Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Nov 15;88(22):10143–10147. doi: 10.1073/pnas.88.22.10143

Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions.

S Ylä-Herttuala 1, B A Lipton 1, M E Rosenfeld 1, I J Goldberg 1, D Steinberg 1, J L Witztum 1
PMCID: PMC52884  PMID: 1719546

Abstract

Lipoprotein lipase (LPL; EC 3.1.1.34) may promote atherogenesis by producing remnant lipoproteins on the endothelial surface and by acting on lipoproteins in the artery wall. In vitro, smooth muscle cells and macrophages synthesize LPL, but in human carotid lesions only a few smooth muscle cells were reported to contain LPL protein. Endothelial cells do not synthesize LPL in vitro, but in normal arteries intense immunostaining for LPL is present on the endothelium. We used Northern blot analysis, in situ hybridization, and immunocytochemistry of human and rabbit arteries to determine cellular distribution and the site of the synthesis of LPL in atherosclerotic lesions. Northern blot analysis showed that LPL mRNA was detectable in macrophage-derived foam cells isolated from arterial lesions of "ballooned" cholesterol-fed rabbits. In situ hybridization studies of atherosclerotic lesions with an antisense riboprobe showed a strong hybridization signal for LPL mRNA in some, but not all, lesion macrophages, which were mostly located in the subendothelial and edge areas of the lesions. Also, some smooth muscle cells in lesion areas also expressed LPL mRNA. Immunocytochemistry of frozen sections of rabbit lesions with a monoclonal antibody to human milk LPL showed intense staining for LPL protein in macrophage-rich intimal lesions. The results suggest that lesion macrophages and macrophage-derived foam cells express LPL mRNA and protein. Some smooth muscle cells in the lesion areas also synthesize LPL. These data are consistent with an important role for LPL in atherogenesis.

Full text

PDF
10143

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auwerx J. H., Deeb S., Brunzell J. D., Wolfbauer G., Chait A. Lipoprotein lipase gene expression in THP-1 cells. Biochemistry. 1989 May 30;28(11):4563–4567. doi: 10.1021/bi00437a009. [DOI] [PubMed] [Google Scholar]
  2. Aviram M., Bierman E. L., Chait A. Modification of low density lipoprotein by lipoprotein lipase or hepatic lipase induces enhanced uptake and cholesterol accumulation in cells. J Biol Chem. 1988 Oct 25;263(30):15416–15422. [PubMed] [Google Scholar]
  3. Camps L., Reina M., Llobera M., Vilaró S., Olivecrona T. Lipoprotein lipase: cellular origin and functional distribution. Am J Physiol. 1990 Apr;258(4 Pt 1):C673–C681. doi: 10.1152/ajpcell.1990.258.4.C673. [DOI] [PubMed] [Google Scholar]
  4. Chait A., Iverius P. H., Brunzell J. D. Lipoprotein lipase secretion by human monocyte-derived macrophages. J Clin Invest. 1982 Feb;69(2):490–493. doi: 10.1172/JCI110473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dicorleto P. E., Zilversmit D. B. Lipoprotein lipase activity in bovine aorta. Proc Soc Exp Biol Med. 1975 Apr;148(4):1101–1105. doi: 10.3181/00379727-148-38696. [DOI] [PubMed] [Google Scholar]
  6. Eckel R. H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989 Apr 20;320(16):1060–1068. doi: 10.1056/NEJM198904203201607. [DOI] [PubMed] [Google Scholar]
  7. Faggiotto A., Ross R. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984 Jul-Aug;4(4):341–356. doi: 10.1161/01.atv.4.4.341. [DOI] [PubMed] [Google Scholar]
  8. Friedman G., Chajek-Shaul T., Gallily R., Stein O., Shiloni E., Etienne J., Stein Y. Modulation of lipoprotein lipase activity in mouse peritoneal macrophages by recombinant human tumor necrosis factor. Biochim Biophys Acta. 1988 Nov 25;963(2):201–207. doi: 10.1016/0005-2760(88)90281-0. [DOI] [PubMed] [Google Scholar]
  9. Gerrity R. G. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am J Pathol. 1981 May;103(2):191–200. [PMC free article] [PubMed] [Google Scholar]
  10. Gianturco S. H., Bradley W. A., Gotto A. M., Jr, Morrisett J. D., Peavy D. L. Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. J Clin Invest. 1982 Jul;70(1):168–178. doi: 10.1172/JCI110590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldberg I. J., Paterniti J. R., Jr, France D. S., Martinelli G., Cornicelli J. A. Production and use of an inhibitory monoclonal antibody to human lipoprotein lipase. Biochim Biophys Acta. 1986 Sep 12;878(2):168–176. doi: 10.1016/0005-2760(86)90143-8. [DOI] [PubMed] [Google Scholar]
  12. Goldberg I. J., Soprano D. R., Wyatt M. L., Vanni T. M., Kirchgessner T. G., Schotz M. C. Localization of lipoprotein lipase mRNA in selected rat tissues. J Lipid Res. 1989 Oct;30(10):1569–1577. [PubMed] [Google Scholar]
  13. Goldman R. Control of lipoprotein lipase secretion by macrophages: effect of macrophage differentiation agents. J Leukoc Biol. 1990 Jan;47(1):79–86. doi: 10.1002/jlb.47.1.79. [DOI] [PubMed] [Google Scholar]
  14. Gown A. M., Tsukada T., Ross R. Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol. 1986 Oct;125(1):191–207. [PMC free article] [PubMed] [Google Scholar]
  15. Henson L. C., Schotz M. C. Detection and partial characterization of lipoprotein lipase in bovine aorta. Biochim Biophys Acta. 1975 Dec 17;409(3):360–366. doi: 10.1016/0005-2760(75)90031-4. [DOI] [PubMed] [Google Scholar]
  16. Jonasson L., Bondjers G., Hansson G. K. Lipoprotein lipase in atherosclerosis: its presence in smooth muscle cells and absence from macrophages. J Lipid Res. 1987 Apr;28(4):437–445. [PubMed] [Google Scholar]
  17. Jonasson L., Hansson G. K., Bondjers G., Noe L., Etienne J. Interferon-gamma inhibits lipoprotein lipase in human monocyte-derived macrophages. Biochim Biophys Acta. 1990 Jun 12;1053(1):43–48. doi: 10.1016/0167-4889(90)90024-8. [DOI] [PubMed] [Google Scholar]
  18. Khoo J. C., Mahoney E. M., Witztum J. L. Secretion of lipoprotein lipase by macrophages in culture. J Biol Chem. 1981 Jul 25;256(14):7105–7108. [PubMed] [Google Scholar]
  19. Kirchgessner T. G., Svenson K. L., Lusis A. J., Schotz M. C. The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. J Biol Chem. 1987 Jun 25;262(18):8463–8466. [PubMed] [Google Scholar]
  20. Lindqvist P., Ostlund-Lindqvist A. M., Witztum J. L., Steinberg D., Little J. A. The role of lipoprotein lipase in the metabolism of triglyceride-rich lipoproteins by macrophages. J Biol Chem. 1983 Aug 10;258(15):9086–9092. [PubMed] [Google Scholar]
  21. Mahoney E. M., Khoo J. C., Steinberg D. Lipoprotein lipase secretion by human monocytes and rabbit alveolar macrophages in culture. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1639–1642. doi: 10.1073/pnas.79.5.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Montgomery R. R., Cohn Z. A. Endocytic and secretory repertoire of the lipid-loaded macrophage. J Leukoc Biol. 1989 Feb;45(2):129–138. doi: 10.1002/jlb.45.2.129. [DOI] [PubMed] [Google Scholar]
  24. Murata Y., Behr S. R., Kraemer F. B. Regulation of macrophage lipoprotein lipase secretion by the scavenger receptor. Biochim Biophys Acta. 1988 Oct 28;972(1):17–24. doi: 10.1016/0167-4889(88)90097-3. [DOI] [PubMed] [Google Scholar]
  25. Ostlund-Lindqvist A. M., Gustafson S., Lindqvist P., Witztum J. L., Little J. A. Uptake and degradation of human chylomicrons by macrophages in culture. Role of lipoprotein lipase. Arteriosclerosis. 1983 Sep-Oct;3(5):433–440. doi: 10.1161/01.atv.3.5.433. [DOI] [PubMed] [Google Scholar]
  26. Parker F., Bagdade J. D., Odland G. F., Bierman E. L. Evidence for the chylomicron origin of lipids accumulating in diabetic eruptive xanthomas: a correlative lipid biochemical, histochemical, and electron microscopic study. J Clin Invest. 1970 Dec;49(12):2172–2187. doi: 10.1172/JCI106436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Querfeld U., Ong J. M., Prehn J., Carty J., Saffari B., Jordan S. C., Kern P. A. Effects of cytokines on the production of lipoprotein lipase in cultured human macrophages. J Lipid Res. 1990 Aug;31(8):1379–1386. [PubMed] [Google Scholar]
  28. Rapp J. H., Harris H. W., Hamilton R. L., Krupski W. C., Reilly L. M., Ehrenfeld W. K., Stoney R. J., Goldstone J., Kane J. P. Particle size distribution of lipoproteins from human atherosclerotic plaque: a preliminary report. J Vasc Surg. 1989 Jan;9(1):81–88. [PubMed] [Google Scholar]
  29. Rosenfeld M. E., Khoo J. C., Miller E., Parthasarathy S., Palinski W., Witztum J. L. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. J Clin Invest. 1991 Jan;87(1):90–99. doi: 10.1172/JCI115006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsukada T., Rosenfeld M., Ross R., Gown A. M. Immunocytochemical analysis of cellular components in atherosclerotic lesions. Use of monoclonal antibodies with the Watanabe and fat-fed rabbit. Arteriosclerosis. 1986 Nov-Dec;6(6):601–613. doi: 10.1161/01.atv.6.6.601. [DOI] [PubMed] [Google Scholar]
  31. Tsukada T., Tippens D., Gordon D., Ross R., Gown A. M. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am J Pathol. 1987 Jan;126(1):51–60. [PMC free article] [PubMed] [Google Scholar]
  32. Vance J. E., Khoo J. C., Steinberg D. Lipoprotein lipase in cultured pig aortic smooth muscle cells. Arteriosclerosis. 1982 Sep-Oct;2(5):390–395. doi: 10.1161/01.atv.2.5.390. [DOI] [PubMed] [Google Scholar]
  33. Wang-Iverson P., Ungar A., Bliumis J., Bukberg P. R., Gibson J. C., Brown W. V. Human monocytes in culture synthesize and secrete lipoprotein lipase. Biochem Biophys Res Commun. 1982 Feb 11;104(3):923–928. doi: 10.1016/0006-291x(82)91337-7. [DOI] [PubMed] [Google Scholar]
  34. Wion K. L., Kirchgessner T. G., Lusis A. J., Schotz M. C., Lawn R. M. Human lipoprotein lipase complementary DNA sequence. Science. 1987 Mar 27;235(4796):1638–1641. doi: 10.1126/science.3823907. [DOI] [PubMed] [Google Scholar]
  35. Ylä-Herttuala S., Jaakkola O., Ehnholm C., Tikkanen M. J., Solakivi T., Särkioja T., Nikkari T. Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima. J Lipid Res. 1988 May;29(5):563–572. [PubMed] [Google Scholar]
  36. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Glass C. K., Sigal E., Witztum J. L., Steinberg D. Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci U S A. 1990 Sep;87(18):6959–6963. doi: 10.1073/pnas.87.18.6959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zilversmit D. B. Atherogenesis: a postprandial phenomenon. Circulation. 1979 Sep;60(3):473–485. doi: 10.1161/01.cir.60.3.473. [DOI] [PubMed] [Google Scholar]
  39. von Hodenberg E., Khoo J. C., Jensen D., Witztum J. L., Steinberg D. Mobilization of stored triglycerides from macrophages as free fatty acids. Arteriosclerosis. 1984 Nov-Dec;4(6):630–635. doi: 10.1161/01.atv.4.6.630. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES