 13234.07 6p  4D°—6d 4D
7547.03             5h 13246.60 6p  2D°—7s 4P
7539.66         200 13259.55 6p  2D°—6d 4D
7531.81         200Z 13273.37 6p  4D°—6d 4P
7490.52         500cZ 13346.54 6s2D8p  2P°
7483.97             4 13358.26
7476.45           25 13371.65 6s 4P—7p  2D°
7468.99       5000Z 13385.01 6p  4D°6d 4F
7468.45           10 13385.98
7468.16           25d 13386.50 6p  2D°nd 22
7448.11             2d 13422.54 nd 1—6p  4S°
7446.37         300dZ 13425.67 6p  4S°7s 4P
7444.91         100d 13428.29 6p  4P°7s 2P
7444.08             8 13429.80
7437.41             8d 13441.01
7421.98             6 13469.78
7420.01         200 13473.37
7418.90           12 13475.27
7418.26         100 13476.54 nd 2—7f 1°
7416.48         500Z 13479.78 6s2D—5f 1°
7414.50           50 13483.38   6s 4P7p  4P°
7413.60         200dZ 13485.01 6s2D—5f 2°
7411.20         200Z 13489.38 6s2D—5f 3°
7410.50       1000Z 13490.66
7402.06       5000Z 13506.04 6p  2D°nd 23
7390.78           60c 13526.65 6s2D—5f 5°
7385.58           15d 13536.18
7384.08         150dZ 13538.92 6p  4P°nd 24
7341.23           20 13617.95 6p  4P°—7d 4P
7336.76             1cw 13626.75 nd 3np 6°
7335.40             3 13628.77 6p  4P°nd 26
7333.72             5cw 13631.90 6p  4P°nd 26.1
7306.15             2 13683.33
7305.43         400cZ 13684.69 6s2Dnp 3°
7286.44           40 13720.35 6p  4P°nd 27
7269 97           25d 13751.43 6p  2D°nd 24
7263 61           25 13763.48 6p  4P°nd 27.1
7259.98         100cZ 13770.35 6s2Dnp 4°
7258.06         200Z 13774.00 6p  2D°nd 25
7243.49           25 13801.70 6s 4P7p  4P°
7237.84         500Z 13812.48
7236.78       1000Z 13814.50 6s2D—5f 1°
7235.01         200 13817.88
7233.81         100 13820.17 6p  4P°nd 28.1
7231.82         200Z 13823.98 6s2D—5f 3°
7230.13           80 13827.21 6s2D—5f 4°
7228.94           30 13829.48
7227.30         700Z 13832.62 6s2D5f 4.1°
7221.10             5 13844.50 6s2D—5f 4.2°
7212.50           20c 13861.00 6s2D—5f 5°
719Z 52         300cZ 13899.51 6p  4S°nd 21.2
7191.66         400dZ 13901.17 6p  4S°—7s 4P
7182.79         300 13918.34 nd 1—6f 3°
7178.03           30 13927.56 nd 1—6f 5°
7177.35           30d 13928.89 nd 1—6f 6°
7164.79       1000Z 13953.30 6p  4S°—6d 4P
7148.63         400cZ 13984.84 6p  4P°—7s 4P
7142.06       2000Z 13997.71 6p  4P°—6d 4D
7137.12           10 14007.39
7135.55           60 14010.48 6p  4P°nd 28.2
7131.06           10cw 14019.32 6s2Dnp 3°
7122.05       1200Z 14037.04 6p  4P°—6d 4P
7120.05         500Z 14040.98 6p  4S°nd 22
7107.43           65c 14065.91 nd 2—np 7°
7095.17           80 14090.22 6p  4P°—9s 2P
7087.76         200c 14104.95 6s2Dnp 4°
7085.05             5c 14110.34 6s 2P—4f 0°
7077.87         300 14124.65 6p  4P°nd 22
7063.59         300Z 14153.21 6s 4P—7p  4S°
7055.30           20 14169.84 6s 2P4f 4°
7045.11             5 14190.34 6p  4P°—10s 4P
7031.62             8w 14217.56 6s 2P—4f 5.1°
7030.40             5 14220.02 6s 2P—4f 6°
7018.42           30 14244.30 6p  4P°nd 23
7018.24         100 14244.66 6p  4D°—9s 4P
7010.20           20 14261.00
7006.16             5 14269.23 6s2D—9p  4P°
6993.41         100d 14295.24 6p  4S°—7s 2P
6991.89           30 14298.34
6989.78         500 14302.66 6p  2D°—9s 2P
6986.51         400 14309.36
6985.13           40 14312.18 6p  4P°nd 29
6959.09           50 14365.73 6s2D—9p  4S°
6940.98           50d 14403.22
6939.71             8w 14405.86 6p  4S°nd 24
6939.21           15c 14406.90 6s 4P—7p  4P°
6928.82         100 14428.50 6p  4S°nd 25
6922.05             2 14442.62 6s3D—9p  2D°
6899.61           20d 14489.58 6p  4P°nd 24
6856.75           50 14580.15 6p  4P°nd 31
6849.46           10 14595.66
6845.63           40 14603.84 {6p 4P°nd306s 2D9p 4P°
6843.07           15 14609.29
6832.42             1 14632.07 6p  4P°nd 31.1
6831.56             3 14633.90 6p  4P°8d 4P
6812.30           50 14675.29 6p  4P°nd 32
6808.85           10 14682.71 6p  4P°nd 32.1
6789.23           60Z 14725.15 6s 4P—7p  4P°
6788.04           20 14727.72 nd 1—7f 1°
6784.58           50 14735.25 nd 1—7p  4D°
6765.27             2 14777.30 6s2D9p  2D°
6741.52         300c 14829.36
6739.44         100 14833.94 6p  4P°nd 26
6738.05         100d 14837.00 6p  4P°nd 26.1
6736.53         100 14840.35
6732.03         400Z 14850.27 6s2D6f 1°
6726.92         200cZ 14861.55 6s2D—6f 3°
6722.73           20cw 14870.81 6s2D—6f 5°
6722.12             8cw 14872.15 6s2D—6f 6°
6702.35             5c 14916.02 nd 1np 6f 6°
6698.56           25Z 14924.47 6s2D—9p  4D°
6698.46         200Z 14924.69 6p  4S°—9s 4P
6698.10           60 14925.49 6p  4P°nd 27
6697.29         500cZ 14927.30
6683.92           50 14957.16 6p  4S°—9s 2P
6662.10         400Z 15006.15 6p  4D°—7d 4D
6661.11         500Z 15008.38 6p  4P°—9s 4P
6660.34         100 15010.11 6p  4D°—7d 4P
6650.79           50 15031.66 {6p 2D°7d 4D6p 4P°nd33
6644.26           30 15046.43 6p  2D°nd 26
6619.66       5000Z 15102.35 6p  4D°—7d 4F
6604.07           18c 15138.00 6p  2D°nd 27
6598.08           12c 15151.74 6s2D—7p  2S°
6588.67             4 15173.38 6p  4P°nd 35
6585.27       1000Z 15181.22 6p  2D°nd 27.1
6583.75       2000Z 15184.73 6s2D—6f 1°
6582.92         300 15186.64 6s2D—6f 2°
6581.30           25 15190.37
6580.53         200 15192.16
6578.78           50 15196.20 6s2D—6f 3°
6577.68         100d 15198.74 {6s 2D6f4°6p 4D°nd28
6575.35           80 15204.13
6574.21           20cw 15206.75 6s2D—6f 6°
6570.38         150Z 15215.62 6p  4P°nd 28.2
6566.49       1000Z 15224.64 6p  2D°—nd 28
6564.80         200cZ 15228.56 6s  2P—6p′  2P°
6560.82         300Z 15237.79 6p  2D°—nd 28.1
6547.34           50 15269.17
6489.11             6 15406.18 6s 2P—np 2°
6488.10         300Z 15408.58 6s 2P—6p  2P°
6479.89           60 15428.11 6p  2D°—nd 28.2
6479.24           50 15429.65 6p  4P°—nd 37
6477.39           20 15434.06 6p  4P°—nd 38
6455.00           50Z 15487.60 6s 4P—4f 1°
6442.58           30 15517.45 6p  4P°—nd 29
6434.49           40Z 15536.96 6s 4P—4f 4°
6433.28           30Z 15539.88 6s 4P—4f 5°
6415.70         100 15582.46
6414.80           12d 15584.64 6s 4P—4f 5.1°
6413.84           12d 15586.98 6s 4P—4f 6°
6411.22           50cZ 15593.35 6s 2P—7p  2P°
6378.70         200 15672.85 6s2Dnp 5°
6376.33           80d 15678.68 6s2D7p  4D°
6371.68         400Z 15690.12 6p  4S°7d 4P
6367.28         400dZ 15700.96 6p  4S°—nd 26
6366.67             5c 15702.47 6s2D7p  4D°
6366.05           10cw 15703.98
6359.16         500Z 15721.31 6s 2P6p  2S°
6355.57         150 15729.89 6p  2D°—nd 29
6339.44       1000Z 15769.91 6p  4P°—7d 4D
6337.85       2000Z 15773.87 6p  4P°7d 4P
6333.50         400 15784.70 6p  4P°nd 26
6330.37         800Z 15792.51 6p  4S°—nd 27
6323.82           70 15808.86 6p  4P°—nd 30
6313.13         500Z 15835.63 6p  4S°nd 27.1
6312.50         100 15837.21 6p  4P°—nd 31.11½
6303.93             1 15858.74 6s2D1½np 6°
6297.00         100dZ 15876.20 6p  4P°—nd 271½
6295.24           30 15880.63 6p  4P°—nd 321½
6293.98       1000Z 15883.81 6s 2P1½—6p  4D°
6292.36           10cw, Iii? 15887.90 6p  4P°nd 32.1
6290.61         100 15892.32 6p  4S°nd 28.1
6280.03             2w 15919.10 6p  4P°—nd 27.1
6262.78           40 15962.94 6p  4P°nd 28
6259.12           25 15972.27
6249.14           40 15997.78 6p  2D°nd 31
6246.14         200 16005.53 6s2D—7f 1°
6245.38           80 16007.42
6244.72           40 16009.10
6244.48         800Z 16009.72 6s2D—7f 2°
6244.00         100 16010.96
6243.17           50d 16013.08 6s2D—7p  4D°
6242.70           10 16014.29 6s2D—10p  4D°
6240.83         200 16019.09 6p  4D°—8d 4D
6238.12             8 16026.04 6p  4D° 4P
6233.50         100Z 16037.92 6s 2P—8p  4P°
6230.91           20 16044.58 6p  2D°—8d 4D
6228.91             4h 16049.73 6p  2D°nd 31.11½
6228.20           40 16051.57 6p  2D°—8d 4P
6216.17             1c 16082.62 6p  4S°nd 28.21½
6213.10         500Z 16090.58 6p  4D°—8d 4F
6212.14             3c 16093.06 6p  2D°nd 321½
6191.88         800Z 16145.73
6183.98             5c 16166.34 6p  4P°nd 28.21½
6173.62             3h 16193.48 6s2Dnp 6°
6168.71             3 16206.37
6147.43           50 16262.47 6p  4S°—10s 4P
6115.97         100Z 16346.12 6p  4P°—10s 4P
6101.71           20 16384.31
6082.43       1000Z 16436.26 6s 2P—6p  4D°
6073.46           50Z 16460.53 6s 4P—4f 4°
6055.96           80Z 16508.10 6S 4P4f 5.1°
6055.03           30d 16510.63 6s 4P—4f 6°
6053.49         300dZ 16514.83 6s 2P—8p  2P°
6044.41           60 16539.64
6042.71         100 16544.30
6041.24           10 16548.31
6024.08       2000dZ 16595.46 {6s 2Dnp7°6s 4P6p 2P°
6015.37           40 16619.49 6p  4D°—9d 4D
6004.99           20 16648.22 6s 2P—5f 1°
6003.54             3 16652.23 6p  4S°—nd 31
5984.86         300 16704.21 {6p 4D°9d 4F6p 4S°nd31.1
5984.23         200 16705.97 6p  4S°—8d 4P
5981.26           40Z 16714.26 6s 2P—6p  2D°
5980.84         100 16715.44 6s 4Pnp 1.1°
5976.53           12 16727.48 6p  4D°—nd 36
5973.50           60 16735.98 6p  4P°—nd 31
5969.36             1 16747.58 6p  4S°nd 32
5968.26         150 16750.67
5967.81             4 16751.92 6p  4P°nd 38.2
5967.46             3 16752.92 6p  2D°nd 36
5966.76         100 16754.88 6p  4S°—nd 32.1
5960.40         300cZ 16772.76 6s 4Pnp 2°
5956.87         300 16782.70 {6p 4P°8d 4D6s 4Pnp1°
5955.00           50 16787.96
5954.38         150 16789.72 6p  4P°—8d 4P
5947.78             2 16808.34
5943.07             1 16821.67 6p  4D°nd 37
5934.03           25 16847.29 6p  2D°nd 37
5932.02             8cw 16853.00 6s 2Pnp 3°
5911.17           20 16912.45 6s 4P—8p  4P°
5894 03       2000Z 16961.63 6s 2P—6p  2P°
5882.24           70Z 16995.62 6s 4P—8p  4S°
5868.68             3 17034.90 6s 4P—8p  2D°
5845.04             6 17103.98 6p  4S°—nd 330½
5829.85           50 17148.36 6p  4D°—10d 4F
5823.20           50 17167.94 6p  4P°—11s 4P
5810.19             5h 17206.37 6p  2D°nd 40
5780.65           80Z 17294.31 6s 2P6p  4D°
5764.33       1000dZ 17343.27 6s 4P—6p  4D°
5751.06         100 17383.29 {6p 4P°9d 4D6s 4P8p 4P°
5743.90         150Z 17404.96 6s 4P—8p  4P°
5742.98           30 17407.74 6p  4S°nd 36
5732.66             6cw 17439.07
5715.55           40 17491.29 6p  4P°—nd 36
5706.05             5 17520.40
5684.92             5 17585.52 6p  4P°nd 37
5683.48             4 17589.98
5682.00             5 17594.55 6p  4S°—nd 38.1
5674.14             2 17618.93 6p  4S°nd 38.2
5637.00             3 17735.01 6p  4P°—nd 39
5597.28             2 17860.87 6p  4S°—nd 402½
5590.65           30cw 17882.05 6s 4P—8p  2P °
5590.20             8cw 17883.50 6s 4P—7r  2P°
5586.36         400cZ 17895.79 6s 4P—6p  4D°
5579.05           40 17919.24 6s 4P—8p  4S°
5549.32           25 18015.24 6s 4P—5f 1°
5546.41           70 18024.69 6s 4P—5f 3°
5544.80             1 18029.92 6s 2P—6f 3°
5536.03             1 18058.47 6s  4S°—6s″  2S
5534.98           10h 18061.91 6s 4P—5f 5°
5500.95         150cZ 18173.64 6s 4P—6p  2D°
5486.94             3d 18220.03 6s 4Pnp 3°
5461.24             7hl 18305.79 6s 4Pnp 4°
5427.94           10 18418.08
5427.06         600c 18421.08 6s 4P—6p  2P°
5316.36             1 18804.64 6s 4P—9p  4P°
5300.99           25 18859.15
5297.17           20Z 18872.77 6s 2P—7p  4P°
5278.73           10 18938.69 6s 4P—5f 1°
5273.72           30Z 18956.69 6s 2P—7p  4S°
5265.69           40Z 18985.59 6s 4P—5f 5°
5238.26           20 19085.01
5234.57       1000Z 19098.46 6s 2P—7p  2D°
5204.15         300Z 19210.10 6s 2P—7p  4P°
5196.77           10 19237.38 6s 2P—7p  2D°
5194.86             1 19244.44 6s 2P—7p  2P°
5154.03             3 19396.90 6s 4P—6f 3°
5153.37             3 19399.39 6s 4P—6f 4°
5145.52         400Z 19428.98 6s 2Pnp 7°
5119.29       10000Z 19528.53 6s 2P—7p  4P°
5029.34             4 19877.58 6s 4P10p  4P°
4947.59           15 20206.24 6s 4P—7f 1°
4945.74             7 20213.79 6s 4P—7p  4D°
4919.80             3 20320.37 6s 4P—6f 3°
4916.94         200Z 20332.19 6s 4P—7p  4P°
4902.00           75Z 20394.16 6s 4Pnp 6°
4896.75         200 20416.02 6s 4P7p  4S°
4882.68           12 20474.86
4874.55             2 20509.00
4862.96           60Z 20557.88 6s 4P—7p  2D°
4862.32       1000Z 20560.59 6s 4P—7p  4D°
4850.51           60Z 20610.65 6s 4P—7p  2S°
4850.35           50Z 20611.37 6s 4P—7p  2P°
4827.57           35Z 20708.59
4802.46             5 20816.86
4800.20           50 20826.66 6s 4P—7p  4D°
4763.31         250Z 20987.95 6s 4P7p  4P°
4701.52             5 21263.79 6s 2P4f 4°
4700.88           40Z 21266.68 6s 2P—4f 5°
4690.90           20c 21311.92 6s 2P—4f 5.1°
4690.49           35Z 21313.79 6s 2P—4f 6°
4643.84             1 21527.89 6s 4P—7p  2D°
4642.32             8 21534.94 6s 4P—7p  2P°
4602.86           12 21719.56 6s 4Pnp 7°
4478.56         100Z 22322.36 6s 2P—6p 2P°
4443.26           15d 22499.70 6s 2Pnp 2°
4409.12           15Z 22673.92 6s 4P—4f 1°
4408.95           20 22674.78
4407.94           25Z 22679.96 6s 4P—4f 2°
4407.86           20c, Z 22680.38 6s 4P—4f 2.1°
4406.54           10Z 22687.19 {6s 2P7p 2P°6s 4P4f3°
4398.99           40cZ 22726.13 6s 4P—4f 5°
4392.09           40Z 22761.83 6s 2P—8p  2D°
4389.85             5c 22773.44 6s 4P—4f 6°
4321.84         500dZ 23131.81 6s 2P—8p  4P°
4318.36             3 23150.45
4317.52             2 23154.95
4292.36             3d 23290.68
4282.75           10d 23342.94
4273.36             4 23394.23
4265.33             2 23438.27
4234.54           75dZ 23608.69 6s 2P—8p  2P°
4209.82           30Z 23747.32 6s 2P—5f 2°
4209.06           20 23751.60 6s 2P—5f 3°
4203.72           35dZ 23781.78 6s 4P—6p 2P°
4202.51             8d 23788.62 6s 2P—5f 5°
4189.16             4 23864.43
4174.70             1 23947.09 6s 2Pnp 3°
4172.61             5w 23959.08 6s 4Pnp 2°
4159.85           25c 24032.58 6s 2Pnp 4°
4148.41           75dZ 24098.85 6s 4P—8p  4P°
4134.15         100dZ 24181.97 6s 4P—8p  4S°
4129.21         200Z 24210.90
4127.43           15 24221.34 6s 4P—8p  4D°
4125.08             3w 24235.14
4102.23         200 24370.13 6s 4P—8p  4D°
4069.48             8 24566.25
4065.33           40d 24591.33 6s 4P—8p  4P°
4059.27           15 24628.04 6s 2P—9p  4S°
4046.63           80 24704.97 6s 2P—9p  2D°
3990.82             2w 25050.45
3978.76           10 25126.38 6s 2P—6f 4°
3977.52             5w 25134.21 6s 2P—6f 6°
3964.89           20c 25214.27 6s 4P—5f 4°
3934.91           20 25406.37 6s 4Pnp 3°
3933.73             2 25413.93 6s 2P—7p  2S°
3921.68           55d 25492.08 6s 4Pnp 4°
3918.60             6 25512.12
3902.02             6 25620.52
3900.55             8 25630.17 6s 2P—7p  4D°
3893.84           20 25674.34
3853.86             4 25940.68 6s 2P—7p  4D°
3847.63           15 25982.68
3846.41           25d 25990.92 6s 4P—9p  4P°
3840.95           50 26027.87
3827.24           20 26121.11 6s 2Pnp 6°
3820.91           25d 26164.38 6s 4P—9p  2D°
3796.69           15 26331.29 6s 2P—7p  2D°
3762.04             6w 26573.80 6s 4P—6f 2°
3760.34             3w 26585.81 6s 4P—6f 4°
3698.10             2w 27033.25
3694.42             1 27060.17 6s 4Pnp 5°
3693.90           20d 27063.98 6s 4P—10p  4P°
3690.42             8d 27089.50 6s 4P—7p  4D°
3684.42             5 27133.62
3648.59             1w 27400.07 6s 4P—7p  4D°
3624.72             5c 27580.50 6s 4P—np 6°
3607.55             5w 27711.77
3597.29             3w 27790.80 6s 4P—7p  2D°
3596.39             1w 27797.76 6s 4P—7p  2P°
3552.78             3w 28138.96
2061.633     2000 48489.73 5p5  2P°—6s 2P

Table 2.

Infrared lines of I i

Computed wave length Intensity Wave number Designation

23070.01 95 4333.45 5d 4D—5f 3212o
23001.54 100 4346.35 7p  4S112ond 24
22308.77 150 4481.32 6p  4D312ond 5
22226.19 250 4497.97 6p  4P012o—nd 5.1
22182.49 375 4506.83 6p  2D212ond 5
21569.51 110 4634.91 6p  2P012ond 19
20153.00 30 4960.69 6s 4P—6p  4P012o
19910.52 45 5021.10 nd 13—5f 3212o
19835.64 15 5040.05 nd 5—7p  2D212o
19824.93 10 5042.78 nd 5—7p  4D312o
19426.10 15 5146.31 6s2D—6p  2P012o
19370.06 260 5161.20 {7p 4P112ond271126p 4S112ond5212
19105.35 300 5232.71 6p  4P112o—7s 2P
19072.11 220 5241.83 {5d 4F4129p 4D312o6s 4P1126p 4P112o
19060.64 10 5244.98 6p  4P212ond 5
18982.85 35 5266.48 nd 5.1—7p  4P112o
18634.52 10 5364.92 6p  4S112o—nd 5.1
18348.37 240 5448.59 6p  4P212o—nd 5.1
18276.25 110 5470.09 nd 5—7p  4P112o
16213.94 110 6165.85 6s 4P—6p  4P112o
16192.66 30 6173.96 6s2D—6p  4D212o
16038.15 400 6233.44 6p  4D312o—7s 4P
15972.67 115 6258.95 6p  2D212o—7s 4P
15583.89 250 6415.13 6p  4P112ond 7
15528.30 280 6438.10 {nd41127p 4S112o6p 4P012o7s 2P1126p 4D112o7s 4P012
15074.52 125 6631.90 nd 11—6f 4212o
15052.50 25 6641.60 nd 2—7p  2D212o
15032.73 310 6650.34 6p  2D212o—7s 2P
14460.38 275 6913.56 {7s 4P2128p 4S112o6p 2P012o7s 4P0126p 4D112o7s 4P112
14287.74 400 6997.10 6p  2P212o—7s 4P
14272.18 220 7004.73 nd 5.1—4f 5212o
14176.65 50 7051.93 nd 5.1—4f 6112o
13970.89 35 7156.15 nd 5—4f 1212o
13958.54 275 7162.12 {nd52124f2312ond52124f2.1312o
13869.12 75 7208.30 nd 5—4f 5212o
13774.59 65 7257.76 6p  4P012ond 5
13685.85 200 7304.82 6p  4S112o—7s 2P
a13387.8 135 7467.4
13148.85 300 7603.15 5p5  2P112o—5p5  2P012o
13119.27 } 110 {7620.297624.26 6p  4P012ond 7
13116.03 7p  4D312o10d 4F
12846.14 } 125 {7782.327783.74 6p  4P012o—nd 8
12843.83 6p  2P012o7s 2P
12265.16 50 8150.95 6p  4D212o7d 4P
12135.81 90 8237.82 nd 5.1np 2112o
a

Observed wavelength.

Table 3.

Wavelengths of Ii in the ultraviolet

Wavelength λvac Intensity Wave number Designation

1876.415 2000 53293.12  2P012o—6s 4P
1844.451 15000 54216.66  2P012o—6s 4P
1830.380 75000 54633.46  2P112o6s 4P
1799.091 5000 55583.61  2P012o—6s 2P
1782.758 12000 56092.88  2P112o—6s 2P
1702.068 15000 58752.06  2P012o—6s2D
1675.174 1500 59695.30  2P012ond 1
1642.137 2000 60896.27  2P112o—6s 4P
1640.780 2500 60946.62  2P012ond 2
1639.106 200 61008.87  2P012ond 4
1617.604 5000 61819.81  2P112o—6s 4P
1593.580 5000 62751.78  2P012ond 5.1
1582.610 1500 63186.76  2P112o—6s 2P
1545.794 80 64691.68  2P012o—7s 2P
1526.448 2500 65511.57  2P012ond 6
1518.047 15000 65874.10  2P012o—nd 7
1514.678 5000 66020.64  2P112o—6s2D
1514.323 2000 66036.13  2P012ond 8
1507.041 5000 66355.21  2P112o—6s2D
1492.888 5000 66984.25  2P012ond 11
1485.918 1000 67298.45  2P112ond 1
1465.828 2500 68220.83  2P012ond 16
1459.145 4000 68533.28  2P012ond 19
1458.794 2500 68549.77  2P112ond 2
1457.981 10000 68588.00  2P112ond 3
1457.470 } 5000 {68612.0268615.84  2P112o—nd 4
1457.389 5000  2P112ond 4.1
1453.179 5000 68814.63  2P012ond 19.1
1446.260 5000 69143.83  2P012o—nd 20
1429.539 800 69952.62  2P012o8s 2P
1425.490 8000 70151.32  2P112ond 5
1421.364 2000 70354.93  2P112o—nd 5.1
1412.180 200 70812.51  2P012o—7s 4P
1402.793 } 15 {71286.3571288.01  2P012ond 21.2
1402.758  2P012o—7s 4P
1400.014 2000 71427.84  2P012o—nd 22
1395.049 30 71682.11  2P012o—7s 2P
1392.898 2000 71792.77  2P012ond 24
1390.750 3000 71903.44  2P112o—7s 4P
1383.225 4000 72294.83  2P112o—7s 2P
1382.284 1200 72344.05  2P012o—9s 2P
1368.217 2500 73087.83  2P012ond 26
1367.714 2500 73114.72  2P112ond 6
1366.506 800 73179.34  2P012ond 27
1361.111 3000 73469.39  2P012o—nd 28.2
1360.965 5000 73477.25  2P112ond 7
1357.971 3000 73639.28  2P112ond 8
1355.542 2000 73771.21  2P012o—nd 29
1355.099 5000 73795.35  2P112ond 9
1350.206 600 74062.75  2P012o—nd 30
1349.691 10 74091.05  2P012o—nd 31.1
1348.903 800 74134.29  2P012o—nd 32
1348.768 40 74141.74  2P012o—nd 32.1
1343.626 1000 74425.46  2P012o—nd 32.2
1342.449 60 74490.73  2P012ond 33
1341.264 100 74556.55  2P012o—nd 34
1340.709 1500 74587.40  2P112o—nd 11
1339.903 800 74632.28  2P012o—nd 35
a 1338.210 20 74726.7  
b 1336.478 1000 74823.52 { 2P112ond13212 2P012ond36.1012
1335.238 200 74893.04  2P012o—nd 38
1333.232 5 75005.69  2P012o—nd 38.2
a 1330.714 30 75147.6  
1330.189 2000 75177.26  2P112o—nd 14
1325.463 10 75445.32    2P012o6s2S
1318.844 30 75823.98  2P112o—nd 16
1317.542 3000 75898.91  2P112o—nd 17
1313.947 3000 76106.57  2P112o—nd 18
1313.432 1500 76136.43  2P112o—nd 19
1302.983 3000 76746.98  2P112o—nd 20
1300.335 10000 76903.28  2P112o—nd 21
a 1299.012 50 76981.6  
1291.143 300 77450.76  2P112o—8s 4P
1289.395 3000 77555.77  2P112o—8s 2P
1275.255 1500 78415.66  2P112o—7s 4P
1267.596 } 600 {78889.5078891.16  2P112o—nd 21.2
1267.569  2P112o—7s 4P
1266.731 150 78943.37  2P112o—6d 4P
1265.326 40 79030.99  2P112o—nd 22
1261.269 800 79285.26  2P112o—7s 2P
1259.510 3000 79395.92  2P112o—nd 24
1259.153 2500 79418.49  2P112o—nd 25
1251.335 600 79914.68  2P112o—9s 4P
1250.826 400 79947.20  2P112o—9s 2P
1249.969 15 80001.95  2P112o—nd 25.1
1239.463 70 80680.12  2P112o—7d 4P
1239.296 70 80690.98  2P112o—nd 26
1239.249 70 80694.00  2P112o—nd 26.1
1237.892 300 80782.49  2P112o—nd 27
1237.231 200 80825.65  2P112o—nd 27.1
1236.362 400 80882.46  2P112o—nd 28.1
a 1233.517 50 81069.0  
1233.463 300 81072.54  2P112o—nd 28.2
a 1232.914 10 81108.7  
1230.732 400 81252.48  2P112o—10s 4P
1228.888 500 81374.36  2P112o—nd 29
a 1228.041 100 81430.5  
1224.856 400 81642.25  2P112o—nd 31
1224.501 300 81665.90  2P112o—nd 30
1224.077 } 600 {81694.2081696.06  2P112o—nd 31.1
1224.049  2P112o—8d 4P
1223.430 100 81737.44  2P112o—nd 32
a 1219.327 10 82012.4  
1219.087 70 82028.61  2P112o—nd 32.2
a 1218.909 70 82040.6  
a 1218.711 100 82053.9  
1218.411 200 82074.10  2P112o—11s 4P
1218.118 40 82093.88  2P112o—nd 33
1217.142 150 82159.70  2P112o—nd 34
c 1216.021 ? 82235.43  2P112o—nd 35
a 1214.631 50 82329.5  
1213.627 40 82397.62  2P112o—nd 36
1213.199 60 82426.68  2P112o—nd 36.1
1212.242 60 82491.80  2P112o—nd 37
1212.177 60 82496.19  2P112o—nd 38
1210.880 10 82584.58  2P112ond. 38.1
1210.524 60Z 82608.84  2P112o—nd 38.2
1210.050 60 82641.21  2P112o—nd 39
a 1208.466 50 82749.5  
a 1207.964 20 82783.9  
1206.988 10 82850.87  2P112o—nd 40
a 1205.430 25 82957.9  
1204.116 40 83048.47  2P112o—6s2S
a 1201.348 30 83239.8  
a 1200.946 30 83267.7  
a 1200.711 25 83284.0  
a 1196.786 10 83557.1  
a 1195.288 15 83661.8  
a

Wavelengths measured by C. H. Corliss and W. C. Martin.

b

Also I ii.

c

Masked by I ii and Lyα.

Table 4.

Zeeman effect of I i

Wavelength Magnetic patterns

11236.56   (0.117, 0.356) 1.240, 1.479, 1.721
11020.60   (0.123, 0.370, 0.643) 0.629, 0.844, 1.044
11017.14   (0.524) …
10685.82   (0.754) …
10466.54   (0.079, 0.240) 0.976, 1.147, 1.299, 1.488
10435.34   (0.257) …
10416.61   (0.428. 1.230) 0.369, 1.187, 1.985
10391.74   (0.249) 1.042, 1.563
10375.20   (0.000w) 0.943w A
10375.20   (0.059, 0.252, 0.419, 0.603, 0.775) 1.034, 1.211, 1.383, 1.586, 1.753, 1.897
10325.90   (0.194) 1.163, 1.441, 1.805
10238.82   (0.086) 1.298, 1.494
10172.91   (0.000w) 0.907
10158.64   (0.213) 1.348 w
10141.83   (0.370) 0.482, 1.152
10131.16   (0.275) 1.095, 1.612
10003.05   (0.118) 1.500, 1.747
9963.30   (0.000w) 1.053w A
9842.75   (0.141, 0.449) 1.184, 1.472, 1.785
9813.53   (0.179, 0.553) 0.702, 1.077, 1.445
9800.89   (0.170) 0.952
9749.20   (0.000) 1.178
9744.83   (0.141) …
9731.73   (0.150) 1.502
9725.47   (0.245) 0.798, 1.290
9653.06   (0.000) 1.525
9649.61   (0.000) 0.982 A
9598.22   (0.000) 1.053
9466.34   (0.282) 1.818
9427.15   (0.096, 0.274, 0.451) 0.879, 1.050, 1.223, 1.405
9426.71   (0.654) 1.886
9335.05   (0.118, 0.348) 1.005, 1.250, 1.500, 1,738
9321.95   (0.395) 1.216, 1.991
9227.74   (0.114. 0.300) 1.294, 1.505, 1.705
9180.20   (0.157) 1.114
9156.91   (0.055. 0.585) 1.531, 1.068
9128.03   (0.514, 1.401) 0.647, 1.613
9113.91   (0.000) 1.385
9098.86   (0.170, 0.504) 1.118, 1.460, 1.790
9087.16   (0.476) 0.650, 1.009, 1.317
9079.34   (0.174, 0.478, 0.868) 0.682, 1.036, 1.372, 1,738, 2.117
9058.33   (0.090, 0.268, 0.455) 0.934, 1.107, 1.294, 1.503, 1.698
9022.40   (0.622) 0.717, 1.939
8993.13   (0.196, 0.552) 0.638, 1.033, 1.419
8969.04   (0.289, 0.853) 1.311
8964.69   (0.000) 1.098
8925.97   (0.444, 0.743) 0.821, 1.102, 1.372, 1.676, 1.971
8898.50   (0.157, 0.452) 1.185, 1.492, 1.793
8857.50 }P–B
8853.80
8853.24
8847.14   (0.427) 0.840
8816.65   (0.362) 1.083, 1.389, 1.458
8748.22   (0.266) 1.338
8700.80   (0.269) 0.910, 1.091
8664.95   (0.062) 1.198
8636.40   (0.098) 1.477
8545.52   (0.098) 1.268 A
8486.11   (0.072, 0.224, 0.375) 1.038
8393.30   (0.640) 0.659, 1.951
8391.70   (0.067, 0.184) 1.049, 1.143, 1.303
8260.04   (0.218w) 1.284w
8251.08   (0.389) 1.183
8240.05   (0.0 W) 1.043 A
8222.57   (0.622) 0.721, 1.950
8169.38   (0.117, 0.325) 0.762
8105.60   (0.000) 1.396
8090.76   (0.111, 0.382) 0.809, 1.029, 1.264
8065.70   (0.000) 1.343
8043.74   (0.082, 0.242) 1.855 B
8039.85   (0.339) …
8023.01   (0.000) 1.524
8003.63   (0.714) 1.868
7974.48   (0.128), 0.616, 0.920
7969.48   (0.106) 1.536
7955.90   (0.234) …
7944.85   (0.000) 0.929
7700.20   (0.074, 0.265) 0.959
7671.01   (0.330) 1.223
7604.88   (0.068, 0.212) 1.376
7588.60   (0.180) 1.053
7556.65   (0.037) 1.598
7554.18   (0.182) 1.313, 1.418
7531.81   (0.000) 1.480
7490.52   (0.000) 1.244
7468.99   (0.045, 0.143, 0.237) 1.006, 1.088, 1.187
7446.37   (0.344) …
7416.48   (0.523) 0.606, 0.989, 1.346
7413.60   (0.000w) 0.933w
7411.20   (0.000) 1.186
7410.50   (0.000w) 1.120
7402.06   (0.000W) 0.993 A
7384.08   (0.000) 1.379
7305.43   (0.430) 1.167
7259.98   (0.000) 1.393
7258.06   (0.072) 1.196
7237.84   (0.128, 0.361, 0.599) 0.590
7236.78   (0.060, 0.198, 0.341, 0.454) 0.807,0.938, 1.050
7231.82   (0.362) 1.159
7227.30   (0.606) …
7192.52   (0.390) 0.932, 1.758
7191.66   (0.000) 1.589
7164.79   (0.130, 0.418) 0.967, 1.251
7148.63   (…) 1.402
7142.06   (0.075, 0.246, 0.417) 0.947, 1.106, 1.277
7122.05   (0.247, 0.386)1.293, 1.435
7120.05   (0.206, 0.616) 0.965, 1.437, 1.838
7085.05   (0.000) 1.171
7063.59   (0.501) 1.092
6789.23   (0.553) 0.920
6732.03   (0.000 W) 0.939 w
6698.46   (0.000) 1.492 A
6697.29   (0.112, 0.368, 0.643) ….
6662.10   (0.243 w) 1.325 w
6661.11   (0.092) 1.530
6619.66   (0.000 W) 1.553 A
6585.27   (0.275) 0.670. 0.898
6583.75   (0.000 W) 1.028 A
6570.38   (0.165) 1.086
6566.49   (0.086, 0.275) 0.824, 0.983, 1.135
6564.80   (0.285) …
6560.82   (0.143 w) 1.204
6488.10   (0.078) 1.310, 1.450
6455.00 }P–B
6434.49
6433.28
6415.70   (0.000 w, 0.303) 1.154 A
6411.22   (0.339) 1.140
6371.68   (0.142, 0.354) 1.007, 1.246, 1.500
6367.28   (0.217, 0.707) 0.604, 1.090, 1.585
6359.16   (0.000) 1.375
6339.44   (0.000 w, 0.186, 0.377) 0.930, 1.113
6337.85   (0.217, 0.367) 1.598
6330.37   (0.228) 1.575
6313.13   (0.195, 0.371) 1.257
6297.00   (0.000 w) 1.540
6293.98   (0.000) 1.350
6244.48   (0.000 W) …
6233.50   (0.278) …
6213.10   (0.000 W) 1.097 A
6191.88   (0.000 W) 1.050
6115.97   (0.000 w, 0.205) 1.529 B
6082.43   (0.000) 1.388
6073.46 }P–B
6055.96
6055.03
6053.49   (0.000) 0.888
6024.08   (0.172, 0.406) 1.213, 1.489, 1.759
5981.26   (0.124) 1.345
5960.40   (0.358, 1.036) 0.000d, 0.643, 1.273
5894.03   (0.000) 1.346
5882.24   (0.000w) 1.699
5780.65   (0.122) 1.261, 1.505
5764.33   (0.131, 0.349) 1.243, 1.473, 1.749, 2.014
5743.90   (0.478) …
5586.36   (0.365) 1.280, 1.483, 1.707
5500.95   (0.121, 0.416) 1.443, 1.795, 2.070
5297.17   (0.000) 1.595
5273.72   (0.289) 1.272, 1.447, 1.657
5265.69   (0.000) 0.901
5234.57   (0.000) 1.038 A
5204.15   (0.074) 1.298, 1.434
5145.52   (0.000w) 0.885 A
5119.29   (0.116) 1.415
4916.94   (0.217) 1.538
4902.00   (0.000w) 1.129 A
4862.96   (0.216, 0.549, 0.913) 0.712, 1.078, 1.421, 1.749, 2.096
4862.32   (0.000) 1.073
4850.51 }P–B
4850.35
4827.57   (0.495) 0.990
4763.31   (0.000) 1.630
4700.88   (0.000W) 0.958A
4690.49   (0.518) 0.841, 1.433, …
4478.56   (0.000) 1.377
4409.12   (…) 0.626
4408.01   (0.238, 0.699, 1.228) 0.000, 0.328, 0.877, 1.361, 1.914
4406.54   (…) 1.368
4399.01   (0.000) 0.956
4392.09   (0.000w) 0.715A
4321.84   (0.000) 1.368
4234.54   (0.000d) 1.243, 1.595
4209.82   (…) 1.198
4203.72   (0.000) 1.786
4148.41   (0.000) 1.515
4134.15   (0.000) 1.442
4129.21   (0.000) 1.122
2061.63   (0.335) 1.005, 1.669

Although the intensities are estimates made according to the usual practice of spectroscopists, an attempt has been made to bring them into closer relationship with photometric standards than is possible in a compressed linear scale in which the numbers are roughly proportional to the logarithms of the actual intensities. In table 2 the intensities are the measured heights of the peaks of the lines above the noise level of the recorder tracings.

In tables 1 and 3, however, an attempt has been made to bring the estimated intensities into harmony with a photometric scale that reflects the enormous range in the strength of the lines. On this scale the faintest lines are arbitrarily assigned an intensity 1, and the strongest lines, that occur in the multiplet 6s4P—6p4P° are designated as 105 times as strong. This ratio is based on an accurate determination of the relative strengths of Rowland ghosts to their parent lines. Thus, for the strongest lines estimates were made of the intensities of their ghosts, and then multiplied by the corresponding factors to establish the intensities of the parent lines. Although the scale was thus established to represent true relative strengths of lines in short ranges of the spectrum, no attempt was made to standardize them over longer ranges of wavelengths. In particular the intensity scale used in the vacuum region is several orders of magnitude less than that of the visible and infrared. A few of the longest wavelengths listed in table 1 were measured also on the infrared recordings described above. The intensities derived for them from these observations are given in parentheses following the estimated photographic intensities, thereby giving a comparison of the relative sensitivity of the two modes of observation in a region near the limit of photographic detection.

The terms to be expected theoretically on the assumption that LS-coupling governs the orbital and spin angular momenta of the atom are given in table 5. Those actually found in this investigation are given in tables 6 and 7. These terms make it possible to calculate accurate wavelengths for lines in the infrared and extreme ultraviolet regions that lie beyond the reach of photographic recording with high-dispersion spectrographs. Such lines as have been observed by other investigators are given in tables 2 and 3 with wavelengths calculated from the terms of tables 6 and 7.

Table 5.

Predicted terms of I i

Electron configuration Terms

5s2 5p5 2

5s 5p6 2S

5s2 5p4 (I ii) 3P 1D 1S

5s2 5p4 ns 2P 4P 2D 2S
5s2 5p4 np 2S°, 2P°, 2D°, 4S°, 4P°, 4 2P°, 2D°, 2 2
5s2 5p4 nd 2P, 2D, 2F, 4P, 4D, 4F 2S, 2P, 2D, 2F, 2G 2D
5s2 5p4 nf 2D°, 2F°, 2G°, 4D°, 4F°, 4 2P°, 2D°, 2F°, 2G°, 2 2

Table 6.

Odd terms of I i

Electron configuration Term symbol Level Δv Observed g

5s2 5p5 {5p5 2Po 2Po 0.00 −7603.15
7603.15 0.673
5s2 5p4(3P)6p {6p 4Po 4Po 4Po 64906.34 −2155.78
1205.16
1.524
67062.12 1.415
65856.96 1.556
5s2 5p4(3P)6p 6p 4So 64990.01 1.619
5s2 5p4(3P)6p {6p 2Do 2Do 65644.49 −7162.72 1.217
72807.21 1.316
5s2 5p4(3P)6p {6p 4Do 4Do 4Do 4Do 65670.00 −6859.17
552.43
−1410.44
1.420
72529.17 1.370
71976.74 1.317
73387.18 1.137
5s2 5p4(3P)6p {6p 2Po 2Po 71501.52 1553.04 1.239
73054.56 1.329
5s2 5p4(3P)6p 6p 2So 71813.97 1.377
5s2 5p4( )np np1o 72875.75
5s2 5p4(8P)7p {7p 4Po 4Po 4Po 74965.77 −655.64
318.28
1.472
75621.41 1.483
75303.13 1.53
5s2 5p4(3P)7p 7p 4So 75049.57 1.506
5s2 5p4(3P)7p {7p 4Do 2Do 75191.37 −7232.81 1.24
82424.18 1.27
5s2 5p4(3P)7p {7p 4Do 4Do 4Do 4Do 75194.10 −6839.70
310.82
1.42
82033.80
81722.98 1.39
5s2 5p4(3P)7p {7p 2Po 2Po 78780.04 −3651.16 1.48
82431.20
5s2 5p4(3P)7p 7p 2So 81506.80
5s2 5p4(3P)4J {4f0o4f0.1o4f1o4f2o4f2.1o4f3o4f4o4f5o4f5.1o4f6o 77297.15
77303.58
77307.47
77313.12
77313.76
77320.66
77356.76
77359.62
77404.49
77406.86
5s2 5p4(1D) 6p 6p 2Po 78415.36
5s2 5p4( )np np1.1o 78535.48
5s2 5p4( )np np2o 78592.75 1.00
5s2 5p4(3P)8p {8p 4Po 4Po 4Po 78732.31 −492.47
21.67
1.454
79224.78 1.30
79203.11
5s2 5p4(3P)8p 8p 4So 78815.61 1.71
5s2 5p4(3P)8p 8p 2Do 78854.86 1.11
5s2 5p4(3P)8p 8p 4Do 79003.70 1.37
5s2 5p4(3P)8p 8p 2Po 79701.73 1.02
5s2 5p4(3P)5f {5f1o5f2o5f3o5f4o5f4.1o5f4.2o5f5o 79835.03
79840.23
79844.58
79847.88
79853.40
79865.20
79881.74
5s2 5p4( )np {np3onp4o 80039.94
80125.57
5s2 5p4(3P)9p {9p 4Po9p 4So9p 2Do9p 4Do 80624.45
80720.85
80797.95
80945.44 1.32
5s2 5p4(3P)6f {6f1o6f2o6f3o6f4o6f5o6f6o 81205.39
81207.32
81216.75
81219.30
81226.02
81227.38
5s2 5p4( )np np5o 81693.55
5s2 5p4(3P)10p {10p 4Po10p 4Do 81697.54
82035.00
5s2 5p4(3P)7f {7f1o7f2o 82026.20
82030.35
5s2 5p4()np {np6onp7o 82214.04
82615.84

Table 7.

Even terms of I i

Electron configuration Term symbol Level Δv Observed g

5s2 5p4(3P)6s {6S 4P 4P 4P 54633.46 −7186.35
+ 923.54
1.576
61819.81 1.618
60896.27 2.561
5s2 5p4(3P)6s {6s 2P 2P 56092.88 −7093.88 1.385
63186.76 0.799
5s2 5p4(1D)6s {6s 2D 2D 66020.64 −334.57 1.258
66355.21 0.828
5s2 5p4(1S)6s 6s2S 83048.47
5s2 5p4(3P)7s {7s 4P 4P 4P 71903.44 −6987.72
+ 475.50
78891.16
78415.66
5s2 5p4(3P)7s {7s 2P 2P 72294.83 −6990.43
79285.26
5s2 5p4(3P)8s {8s 4P 2P 77450.76
77555.77
5s2 5p4(3P)9s {9s 4P 2P 79914.68
79947.20
5s2 5p4(3P) 10s {10s 4P 2P 81252.48 1.53
5s2 5p4(3P)11s {11s 4P 2P 82074.10
5s2 5p4(3P)5d {5d 4D 4P 4F 2F 75511.13 1.15
75704.09
76004.78
5s2 5p4(3P)6d {6d 4D 4P 4F 78904.05
78943.37
79055.01
5s2 5p4(3P)7d {7d 4D 4P 4F 80676.17
80680.12
80772.35
5s2 5p4(3P)8d {8d 4D 4P 4F 81689.02
81696.06
81760.58
5s2 5p4(3P)9d {9d 4D 4P 4F 82289.46
82374.21
5s2 5p4(3P)10d {10d 4D 4P 4F
82818.36
5s2 5p4( )nd {nd1nd2nd3nd4nd4.1nd5 67298.45
68549.77
68588.00
68612.02
68615.84
70151.32
5s2 5p4( )nd {nd5.1nd6nd7nd8nd9nd10 70354.93 1.21
73114.72
73477.25
73639.28
73795.35
73977.68
5s2 5p4( )nd {nd11nd13nd14nd15nd16 74587.40 0.78
74823.48
75177.26 1.26
75714.44 0.80
75823.98 1.41
5s2 5p4( )nd {nd17nd18nd19nd19.1nd20 75898.91 1.14
76106.57 1.23
76136.43 1.04
76417.78
76746.98
5s2 5p4( )nd {nd21nd21.1nd21.2nd22nd23 76903.28
76935.98
78889.50
79030.99 1.23
79150.55
{nd24nd25nd25.1nd26nd26.1 79395.92 1.42
79418.49 1.17
80001.95
80690.98
80694.00
{nd27nd27.1nd28nd28.1nd28.2 80782.49 1.46
80825.65
80869.05
80882.46
81072.54
{nd29nd30nd31nd31.1nd32 81374.36
81665.90
81642.25
81694.20
81737.44
{nd32.1nd32.2nd33nd34nd35 81744.89
82028.61
82093.88
82159.70
82235.43
{nd36nd36.1nd37nd38 82397.62
82426.68
82491.80
82496.19
{nd38.1nd38.2nd39nd40 82584.58
82608.84
82641.21
82850.87

Lines listed in table 2 were observed by C. J. Humphreys [5] at the Naval Ordnance Laboratory, Corona, and by E. K. Plyler [6] at the Bureau. In this work they used electrodeless-discharge lamps, similar to those mentioned above in conjunction with their recording infrared spectrometers. These observations, which were made expressly for this investigation, verify all but two of the new infrared lines measured by Eshbach and Fisher [7] and add several lines not previously observed. All the ultraviolet lines in table 3 were measured on spectrograms obtained with the 2-m vacuum-grating spectrograph of the Bureau. These data not only confirm the descriptions of II given by Turner [8], La Croute [9], McLeod [10], and Hellerman [11], but increase by a factor of more than 4 the number of lines reported by these earlier observers. The light source was an electrodeless discharge of the type described above but modified to incorporate a LiF window sealed to the tube with an O-ring. The wavelengths listed in the first column are not the values derived directly from the measurements, but are values calculated from the energy levels given in tables 6 and 7. They were derived, therefore, indirectly from international secondary standard wavelengths, and are believed to be correct to less than 0.005 A. They are recommended for use as standards in the vacuum region.

A problem of prime importance for the analysis of the first spectrum of iodine is the evaluation of the separation of the levels of the ground state 5p5 2P°. The lines at 2061.6 and 1830.4 A, which are due to the transitions 5p5 2Po6s 2P and 5p5 2Po6s 4P, may be used for this purpose. These lines have been measured several times by different observers, but the wavelengths reported for them are only approximately correct and are afflicted with the errors that are inherent in the reference lines against which they were measured. In the present work the mean wavelength of the longer line has been determined as 2061.633 A, from seven observations, made with high dispersion in the higher orders of the gratings, relative to international secondary standards in the iron arc spectrum.

The wavelength of the shorter line was determined as 1830.380 A from measurements relative to internal standards selected from the iodine spectrum itself. These lines are at 1876, 1844, 1799, 1702, and 1593 A, and appear with 1830 A on spectrograms made with the vacuum-grating spectrograph. We have determined accurate wavelengths for them, from measurements of lines of longer wavelength on high-dispersion spectrograms, by making use of the combination principle. Thus, we find the following level-separations, which are mean values of the wave-number differences between numerous pairs of well-measured lines:

6s 4P6s 2P=4803.39cm16s 4P6s 2P=5726.93cm16s 2P6s 2P=7093.88cm16s 2D6s 2P=10262.33cm1nd5.16s 2P=14262.05cm1

By adding each of these numbers to 48489.73 cm−1, the wavenumber of 2061 A, we obtain the wavenumbers, and thence the exact wavelengths, of the selected standards. These are given in table 3.

With the accurate values thus established for the two transitions given above we have:

1830.380A is5p5 2Po6s 4P=54633.46cm16s 4P6s 2P=14659.42cm11782.758A is5p5 2Po6s 2P=56092.88¯cm12061.6338A is5p5 2Po6s 2P=48489.73cm15p5 2Po5p5 2Po=7603.15¯cm1.

4. Term Structure of I i

The spectrum to be expected theoretically for neutral iodine atoms, if LS-coupling governs their behavior under excitation, is that based on the terms given in table 5. In the unexcited state of the atom the electron configuration is 5s2 5p5, which yields an inverted 2P term of odd parity. The higher states of even and odd parity arise when excitation of the atom leads to the electron configurations listed in the first column of table 5. Ionization of the atom leaves it in one of the states represented by the 3P, 1D, and 1S terms of the basic electron configuration 5s2 5p4 of the ion I+. These three terms give rise, therefore, to the three families of terms that are likely to produce the strongest lines of the spectrum I i. A fourth family also is expected based on the addition of s, p, d, etc., electrons to the 5p6 configuration. The terms from these configurations will be doublets, and the lines arising from their combinations probably will be among the weaker lines of the spectrum.

The first real regularity in the spectrum of iodine was announced by Turner [12] who found the wavenumber interval of approximately 7,600 cm−1 recurring among several pairs of the lines observed by him in the Schumann region. Subsequently he correctly suggested that this difference represents the separation of the levels in the ground term 2P of the 5s2 5p5 electron configuration. From this starting point all further advances in the interpretation of the first spectrum of iodine have been made. Evans [2], Deb [13], and Murakawa [14], in their analyses, have recognized these lines as resulting from the 6s → 5p transition, but they are not in agreement on their designations of the individual levels of the 5p4 6s configuration. Inasmuch as the interpretations of I i offered by these investigators all rest on the 6s-levels it is, therefore, not surprising that there is disagreement among them.

The classifications of the lines of I i given in this paper likewise are based on the 6s-levels. With g- and J-values derived from well-resolved Zeeman patterns it is now possible to designate these levels with certainty and also some of the higher np-levels with which they combine. Increasing excitation of the iodine atoms brings into play still higher levels from the np, nd, ns, and nf electrons, but it is difficult to designate them with certainty because the g-values indicate a breakdown of the orbital and spin momenta to a coupling scheme between pure LS-coupling and jj-coupling, probably jl-coupling described by Racali [15].

Most of the levels of I i that are given in tables 6 and 7 result from the addition of ns, np, nd, and nf electrons to the lowest energy states 3P, 1D, and 1S of I ii. These were reported first by LaCroute [9] whose analysis, giving the relative positions of these terms, shows that the levels of 3P are separated by large differences in wave number. This fact has been an important guide in the analysis of I i, for nearly all the terms derived from 3P show similar characteristics. The eight levels of the 5s2 5p4 6s electron configuration all closely conform to the pattern of spacing exhibited by their parentage. This is confirmed by the g-values of these levels, which are nearly equal to the g’s for LS-coupling, their sum being gobs=11.985 as compared with gLS=12.000.

Of the levels coming from configurations with np, nd, and nf electrons, only those derived from 3P levels can be designated with certainty. Here again the classifications rest on level intervals and g-values; but the g-values now show marked deviations from LS-g’s, owing to configuration interaction, and there is a tendency for levels to form pairs. In the case of the 13 levels derived by adding a 6p-electron to the parent term 3P, g-sharing is such as to remove all resemblance to LS g-values, yet their sums are nearly equal, namely gobs=17.847 and gLS=18.000. Few if any levels from the parent terms, 1D and 1S, are definitely established.

5. Series and Ionization Potential

Before the first attempts were made to unravel the spectrum of iodine, several investigators reported the results of their measurements of critical and ionizing potentials in iodine vapor. Thus, in the period from 1920 to 1924, values of the ionization potential from 10 to 10.5 ev were reported by Found [16], Mohler and Foote [17], Duffendack [18], and Mackay [19]. From these results it was evident that the separation  2Po 3P2 between the ground states of I i and I ii is approximately 85,000 cm−1. Although the series announced by Deb [9] and by Price [20] give limits in close agreement with this value; yet, in the light of the present analysis, their series must be considered fictitious and the ionization potentials derived from them fortuitous.

The first physically real series of I i was given by Evans [2] in his analysis of the spectrum. Two of his levels in combination with the 6s-term accounted for two pairs of strong lines separated by the same difference in wave number. The limit and ionization potential derived from them are within the range of the experimental values cited above. This series has been confirmed and extended in the present work. Other series of three and more members have been found also, as set forth in table 8. Four of these series, with four and five members, representing the migration of the s, p, and d electrons, have been used to calculate the separation of the ground states of I i and I ii and the corresponding ionization potential. A Ritz formula R/(m+α+β/m2)2 has been evaluated for the variable terms of these series, and with the values given in the table for α and β, it is found to represent the series very closely. In fact the first solutions of this formula were found to fit series of three members closely enough to predict higher series members that were subsequently found. The individual determinations of the interval  2Po 3P2 between the ground states of I i and I ii are in close agreement among themselves, and when an unweighted average of them is taken, yield a value of 84,340 cm−1. From this an ionization potential of 10.45 ev is derived for the work required to remove a p-electron from the configuration 5s2 5p5.

Table 8.

Series of I i

n ns 4P np  4P412o nd 4F nf X

Current term Rydberg denominator Current term Rydberg denominator Current term Rydberg denominator Current term Rydberg denominator

4 7019 3.95402
5 8636 3.56468 4492 4.94261
6 29707 1.92197 19434 2.37627 5285 4.55674 3133 5.91829
7 12437 2.97043 9374 3.42148 3568 5.54580 2310 6.89240
8 6889 3.99116 5608 4.42357 2579 6.52305
9 4425 4.97989 3716 5.43424 1955 7.49209
10 3088 5.96126 2643 6.44359
11 2266 6.95900
α= −4.00389 α= −3.51112 α= −1.48320 α= −0.11660
β= − 2.52065 β= − 3.98279 β= + 1.15995 β= + 1.16647

6. The Continuous Spectra

An outstanding feature of the spectra of iodine emitted by the electrodeless lamps used in this investigation is a succession of continua extending from 4800 A in the blue to 2900 A in the ultraviolet. These bands have been encountered by nearly all observers who have studied the spectra emitted by iodine molecules and atoms subjected to various modes of excitation. Perhaps the best description of them is that published by Curtis and Evans [21]. Our observations are in agreement with their view that these continua belong to two systems, the one consisting of a single band or of several broad overlapping bands between 4800 and 4035 A, the other consisting of a very broad strong band followed by several groups of much fainter and narrower bands. In each of these groups the individual bands are about 25 A in width, nearly equally spaced, and increase in intensity to a maximum near the center of the group and then decline. The mean separation of the bands is 210 cm−1, which is exactly the separation of the vibrational levels of the ground state of the I2 molecule as found by Kimura and Miyanashi [22] in their study of the ultraviolet absorption bands of I2. This fact casts doubt on the results of various investigators who have sought to ascribe the bands to atomic recombination processes. A description of these emission features as recorded on our spectrograms is given in table 9. Their presence is unwelcome in investigations of I i because they mask completely the fainter and widened lines and attenuate differences in intensity of measurable lines that appear on the continuous background.

Table 9.

Continua in the spectrum of iodine

Wavelengths of maxima Wave numbers of maxima Intensity Δv Remarks

4625 21616 1000 1715 Band extends from 4820 to 4400 A
Minimum at 4360 A
4285 23331 100 Band extends from 4325 to 4240 A
3525 28361 25 325 Minimum at 3510 A
3485 28686 50 503 Minimum at 3475 A
3425 29189 500 1290 Band extends from 3470 to 3380 A
Minimum at 3340 A
3280 30479 5 206 Minimum at 3270 A
3258 30685 10 228 Minimum at 3245 A
3234 30913 25 211 Minimum at 3221 A
3212 31124 50 205 Minimum at 3199 A
3191 31329 25 208 Minimum at 3177 A
3170 31537 10 281 Minimum at 3155 A
3142 31818 5 193 Minimum at 3136 A
3123 32011 20 217 Minimum at 3114 A
3102 32228 15 230 Minimum at 3091 A
3080 32458 10 211 Minimum at 3074 A
3062 32649 20 215 Minimum at 3053 A
3042 32864 25 184 Minimum at 3032 A
3025 33048 15 187 Minimum at 3016 A
3008 33235 20 234 Minimum at 2997 A
2987 33469 20 214 Minimum at 2976 A
2968 33683 10 182 Minimum at 2959 A
2952 33861 15 173 Minimum at 2943 A
2937 34038 5

7. Discussion

The analysis of the first spectrum of iodine, presented in the preceding pages, shows clearly that in its excited states the atom has departed from LS-coupling and has reached a stage in intermediate coupling. Since the g-value of 5p5 2Po, of the ground state, is very closely that given by LS-coupling, we may assume that the g-value of the lowest member of the ground term, 5p5 2Po, is also that for LS-coupling. In the first excited states, however, arising from the electron configuration 5s2 5p4 6s, the departure from LS-coupling is marked. Although the g-values deviate only slightly from the LS-values, the levels of the 4P and 2P terms show the separations that are characteristic of their parent term, 3P, the ground state of I ii. This is in accord with the scheme for the p4 configuration in intermediate coupling as illustrated by Condon and Shortley [23].

In the configurations containing np-electrons, in which n ≧ 6, almost all resemblance to LS-coupling has disappeared from the term structure. The g-values for all the levels deviate strongly from the LS-values, except those for  4Do and  4Do for which the deviation is slight. The levels fall into a pair structure, of the kind prescribed by Racah [15] for jl-coupling, in which the level separations bear no resemblance whatsoever to those of LS-coupling. The g-values calculated for the np-levels with Racah’s formula fit the observed g’s more closely than do the g’s of LS-coupling. A similar situation holds for levels from configurations with nd-electrons, and also with nf-electrons. The nf-levels fall very close to each other so that lines originating in them are separated by intervals less than those imposed by a magnetic field, say, of 35,000 oersteds. All of these lines for which magnetic patterns appear on our spectrograms of the Zeeman effect show the unsymmetrical structures, due to Paschen-Back interaction, similar to those described by Kiess and Shortley [24] for lines of oxygen and nitrogen.

These matters raise the question as to the appropriateness of the designations used for the energy levels of a heavy atom such as iodine. It is obvious that in a complex spectrum manifesting in its various states a transition from one coupling scheme to another, no single scheme of notation will be adequate or satisfactory. The only notation scheme that has achieved a status of widespread usage and permanence is the one devised for spectra built on LS-coupling. It is here emphasized that the use of it, in this paper, for levels that do not result from this coupling scheme, is for convenience in designating them, and not for attaching to them the quantum significance usually conveyed by the LS-symbols.

An inspection of table 1 will show that some lines have resisted all attempts to classify them. There is no doubt, however, that they belong to I i; but the necessary links to connect them to known or, as yet, unknown levels have not been found. One of the lines left unclassified after the bulk of the analysis had been completed is the relatively strong infrared line at 13149.19 A as measured by Eshback and Fisher [7]. This line, measured by us also on the recordings of the infrared spectrum of iodine by Plyler and by Humphreys, has a wave number practically identical with the separation of the levels in the 2P° ground term of the iodine atom. Accordingly it is designated in table 2 as the forbidden transition  2Po 2Po and a wavelength corresponding to the wave number 7603.15 cm−1 is calculated for it. A similar transition has been reported by Edlén [25] for the isoelectronic spectrum Xe ii. We have tried to photograph this line on EK–IZ plates so as to get a more accurate value of its wavelength, but the experiments were unsuccessful. Our belief that our designation of it is correct is substantiated by the discovery of similar transitions between the metastable levels of I ii, as reported by Martin and Corliss in their forthcoming paper on I ii.

In conclusion we acknowledge our indebtedness to several of our colleagues for data used in this investigation. Both C. J. Humphreys and E. K. Plyler made observations of the infrared spectrum of iodine beyond the reach of photography. Their data are presented in table 3. W. F. Meggers and R. Zalubas measured the magnetic patterns of numerous iodine lines during their investigations of spectra emitted by various electrodeless metal-halide lamps. Finally, W. C. Martin, Jr., made new measurements of iodine spectra in the extreme ultraviolet that have surpassed in extent and accuracy earlier descriptions of these spectra. It is a pleasure for us to thank each for his contribution to this paper.

Footnotes

1

Figures in brackets indicate the literature references at the end of this paper.

8. References


Articles from Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry are provided here courtesy of National Institute of Standards and Technology

RESOURCES