Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 13;73(Pt 2):183–187. doi: 10.1107/S2056989017000500

5-Amino-1-(2′,3′-O-iso­propyl­idene-d-ribit­yl)-1H-imidazole-4-carboxamide: a crystal structure with Z′ = 4

Vincenzo Piccialli a,*, Nicola Borbone b, Giorgia Oliviero b, Gennaro Piccialli b, Stefano D’Errico b, Roberto Centore a,*
PMCID: PMC5290561  PMID: 28217338

The title compound crystallizes in the monoclinic space group P21, with four crystallographically independent mol­ecules, having a very similar conformation, in the asymmetric unit. The cluster of independent mol­ecules has approximate non-crystallographic C 2 point symmetry.

Keywords: crystal structure, high Z′ structures, nucleosides, hydrogen bonding

Abstract

The title compound, C12H20N4O5, crystallizes in the monoclinic space group P21, with four crystallographically independent mol­ecules in the asymmetric unit. The four mol­ecules have a very similar conformation that is basically determined by the formation of two intra­molecular hydrogen bonds between the amino NH2 donors and the carbonyl and ring O-atom acceptors, forming, respectively, R(6) and R(7) ring motifs.. In the crystal, inter­molecular hydrogen bonding leads to the formation of R 2 2(10) ring patterns, involving one amide CONH2 donor and an imidazole N-atom acceptor. The cluster of the four independent mol­ecules has approximate non-crystallographic C 2 point symmetry. The structural analysis also shows that during the synthesis of the title compound, the reductive cleavage of the d-ribose ring of the inosine precursor proceeds stereoselectively, with retention of configuration.

Chemical context  

Our group has long been involved into the synthesis of new heterocyclic compounds (Piccialli et al., 2007, 2013; Centore et al., 2013) including novel bioactive nucleoside and nucleotide analogues (Galeone et al., 2002). The latter are synthetic compounds that have been developed to mimic their natural counterparts (Jordheim, et al., 2013). Several nucleoside and nucleotide analogues have been approved by the FDA for viral and cancer diseases and others have entered clinical trials. Therefore, the synthesis of new nucleoside analogues with potential biological activities (D’Atri et al., 2012) continues to be a keen research field. Recent efforts from our group in this field have been directed to the synthesis of sugar and/or base-modified nucleosides (D’Errico et al., 2012a ; de Champdorè et al., 2004) and nucleotides, mixing the principles of combinatorial chemistry with those of high-throughput screening. Within this framework, we have pioneered the development of a synthetic solid-phase strategy (Oliviero et al., 2007, 2008, 2010a ,b ; D’Errico et al., 2011, 2015) that has also allowed us to synthesize N-1 alkyl inosines and 5-amino­imidazole-4-carboxamide riboside (AICAR) analogues (D’Errico et al., 2012b ), starting from cheap inosine. AICAR is a purine biosynthetic precursor that acts as a modulator of a number of biological properties. Once in the cells, AICAR is 5′-phospho­rylated to ZMP, a mimic of adenosine 5′-monophosphate (AMP). The direct binding of ZMP to an allosteric site of AMPK causes its phospho­rylation and activation by a cellular kinase, resulting in a series of important metabolic events, including the inhibition of the basal and insulin-stimulated glucose uptake, the inhibition of lipid synthesis and the activation of certain ATP-generating processes such as glycolysis and fatty acid oxidation. Nevertheless, AICAR is far from being a good drug lead-compound because it has a short half-life in cells and is not strictly specific for the AMPK enzyme. The discovery of the anti­viral activity of a­cyclo­vir and acyclic nucleoside phospho­nates has suggested that the replacement of the furan­ose ring with a hy­droxy­lated alkyl chain could induce new biological activities. Based on these precedents, we have recently reported the synthesis of a small collection of 5-amino­imidazole-4-carboxamides carrying a d-ribityl chain at the N1-imidazole position, including the title compound (D’Errico et al., 2013).graphic file with name e-73-00183-scheme1.jpg

The present X-ray diffraction study was undertaken in order to confirm the structure of the title compound, 5-amino-1-(2′,3′-O-iso­propyl­idene-d-ribit­yl)-1-H-imidazole-4-carboxamide, a precursor of the new sugar-modified AICAR.

Structural commentary  

The asymmetric unit of the title compound contains four independent mol­ecules with identical configuration (Z′ = 4). The mol­ecular structure of one mol­ecule (A) is shown in Fig. 1 as an example. The mol­ecular conformation is basically determined by the formation of two intra­molecular hydrogen bonds (Table 1) between the amino NH2 donors and, respectively, the carbonyl (O5) and the ring (O1) acceptors, which form, respectively, R(6) and R(7) ring motifs. The formation of the intra­molecular hydrogen bonds is possible because of the pyramidal geometry of the N atom; the sums of valence angles around atoms N3A, N3B, N3C and N3D are, respectively, 336, 339, 334 and 337°.

Figure 1.

Figure 1

A view of the mol­ecular structure of one of the four crystallographically independent mol­ecules (A) of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular hydrogen bonds are represented by dashed lines (see Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3NA⋯O5A 0.89 (4) 2.32 (4) 2.945 (4) 127 (3)
N3A—H6NA⋯O1A 0.89 (4) 2.66 (4) 3.250 (4) 125 (3)
N4A—H4NA⋯O3A i 0.92 (4) 2.05 (4) 2.973 (3) 178 (3)
N4A—H5NA⋯N2C 0.91 (4) 2.23 (4) 3.064 (4) 153 (3)
O3A—H3AO⋯O4C ii 0.79 (4) 2.05 (4) 2.831 (3) 170 (4)
O4A—H4AO⋯O5A iii 0.80 (4) 2.01 (4) 2.798 (3) 166 (4)
N3B—H3NB⋯O1B 0.89 (3) 2.35 (3) 3.037 (3) 133 (3)
N3B—H6NB⋯O5B 0.95 (4) 2.39 (3) 2.977 (3) 120 (3)
N3B—H6NB⋯O5D iv 0.95 (4) 2.52 (4) 3.196 (4) 129 (3)
N4B—H4NB⋯O3B iii 0.89 (4) 2.03 (4) 2.901 (3) 170 (3)
N4B—H5NB⋯N2D iii 0.85 (4) 2.16 (4) 2.920 (4) 150 (3)
O3B—H3BO⋯N3C v 0.87 (3) 1.98 (4) 2.838 (4) 168 (3)
O4B—H4BO⋯O5B i 0.91 (4) 1.81 (4) 2.715 (3) 170 (3)
N3C—H3NC⋯O1C 0.87 (4) 2.48 (4) 3.152 (4) 134 (3)
N3C—H6NC⋯O5C 0.90 (4) 2.21 (3) 2.874 (3) 130 (3)
N4C—H4NC⋯N2A 0.86 (4) 2.14 (4) 2.934 (4) 154 (3)
N4C—H5NC⋯O3C iii 0.84 (4) 2.12 (4) 2.959 (3) 176 (4)
O3C—H3CO⋯O5B vi 0.80 (4) 2.03 (4) 2.823 (3) 173 (3)
O4C—H4CO⋯O5C i 0.80 (4) 1.97 (4) 2.738 (3) 162 (4)
N3D—H6ND⋯N4C vii 0.92 (4) 2.62 (4) 3.268 (4) 128 (3)
N3D—H6ND⋯O5D 0.92 (4) 2.36 (4) 2.972 (4) 124 (3)
N4D—H4ND⋯N2B i 0.89 (4) 2.26 (4) 3.075 (4) 153 (3)
N4D—H5ND⋯O3D i 0.87 (4) 2.09 (4) 2.957 (3) 176 (3)
O3D—H3DO⋯O4B viii 0.90 (4) 1.82 (4) 2.711 (3) 171 (3)
O4D—H4DO⋯O5D iii 0.79 (3) 2.06 (3) 2.822 (3) 164 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

The title compound was obtained starting from commercial 2′,3′-O-iso­propyl­idene inosine (compound 1 of Fig. 2) through a synthetic route involving four steps. In the first step [(i) of Fig. 2], the ribose ring is opened by reductive cleavage of the C1′—O4′ bond of 2′,3′-O-iso­propyl­idene inosine. The configuration of atom C4′ (C6A in Fig. 1) in the title compound is R and this confirms the stereoselectivity of the reductive ribose opening.

Figure 2.

Figure 2

Scheme of the synthesis of the title compound. Reagents and conditions: (i) diiso­butyl­aluminium hydride (DIBAL-H), THF, 24 h, room temperature; (ii) Ac2O, py, 16 h, room temperature; (iii) K2CO3, 2,4-di­nitro­chloro­benzene (DNClB), DMF, 3 h, 353 K; (iv) Ethyl­enedi­amine (EDA), DMF, 323 K, 16 h.

The four independent mol­ecules have a similar conformation. This can be inferred from Fig. 3, in which they are overlayed, and from Table 2 in which some parameters of the Hirshfeld surface of the four mol­ecules are presented (Spackman & McKinnon, 2002).

Figure 3.

Figure 3

Overlay of the four crystallographically independent mol­ecules (A, B, C and D) of the title compound, viewed in two different orientations.

Table 2. Parameters (Å2, Å3) of the Hirshfeld surface of the four crystallographically independent mol­ecules A, B, C and D).

Mol­ecule Volume Area Globularity Asphericity
A 356.33 322.48 0.754 0.144
B 348.71 318.70 0.752 0.142
C 349.46 317.26 0.756 0.144
D 355.80 323.52 0.751 0.141

Hirshfeld surface analysis was performed using the program CrystalExplorer (Wolff et al. 2012).

Supra­molecular features  

In the crystal of the title compound, the cluster of the four crystallographically independent mol­ecules (A, B, C, D) has approximate non-crystallographic C 2 point symmetry, around a direction parallel to b/2 + c, see Fig. 4 a. Actually, the presence of non-crystallographic, local symmetry, is not uncommon in high Z′ structures (Brock, 2016). Mol­ecules are held in the crystal through a complex pattern of hydrogen bonds (Table 1). In particular, the independent mol­ecules A and C are hydrogen bonded through an Inline graphic(10) ring pattern, involving one amido CONH2 donor and the imidazole N acceptor (Table 1 and Fig. 4 b). An analogous pattern is formed between mol­ecules B and D. As is evident from Fig. 4 a, in the cluster of four independent mol­ecules, the pair of mol­ecules (A and C) that are bonded through the Inline graphic(10) ring pattern produce a hollow in which the methyl groups of the other pair (B and D) are fitted.

Figure 4.

Figure 4

(a) The cluster formed by the four crystallographically independent mol­ecules (A, B, C and D) of the title compound. Hydrogen bonds are represented by dashed lines (see Table 1). (b) The pair of independent mol­ecules, A and B, with indication of some hydrogen-bonding patterns (dashed lines; see Table 1).

Hirshfeld surface analysis  

In order to assess possible packing differences involving the four independent mol­ecules, we have examined their Hirshfeld surfaces (Spackman & McKinnon, 2002). The Hirshfeld fingerprint plots of the four independent mol­ecules are illustrated in Fig. 5. The fingerprint plot is a graphical two-dimensional map that indicates the distribution of the inter­actions for a single mol­ecule in the crystal (Spackman & McKinnon, 2002). In the plot, for each point of the Hirshfeld surface enveloping the mol­ecule in the crystal, the distance di to the nearest atom inside the surface and the distance de to the nearest atom outside the surface are reported. The colour of each point in the plot is related to the abundance of that inter­action, from blue (low) to green (high) to red (very high). A distinctive feature of each plot of Fig. 5 is represented by the two spikes at di + de = 1.8 Å, pointing to the lower left of the plots and symmetrically disposed with respect to the diagonal. They correspond to the strong hydrogen bonds present in the crystal packing. Another common feature is the sting along the diagonal, at di = de = 1.05 Å, which reflects points on the Hirshfeld surface that involve nearly head-to-head H⋯H contacts. Although none of the four plots of Fig. 5 is superimposable on the others, they all look very similar, thus indicating that the packing around each mol­ecule is similar.

Figure 5.

Figure 5

Hirshfeld fingerprint plots of the four crystallographically independent mol­ecules (A, B, C and D) of the title compound.

Database survey  

A search of the Cambridge Structural Database (Groom et al., 2016; WebCSD v1.1.2, last update 2016-12-21) gave no match for the title compound and no match for the substructure formed by the 1-amino-(2′,3′-O-iso­propyl­idene-d-ribit­yl) moiety. On the other hand, for the substructure formed by the uncyclized d-ribityl moiety, nine hits were found (CSD refcodes: ADRBFT10, DIQVAA, JERHET, QQQAVY, QQQHCA, RBFLAV10, RBFLCU, RIBBAD, RIBHQN10). They all crystallized in chiral space groups (four in P21, three in P212121, one in C2 and one in P1). Only in two cases (both in space group P21) was Z′ > 1 and, in particular, it was Z′ = 2. If the filters of three-dimensional coordinates and an R factor ≤ 7% are applied, only three hits still hold: DIQVAA (P21), JERHET (P21) and RBFLAV10 (P212121).

Synthesis and crystallization  

The title compound, was synthesized starting from 2′,3′-O- iso­propyl­idene inosine (1 in Fig. 1), as described recently (D’Errico et al., 2013). In particular, compound 3 (0.18 mmol) was dissolved in DMF (2.0 ml) and then ethyl­ene di­amine (EDA, 3.6 mmol) was added. The mixture was stirred at 323 K for 16 h (TLC monitoring: CHCl3/MeOH, 8:2) and then the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography, eluting with increasing amounts of MeOH in CHCl3 (from 0 to 10%). The fractions containing the title compound were collected and solvents evaporated under reduced pressure. The obtained pale-yellow amorphous solid (71% yield) was dissolved in the minimal amount of CH3OH and left to slowly evaporate at 277 K, to give pale-yellow prismatic crystals.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms bonded to O and N atoms were located in difference Fourier maps and their coordinates were refined. The C-bound H atoms were included in calculated positions and refined as riding atoms: with C—H = 0.96–0.98 Å. For all H atoms, U iso = 1.2U eq of the carrier atom was assumed (1.5 in the case of the H atoms of methyl groups).

Table 3. Experimental details.

Crystal data
Chemical formula C12H20N4O5
M r 300.32
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 11.627 (4), 18.929 (4), 13.085 (3)
β (°) 93.67 (2)
V3) 2873.9 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker–Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2001)
T min, T max 0.945, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 21683, 11330, 9391
R int 0.030
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.087, 1.06
No. of reflections 11330
No. of parameters 838
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.24
Absolute structure Flack x determined using 3518 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.1 (3)

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL2016 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017000500/su5343sup1.cif

e-73-00183-sup1.cif (765.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017000500/su5343Isup2.hkl

e-73-00183-Isup2.hkl (898.6KB, hkl)

CCDC reference: 1526562

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.

supplementary crystallographic information

Crystal data

C12H20N4O5 F(000) = 1280
Mr = 300.32 Dx = 1.388 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 11.627 (4) Å Cell parameters from 93 reflections
b = 18.929 (4) Å θ = 2.7–23.4°
c = 13.085 (3) Å µ = 0.11 mm1
β = 93.67 (2)° T = 293 K
V = 2873.9 (13) Å3 Prism, pale yellow
Z = 8 0.40 × 0.25 × 0.25 mm

Data collection

Bruker–Nonius KappaCCD diffractometer 11330 independent reflections
Radiation source: normal-focus sealed tube 9391 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 3.1°
CCD rotation images, thick slices scans h = −14→15
Absorption correction: multi-scan (SADABS; Bruker, 2001) k = −24→22
Tmin = 0.945, Tmax = 0.961 l = −15→16
21683 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.3518P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
11330 reflections Δρmax = 0.21 e Å3
838 parameters Δρmin = −0.24 e Å3
1 restraint Absolute structure: Flack x determined using 3518 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.1 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.4499 (2) 0.10494 (19) 0.8668 (2) 0.0385 (7)
C2A 0.4978 (3) 0.1789 (2) 0.8642 (3) 0.0571 (10)
H2A1 0.575335 0.179182 0.894136 0.086*
H2A2 0.451041 0.209892 0.902301 0.086*
H2A3 0.497375 0.194853 0.794516 0.086*
C3A 0.4644 (4) 0.0711 (3) 0.9697 (3) 0.0666 (12)
H3A1 0.432081 0.024388 0.966423 0.100*
H3A2 0.425627 0.098770 1.018427 0.100*
H3A3 0.544978 0.068187 0.990639 0.100*
C4A 0.4311 (2) 0.06262 (17) 0.7036 (2) 0.0293 (6)
H4A 0.445038 0.106956 0.667761 0.035*
C5A 0.3109 (2) 0.06458 (16) 0.7440 (2) 0.0298 (6)
H5A 0.258848 0.089654 0.694582 0.036*
C6A 0.2590 (2) −0.00699 (17) 0.7667 (2) 0.0302 (6)
H6A 0.319112 −0.038252 0.797012 0.036*
C7A 0.1629 (2) 0.00012 (18) 0.8393 (2) 0.0387 (7)
H7A1 0.194368 0.019380 0.903860 0.046*
H7A2 0.105899 0.033201 0.810526 0.046*
C8A 0.4623 (2) 0.00136 (18) 0.6370 (2) 0.0331 (7)
H8A1 0.445951 −0.042790 0.670792 0.040*
H8A2 0.416391 0.003080 0.572510 0.040*
C9A 0.6330 (2) 0.04647 (18) 0.5475 (2) 0.0346 (7)
H9A 0.590944 0.075309 0.501233 0.042*
C10A 0.6729 (2) −0.02857 (17) 0.6727 (2) 0.0304 (6)
C11A 0.7716 (2) −0.00571 (16) 0.6308 (2) 0.0296 (6)
C12A 0.8881 (2) −0.02684 (17) 0.6631 (2) 0.0311 (7)
N1A 0.58465 (18) 0.00469 (14) 0.61784 (18) 0.0316 (6)
N2A 0.74518 (18) 0.04130 (14) 0.55249 (19) 0.0338 (6)
N3A 0.6553 (3) −0.07792 (17) 0.7459 (2) 0.0467 (7)
H3NA 0.721 (3) −0.091 (2) 0.780 (3) 0.056*
H6NA 0.603 (3) −0.066 (2) 0.790 (3) 0.056*
N4A 0.9726 (2) 0.00707 (17) 0.6193 (2) 0.0397 (7)
H4NA 1.047 (3) −0.0066 (19) 0.636 (3) 0.048*
H5NA 0.958 (3) 0.038 (2) 0.567 (3) 0.048*
O1A 0.50240 (15) 0.06020 (12) 0.79547 (15) 0.0346 (5)
O2A 0.32999 (16) 0.10699 (12) 0.83281 (16) 0.0398 (5)
O3A 0.21584 (17) −0.03486 (13) 0.67078 (17) 0.0368 (5)
H3AO 0.241 (3) −0.073 (2) 0.663 (3) 0.044*
O4A 0.10827 (18) −0.06497 (14) 0.8579 (2) 0.0475 (6)
H4AO 0.058 (3) −0.069 (2) 0.813 (3) 0.057*
O5A 0.90664 (16) −0.07293 (12) 0.72975 (18) 0.0415 (5)
C1B 0.8545 (2) 0.12784 (18) 0.8964 (2) 0.0347 (7)
C2B 0.8112 (3) 0.1470 (2) 0.7896 (3) 0.0528 (9)
H2B1 0.732425 0.132345 0.778265 0.079*
H2B2 0.857329 0.123823 0.741388 0.079*
H2B3 0.816254 0.197275 0.780724 0.079*
C3B 0.8344 (4) 0.0528 (2) 0.9203 (3) 0.0719 (13)
H3B1 0.863932 0.042953 0.989045 0.108*
H3B2 0.873014 0.023520 0.873378 0.108*
H3B3 0.753202 0.043148 0.914104 0.108*
C4B 0.9924 (2) 0.20415 (18) 0.9727 (2) 0.0321 (7)
H4B 1.036373 0.238884 0.935659 0.039*
C5B 0.8700 (2) 0.23281 (16) 0.9824 (2) 0.0289 (6)
H5B 0.850109 0.264722 0.924945 0.035*
C6B 1.0590 (2) 0.18687 (16) 1.0732 (2) 0.0295 (6)
H6B 1.006888 0.165343 1.120276 0.035*
C7B 1.1590 (2) 0.13783 (18) 1.0591 (2) 0.0368 (7)
H7B1 1.130751 0.094330 1.027369 0.044*
H7B2 1.211537 0.159674 1.013941 0.044*
C8B 0.8436 (2) 0.26854 (17) 1.0808 (2) 0.0307 (6)
H8B1 0.866228 0.237940 1.138031 0.037*
H8B2 0.887856 0.311879 1.088399 0.037*
C9B 0.6687 (2) 0.34498 (17) 1.0474 (2) 0.0362 (7)
H9B 0.707578 0.382321 1.018851 0.043*
C10B 0.6377 (2) 0.24188 (16) 1.1177 (2) 0.0267 (6)
C11B 0.5373 (2) 0.28025 (16) 1.1038 (2) 0.0282 (6)
C12B 0.4237 (2) 0.25680 (17) 1.1263 (2) 0.0287 (6)
N1B 0.72083 (17) 0.28476 (13) 1.08206 (18) 0.0292 (5)
N2B 0.55807 (19) 0.34474 (14) 1.0585 (2) 0.0363 (6)
N3B 0.6610 (2) 0.17694 (15) 1.1577 (2) 0.0364 (6)
H3NB 0.713 (3) 0.152 (2) 1.125 (3) 0.044*
H6NB 0.596 (3) 0.148 (2) 1.168 (2) 0.044*
N4B 0.3352 (2) 0.29355 (16) 1.0870 (2) 0.0374 (7)
H4NB 0.266 (3) 0.2772 (19) 1.100 (2) 0.045*
H5NB 0.343 (3) 0.331 (2) 1.052 (3) 0.045*
O1B 0.80252 (15) 0.17051 (11) 0.97070 (15) 0.0335 (5)
O2B 0.97407 (18) 0.14387 (15) 0.9101 (2) 0.0589 (8)
O3B 1.09799 (15) 0.25348 (11) 1.11297 (17) 0.0314 (5)
H3BO 1.105 (3) 0.2541 (19) 1.180 (3) 0.038*
O4B 1.21881 (17) 0.12216 (12) 1.15462 (17) 0.0399 (5)
H4BO 1.279 (3) 0.153 (2) 1.160 (3) 0.048*
O5B 0.41145 (15) 0.20287 (12) 1.18070 (16) 0.0358 (5)
C1C 1.3293 (2) 0.31702 (17) 0.6014 (2) 0.0326 (7)
C2C 1.2971 (3) 0.2956 (2) 0.7064 (3) 0.0478 (9)
H2C1 1.220794 0.312200 0.717152 0.072*
H2C2 1.350733 0.315989 0.756897 0.072*
H2C3 1.299256 0.245100 0.712097 0.072*
C3C 1.3097 (4) 0.3939 (2) 0.5819 (3) 0.0616 (10)
H3C1 1.330361 0.405345 0.513994 0.092*
H3C2 1.356290 0.420972 0.630854 0.092*
H3C3 1.229884 0.404856 0.588373 0.092*
C4C 1.4572 (2) 0.24411 (17) 0.5198 (2) 0.0306 (6)
H4C 1.507203 0.207539 0.551738 0.037*
C5C 1.3333 (2) 0.21551 (16) 0.5076 (2) 0.0274 (6)
H5C 1.321698 0.182162 0.563334 0.033*
C6C 1.5083 (2) 0.26831 (16) 0.4210 (2) 0.0281 (6)
H6C 1.450099 0.293888 0.378066 0.034*
C7C 1.6126 (2) 0.31482 (18) 0.4441 (2) 0.0363 (7)
H7C1 1.589874 0.356104 0.481789 0.044*
H7C2 1.669328 0.289062 0.486974 0.044*
C8C 1.2928 (2) 0.18192 (17) 0.4079 (2) 0.0312 (7)
H8C1 1.304723 0.214266 0.352052 0.037*
H8C2 1.337192 0.139478 0.397219 0.037*
C9C 1.1244 (2) 0.10359 (17) 0.4449 (2) 0.0341 (7)
H9C 1.168211 0.066232 0.472304 0.041*
C10C 1.0799 (2) 0.20609 (16) 0.3757 (2) 0.0265 (6)
C11C 0.9828 (2) 0.16832 (16) 0.3938 (2) 0.0275 (6)
C12C 0.8653 (2) 0.19404 (17) 0.3728 (2) 0.0284 (6)
N1C 1.17044 (17) 0.16400 (13) 0.40830 (18) 0.0287 (5)
N2C 1.01193 (18) 0.10398 (14) 0.4372 (2) 0.0349 (6)
N3C 1.0940 (2) 0.27011 (15) 0.3283 (2) 0.0343 (6)
H3NC 1.147 (3) 0.295 (2) 0.361 (3) 0.041*
H6NC 1.026 (3) 0.2926 (19) 0.320 (3) 0.041*
N4C 0.7807 (2) 0.15465 (17) 0.4048 (2) 0.0371 (6)
H4NC 0.794 (3) 0.119 (2) 0.445 (3) 0.044*
H5NC 0.712 (3) 0.1667 (19) 0.394 (3) 0.044*
O1C 1.26738 (15) 0.27748 (11) 0.52323 (14) 0.0321 (5)
O2C 1.44747 (17) 0.30005 (15) 0.59017 (18) 0.0517 (7)
O3C 1.54041 (15) 0.20510 (12) 0.37092 (16) 0.0314 (5)
H3CO 1.508 (3) 0.202 (2) 0.315 (3) 0.038*
O4C 1.66330 (18) 0.33696 (13) 0.35309 (18) 0.0408 (6)
H4CO 1.706 (3) 0.305 (2) 0.343 (3) 0.049*
O5C 0.84870 (16) 0.25104 (12) 0.32754 (16) 0.0370 (5)
C1D 0.9304 (2) 0.34582 (18) 0.6288 (2) 0.0365 (7)
C2D 0.9758 (3) 0.2712 (2) 0.6311 (3) 0.0514 (9)
H2D1 1.049044 0.269986 0.601224 0.077*
H2D2 0.922455 0.241058 0.592750 0.077*
H2D3 0.984696 0.255065 0.700677 0.077*
C3D 0.9309 (3) 0.3795 (3) 0.5249 (3) 0.0594 (10)
H3D1 0.903472 0.427154 0.528558 0.089*
H3D2 0.881677 0.353155 0.477111 0.089*
H3D3 1.008047 0.379545 0.502704 0.089*
C4D 0.8097 (2) 0.38604 (16) 0.7520 (2) 0.0298 (6)
H4D 0.764469 0.360525 0.800842 0.036*
C5D 0.9361 (2) 0.38703 (17) 0.7923 (2) 0.0285 (6)
H5D 0.954839 0.342267 0.827122 0.034*
C6D 0.7563 (2) 0.45837 (16) 0.7322 (2) 0.0285 (6)
H6D 0.813951 0.490026 0.705506 0.034*
C7D 0.6519 (2) 0.45495 (18) 0.6564 (2) 0.0358 (7)
H7D1 0.675380 0.437577 0.591227 0.043*
H7D2 0.596325 0.421923 0.681327 0.043*
C8D 0.9789 (2) 0.44773 (17) 0.8599 (2) 0.0319 (7)
H8D1 0.957747 0.492273 0.827178 0.038*
H8D2 0.943146 0.445603 0.924822 0.038*
C9D 1.1624 (2) 0.40135 (18) 0.9468 (2) 0.0345 (7)
H9D 1.127080 0.371585 0.991886 0.041*
C10D 1.1837 (2) 0.47887 (16) 0.8249 (2) 0.0287 (6)
C11D 1.2887 (2) 0.45647 (16) 0.8665 (2) 0.0292 (6)
C12D 1.4012 (2) 0.47614 (16) 0.8326 (2) 0.0300 (6)
N1D 1.10368 (18) 0.44364 (14) 0.87749 (18) 0.0296 (5)
N2D 1.27366 (18) 0.40725 (14) 0.94288 (19) 0.0337 (6)
N3D 1.1549 (2) 0.52948 (17) 0.7538 (2) 0.0434 (7)
H3ND 1.101 (3) 0.517 (2) 0.710 (3) 0.052*
H6ND 1.215 (3) 0.546 (2) 0.719 (3) 0.052*
N4D 1.4901 (2) 0.43900 (16) 0.8729 (2) 0.0383 (7)
H4ND 1.484 (3) 0.410 (2) 0.925 (3) 0.046*
H5ND 1.559 (3) 0.454 (2) 0.862 (3) 0.046*
O1D 0.99370 (15) 0.39015 (12) 0.69983 (15) 0.0341 (5)
O2D 0.81508 (16) 0.34503 (12) 0.66228 (17) 0.0407 (5)
O3D 0.72582 (16) 0.48331 (12) 0.82927 (15) 0.0323 (5)
H3DO 0.739 (3) 0.530 (2) 0.829 (3) 0.039*
O4D 0.59912 (19) 0.52187 (13) 0.64195 (19) 0.0426 (6)
H4DO 0.554 (3) 0.528 (2) 0.684 (3) 0.040 (10)*
O5D 1.41082 (16) 0.52327 (12) 0.76776 (16) 0.0398 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0323 (15) 0.047 (2) 0.0357 (18) 0.0033 (14) −0.0020 (12) −0.0069 (15)
C2A 0.0444 (19) 0.052 (3) 0.074 (3) −0.0073 (17) −0.0035 (17) −0.023 (2)
C3A 0.069 (3) 0.093 (4) 0.037 (2) 0.013 (2) −0.0004 (16) 0.002 (2)
C4A 0.0218 (12) 0.0339 (18) 0.0321 (16) 0.0003 (11) 0.0008 (10) 0.0044 (13)
C5A 0.0239 (13) 0.0330 (18) 0.0323 (16) 0.0037 (12) 0.0004 (10) 0.0002 (13)
C6A 0.0229 (12) 0.0310 (18) 0.0365 (16) 0.0040 (11) 0.0005 (10) −0.0031 (13)
C7A 0.0320 (15) 0.042 (2) 0.0428 (18) −0.0028 (14) 0.0083 (12) −0.0010 (15)
C8A 0.0208 (12) 0.043 (2) 0.0364 (16) −0.0021 (12) 0.0051 (11) −0.0032 (14)
C9A 0.0265 (14) 0.039 (2) 0.0384 (17) 0.0016 (12) 0.0024 (11) 0.0047 (14)
C10A 0.0262 (13) 0.0339 (18) 0.0310 (16) 0.0006 (12) 0.0017 (11) −0.0015 (13)
C11A 0.0263 (13) 0.0273 (17) 0.0352 (16) −0.0017 (11) 0.0028 (11) −0.0005 (13)
C12A 0.0284 (14) 0.0283 (18) 0.0363 (17) 0.0019 (12) 0.0006 (11) −0.0046 (14)
N1A 0.0228 (11) 0.0378 (16) 0.0346 (13) −0.0016 (10) 0.0039 (9) 0.0014 (11)
N2A 0.0257 (11) 0.0371 (16) 0.0388 (14) −0.0014 (10) 0.0029 (9) 0.0035 (12)
N3A 0.0396 (15) 0.052 (2) 0.0491 (18) −0.0022 (13) 0.0041 (13) 0.0154 (15)
N4A 0.0233 (12) 0.0489 (19) 0.0470 (17) 0.0030 (12) 0.0038 (11) 0.0074 (14)
O1A 0.0268 (10) 0.0421 (14) 0.0340 (11) 0.0047 (8) −0.0053 (8) −0.0050 (10)
O2A 0.0305 (10) 0.0437 (15) 0.0454 (13) 0.0002 (9) 0.0034 (8) −0.0168 (11)
O3A 0.0259 (10) 0.0373 (14) 0.0467 (13) 0.0042 (9) −0.0013 (8) −0.0116 (11)
O4A 0.0326 (11) 0.0525 (17) 0.0572 (16) −0.0042 (11) 0.0017 (10) 0.0204 (13)
O5A 0.0321 (11) 0.0388 (14) 0.0532 (14) 0.0023 (9) −0.0007 (9) 0.0085 (11)
C1B 0.0330 (15) 0.040 (2) 0.0317 (17) −0.0031 (13) 0.0040 (11) −0.0041 (14)
C2B 0.061 (2) 0.060 (3) 0.036 (2) −0.0034 (19) −0.0016 (15) −0.0063 (18)
C3B 0.119 (4) 0.042 (3) 0.058 (3) −0.005 (2) 0.030 (2) −0.006 (2)
C4B 0.0233 (12) 0.0389 (19) 0.0345 (17) 0.0001 (12) 0.0050 (11) −0.0013 (14)
C5B 0.0222 (13) 0.0328 (18) 0.0314 (16) −0.0008 (11) 0.0002 (10) 0.0016 (12)
C6B 0.0225 (12) 0.0285 (17) 0.0377 (16) −0.0012 (11) 0.0040 (11) −0.0006 (13)
C7B 0.0277 (14) 0.0365 (19) 0.0460 (19) 0.0046 (12) 0.0012 (12) −0.0029 (15)
C8B 0.0179 (12) 0.0331 (18) 0.0407 (16) 0.0017 (11) −0.0008 (10) −0.0063 (14)
C9B 0.0256 (14) 0.0318 (18) 0.0510 (19) −0.0031 (12) 0.0020 (12) 0.0024 (15)
C10B 0.0238 (12) 0.0279 (17) 0.0281 (15) −0.0013 (11) 0.0003 (10) −0.0038 (12)
C11B 0.0235 (13) 0.0297 (17) 0.0315 (15) −0.0017 (11) 0.0011 (10) −0.0003 (13)
C12B 0.0238 (12) 0.0340 (18) 0.0281 (15) −0.0022 (12) −0.0002 (10) −0.0043 (13)
N1B 0.0207 (10) 0.0285 (15) 0.0384 (14) 0.0009 (9) 0.0009 (9) −0.0037 (11)
N2B 0.0234 (11) 0.0359 (16) 0.0496 (16) 0.0017 (10) 0.0006 (10) 0.0057 (13)
N3B 0.0307 (13) 0.0323 (17) 0.0463 (16) 0.0027 (11) 0.0038 (11) 0.0019 (13)
N4B 0.0212 (12) 0.0409 (18) 0.0499 (17) −0.0006 (11) 0.0020 (10) 0.0123 (13)
O1B 0.0311 (10) 0.0354 (13) 0.0348 (11) −0.0087 (9) 0.0073 (8) −0.0068 (9)
O2B 0.0325 (12) 0.0735 (19) 0.0694 (17) 0.0105 (11) −0.0068 (10) −0.0422 (15)
O3B 0.0263 (9) 0.0347 (13) 0.0331 (11) −0.0006 (8) 0.0018 (8) −0.0042 (10)
O4B 0.0298 (10) 0.0345 (14) 0.0546 (14) 0.0009 (9) −0.0040 (9) 0.0089 (11)
O5B 0.0276 (9) 0.0398 (14) 0.0397 (12) −0.0025 (9) 0.0001 (8) 0.0077 (10)
C1C 0.0314 (14) 0.0380 (19) 0.0286 (16) 0.0002 (13) 0.0033 (11) −0.0046 (14)
C2C 0.0516 (19) 0.054 (2) 0.0383 (19) −0.0004 (16) 0.0070 (14) −0.0019 (17)
C3C 0.098 (3) 0.040 (2) 0.046 (2) −0.004 (2) −0.0083 (19) −0.0042 (19)
C4C 0.0227 (12) 0.0349 (18) 0.0340 (16) 0.0005 (12) −0.0004 (10) −0.0057 (13)
C5C 0.0214 (12) 0.0280 (16) 0.0332 (16) 0.0007 (11) 0.0045 (10) 0.0027 (12)
C6C 0.0218 (12) 0.0279 (16) 0.0346 (15) 0.0022 (11) 0.0010 (10) −0.0027 (13)
C7C 0.0323 (15) 0.0350 (19) 0.0416 (18) −0.0077 (13) 0.0036 (12) −0.0020 (15)
C8C 0.0195 (12) 0.0332 (18) 0.0417 (17) −0.0034 (11) 0.0077 (11) −0.0074 (14)
C9C 0.0264 (13) 0.0317 (18) 0.0441 (18) −0.0010 (12) 0.0020 (11) 0.0023 (14)
C10C 0.0264 (12) 0.0259 (16) 0.0275 (15) −0.0012 (11) 0.0035 (10) −0.0019 (12)
C11C 0.0227 (12) 0.0297 (17) 0.0300 (15) −0.0008 (11) 0.0012 (10) −0.0018 (12)
C12C 0.0252 (13) 0.0317 (18) 0.0285 (15) 0.0003 (11) 0.0024 (10) −0.0026 (13)
N1C 0.0206 (10) 0.0290 (15) 0.0369 (14) −0.0025 (9) 0.0041 (9) −0.0045 (11)
N2C 0.0247 (11) 0.0326 (16) 0.0476 (16) −0.0020 (10) 0.0025 (10) 0.0033 (12)
N3C 0.0318 (12) 0.0293 (15) 0.0422 (15) −0.0037 (11) 0.0068 (10) 0.0006 (12)
N4C 0.0220 (11) 0.0400 (18) 0.0494 (17) 0.0021 (11) 0.0030 (11) 0.0129 (13)
O1C 0.0252 (9) 0.0371 (13) 0.0338 (11) 0.0045 (8) 0.0002 (7) −0.0097 (10)
O2C 0.0311 (11) 0.0708 (19) 0.0538 (15) −0.0093 (11) 0.0077 (9) −0.0328 (13)
O3C 0.0235 (9) 0.0374 (13) 0.0330 (11) 0.0025 (8) −0.0010 (8) −0.0078 (10)
O4C 0.0316 (11) 0.0348 (14) 0.0571 (14) −0.0018 (9) 0.0117 (9) 0.0072 (11)
O5C 0.0297 (10) 0.0379 (14) 0.0435 (12) 0.0012 (9) 0.0038 (8) 0.0063 (11)
C1D 0.0310 (15) 0.042 (2) 0.0371 (17) −0.0042 (13) 0.0047 (12) −0.0068 (15)
C2D 0.0472 (19) 0.045 (2) 0.062 (2) 0.0059 (16) 0.0096 (16) −0.0112 (19)
C3D 0.070 (2) 0.067 (3) 0.041 (2) −0.008 (2) 0.0042 (16) 0.003 (2)
C4D 0.0234 (12) 0.0316 (18) 0.0345 (16) −0.0045 (12) 0.0038 (10) −0.0010 (13)
C5D 0.0237 (12) 0.0291 (17) 0.0328 (16) 0.0016 (11) 0.0037 (10) 0.0037 (13)
C6D 0.0208 (12) 0.0315 (17) 0.0331 (15) −0.0013 (11) 0.0016 (10) 0.0018 (13)
C7D 0.0294 (14) 0.041 (2) 0.0365 (17) 0.0016 (13) −0.0039 (11) 0.0001 (14)
C8D 0.0204 (12) 0.0398 (19) 0.0351 (16) 0.0019 (12) −0.0002 (10) −0.0013 (14)
C9D 0.0272 (14) 0.040 (2) 0.0359 (17) −0.0022 (12) −0.0004 (11) 0.0079 (14)
C10D 0.0271 (13) 0.0289 (17) 0.0296 (15) 0.0001 (11) −0.0011 (10) −0.0008 (13)
C11D 0.0253 (13) 0.0289 (18) 0.0329 (16) 0.0000 (11) −0.0004 (11) −0.0010 (13)
C12D 0.0254 (13) 0.0298 (18) 0.0347 (17) −0.0018 (11) 0.0008 (11) −0.0068 (14)
N1D 0.0230 (11) 0.0350 (15) 0.0303 (13) −0.0014 (10) −0.0017 (9) 0.0013 (11)
N2D 0.0250 (11) 0.0363 (16) 0.0393 (15) 0.0002 (10) −0.0009 (9) 0.0036 (12)
N3D 0.0352 (14) 0.050 (2) 0.0444 (17) 0.0022 (13) −0.0009 (11) 0.0160 (15)
N4D 0.0226 (12) 0.0458 (19) 0.0462 (17) −0.0010 (12) 0.0007 (11) 0.0083 (14)
O1D 0.0270 (9) 0.0415 (14) 0.0342 (11) −0.0057 (9) 0.0061 (8) −0.0043 (10)
O2D 0.0257 (10) 0.0454 (15) 0.0508 (14) −0.0007 (9) 0.0009 (8) −0.0194 (11)
O3D 0.0284 (10) 0.0327 (13) 0.0359 (12) −0.0017 (9) 0.0023 (8) −0.0048 (10)
O4D 0.0323 (11) 0.0474 (16) 0.0482 (14) 0.0074 (10) 0.0033 (10) 0.0143 (12)
O5D 0.0310 (10) 0.0410 (15) 0.0477 (13) −0.0018 (9) 0.0056 (9) 0.0085 (11)

Geometric parameters (Å, º)

C1A—O1A 1.426 (4) C1C—O1C 1.425 (4)
C1A—O2A 1.437 (3) C1C—O2C 1.428 (3)
C1A—C3A 1.492 (5) C1C—C3C 1.492 (5)
C1A—C2A 1.508 (5) C1C—C2C 1.502 (4)
C2A—H2A1 0.9600 C2C—H2C1 0.9600
C2A—H2A2 0.9600 C2C—H2C2 0.9600
C2A—H2A3 0.9600 C2C—H2C3 0.9600
C3A—H3A1 0.9600 C3C—H3C1 0.9600
C3A—H3A2 0.9600 C3C—H3C2 0.9600
C3A—H3A3 0.9600 C3C—H3C3 0.9600
C4A—O1A 1.417 (3) C4C—O2C 1.413 (4)
C4A—C8A 1.509 (4) C4C—C6C 1.526 (4)
C4A—C5A 1.525 (4) C4C—C5C 1.538 (4)
C4A—H4A 0.9800 C4C—H4C 0.9800
C5A—O2A 1.418 (4) C5C—O1C 1.423 (3)
C5A—C6A 1.520 (4) C5C—C8C 1.501 (4)
C5A—H5A 0.9800 C5C—H5C 0.9800
C6A—O3A 1.423 (4) C6C—O3C 1.426 (3)
C6A—C7A 1.518 (4) C6C—C7C 1.513 (4)
C6A—H6A 0.9800 C6C—H6C 0.9800
C7A—O4A 1.414 (4) C7C—O4C 1.425 (4)
C7A—H7A1 0.9700 C7C—H7C1 0.9700
C7A—H7A2 0.9700 C7C—H7C2 0.9700
C8A—N1A 1.461 (3) C8C—N1C 1.463 (3)
C8A—H8A1 0.9700 C8C—H8C1 0.9700
C8A—H8A2 0.9700 C8C—H8C2 0.9700
C9A—N2A 1.306 (3) C9C—N2C 1.305 (3)
C9A—N1A 1.362 (4) C9C—N1C 1.363 (4)
C9A—H9A 0.9300 C9C—H9C 0.9300
C10A—N3A 1.363 (4) C10C—N1C 1.366 (4)
C10A—N1A 1.367 (4) C10C—C11C 1.370 (4)
C10A—C11A 1.373 (4) C10C—N3C 1.376 (4)
C11A—N2A 1.377 (4) C11C—N2C 1.377 (4)
C11A—C12A 1.449 (4) C11C—C12C 1.460 (4)
C12A—O5A 1.243 (4) C12C—O5C 1.240 (4)
C12A—N4A 1.334 (4) C12C—N4C 1.323 (4)
N3A—H3NA 0.89 (4) N3C—H3NC 0.87 (4)
N3A—H6NA 0.89 (4) N3C—H6NC 0.90 (4)
N4A—H4NA 0.92 (4) N4C—H4NC 0.86 (4)
N4A—H5NA 0.91 (4) N4C—H5NC 0.84 (4)
O3A—H3AO 0.79 (4) O3C—H3CO 0.80 (4)
O4A—H4AO 0.80 (4) O4C—H4CO 0.80 (4)
C1B—O2B 1.423 (4) C1D—O1D 1.422 (4)
C1B—O1B 1.427 (3) C1D—O2D 1.437 (3)
C1B—C3B 1.476 (5) C1D—C3D 1.501 (5)
C1B—C2B 1.500 (5) C1D—C2D 1.507 (5)
C2B—H2B1 0.9600 C2D—H2D1 0.9600
C2B—H2B2 0.9600 C2D—H2D2 0.9600
C2B—H2B3 0.9600 C2D—H2D3 0.9600
C3B—H3B1 0.9600 C3D—H3D1 0.9600
C3B—H3B2 0.9600 C3D—H3D2 0.9600
C3B—H3B3 0.9600 C3D—H3D3 0.9600
C4B—O2B 1.413 (4) C4D—O2D 1.412 (3)
C4B—C6B 1.518 (4) C4D—C6D 1.519 (4)
C4B—C5B 1.536 (4) C4D—C5D 1.530 (4)
C4B—H4B 0.9800 C4D—H4D 0.9800
C5B—O1B 1.419 (3) C5D—O1D 1.421 (3)
C5B—C8B 1.503 (4) C5D—C8D 1.515 (4)
C5B—H5B 0.9800 C5D—H5D 0.9800
C6B—O3B 1.427 (4) C6D—O3D 1.421 (3)
C6B—C7B 1.508 (4) C6D—C7D 1.519 (4)
C6B—H6B 0.9800 C6D—H6D 0.9800
C7B—O4B 1.422 (4) C7D—O4D 1.415 (4)
C7B—H7B1 0.9700 C7D—H7D1 0.9700
C7B—H7B2 0.9700 C7D—H7D2 0.9700
C8B—N1B 1.462 (3) C8D—N1D 1.457 (3)
C8B—H8B1 0.9700 C8D—H8D1 0.9700
C8B—H8B2 0.9700 C8D—H8D2 0.9700
C9B—N2B 1.304 (4) C9D—N2D 1.303 (3)
C9B—N1B 1.355 (4) C9D—N1D 1.360 (4)
C9B—H9B 0.9300 C9D—H9D 0.9300
C10B—N3B 1.357 (4) C10D—N3D 1.362 (4)
C10B—N1B 1.367 (4) C10D—N1D 1.366 (4)
C10B—C11B 1.377 (4) C10D—C11D 1.372 (4)
C11B—N2B 1.385 (4) C11D—N2D 1.385 (4)
C11B—C12B 1.441 (4) C11D—C12D 1.456 (4)
C12B—O5B 1.258 (3) C12D—O5D 1.241 (4)
C12B—N4B 1.319 (4) C12D—N4D 1.332 (4)
N3B—H3NB 0.89 (3) N3D—H3ND 0.86 (4)
N3B—H6NB 0.95 (4) N3D—H6ND 0.92 (4)
N4B—H4NB 0.89 (4) N4D—H4ND 0.89 (4)
N4B—H5NB 0.85 (4) N4D—H5ND 0.87 (4)
O3B—H3BO 0.87 (3) O3D—H3DO 0.90 (4)
O4B—H4BO 0.91 (4) O4D—H4DO 0.79 (3)
O1A—C1A—O2A 105.1 (2) O1C—C1C—O2C 104.7 (2)
O1A—C1A—C3A 107.9 (3) O1C—C1C—C3C 109.0 (3)
O2A—C1A—C3A 110.0 (3) O2C—C1C—C3C 109.8 (3)
O1A—C1A—C2A 111.3 (3) O1C—C1C—C2C 111.8 (3)
O2A—C1A—C2A 108.7 (3) O2C—C1C—C2C 109.3 (3)
C3A—C1A—C2A 113.5 (3) C3C—C1C—C2C 112.0 (3)
C1A—C2A—H2A1 109.5 C1C—C2C—H2C1 109.5
C1A—C2A—H2A2 109.5 C1C—C2C—H2C2 109.5
H2A1—C2A—H2A2 109.5 H2C1—C2C—H2C2 109.5
C1A—C2A—H2A3 109.5 C1C—C2C—H2C3 109.5
H2A1—C2A—H2A3 109.5 H2C1—C2C—H2C3 109.5
H2A2—C2A—H2A3 109.5 H2C2—C2C—H2C3 109.5
C1A—C3A—H3A1 109.5 C1C—C3C—H3C1 109.5
C1A—C3A—H3A2 109.5 C1C—C3C—H3C2 109.5
H3A1—C3A—H3A2 109.5 H3C1—C3C—H3C2 109.5
C1A—C3A—H3A3 109.5 C1C—C3C—H3C3 109.5
H3A1—C3A—H3A3 109.5 H3C1—C3C—H3C3 109.5
H3A2—C3A—H3A3 109.5 H3C2—C3C—H3C3 109.5
O1A—C4A—C8A 108.4 (2) O2C—C4C—C6C 112.3 (3)
O1A—C4A—C5A 101.9 (2) O2C—C4C—C5C 102.5 (2)
C8A—C4A—C5A 118.6 (2) C6C—C4C—C5C 115.5 (2)
O1A—C4A—H4A 109.2 O2C—C4C—H4C 108.7
C8A—C4A—H4A 109.2 C6C—C4C—H4C 108.7
C5A—C4A—H4A 109.2 C5C—C4C—H4C 108.7
O2A—C5A—C6A 112.8 (2) O1C—C5C—C8C 109.4 (2)
O2A—C5A—C4A 101.5 (2) O1C—C5C—C4C 101.8 (2)
C6A—C5A—C4A 115.5 (2) C8C—C5C—C4C 118.6 (2)
O2A—C5A—H5A 108.9 O1C—C5C—H5C 108.9
C6A—C5A—H5A 108.9 C8C—C5C—H5C 108.9
C4A—C5A—H5A 108.9 C4C—C5C—H5C 108.9
O3A—C6A—C7A 110.7 (2) O3C—C6C—C7C 110.5 (2)
O3A—C6A—C5A 106.3 (2) O3C—C6C—C4C 105.4 (2)
C7A—C6A—C5A 111.1 (2) C7C—C6C—C4C 110.9 (2)
O3A—C6A—H6A 109.6 O3C—C6C—H6C 110.0
C7A—C6A—H6A 109.6 C7C—C6C—H6C 110.0
C5A—C6A—H6A 109.6 C4C—C6C—H6C 110.0
O4A—C7A—C6A 112.8 (3) O4C—C7C—C6C 112.0 (2)
O4A—C7A—H7A1 109.0 O4C—C7C—H7C1 109.2
C6A—C7A—H7A1 109.0 C6C—C7C—H7C1 109.2
O4A—C7A—H7A2 109.0 O4C—C7C—H7C2 109.2
C6A—C7A—H7A2 109.0 C6C—C7C—H7C2 109.2
H7A1—C7A—H7A2 107.8 H7C1—C7C—H7C2 107.9
N1A—C8A—C4A 109.8 (2) N1C—C8C—C5C 110.3 (2)
N1A—C8A—H8A1 109.7 N1C—C8C—H8C1 109.6
C4A—C8A—H8A1 109.7 C5C—C8C—H8C1 109.6
N1A—C8A—H8A2 109.7 N1C—C8C—H8C2 109.6
C4A—C8A—H8A2 109.7 C5C—C8C—H8C2 109.6
H8A1—C8A—H8A2 108.2 H8C1—C8C—H8C2 108.1
N2A—C9A—N1A 112.1 (3) N2C—C9C—N1C 112.5 (3)
N2A—C9A—H9A 123.9 N2C—C9C—H9C 123.8
N1A—C9A—H9A 123.9 N1C—C9C—H9C 123.8
N3A—C10A—N1A 122.9 (3) N1C—C10C—C11C 105.6 (3)
N3A—C10A—C11A 131.5 (3) N1C—C10C—N3C 122.9 (2)
N1A—C10A—C11A 105.3 (3) C11C—C10C—N3C 131.4 (3)
C10A—C11A—N2A 110.4 (2) C10C—C11C—N2C 110.4 (2)
C10A—C11A—C12A 125.9 (3) C10C—C11C—C12C 124.4 (3)
N2A—C11A—C12A 123.7 (2) N2C—C11C—C12C 125.1 (2)
O5A—C12A—N4A 122.7 (3) O5C—C12C—N4C 123.1 (3)
O5A—C12A—C11A 121.1 (3) O5C—C12C—C11C 119.7 (2)
N4A—C12A—C11A 116.3 (3) N4C—C12C—C11C 117.3 (3)
C9A—N1A—C10A 107.1 (2) C9C—N1C—C10C 106.7 (2)
C9A—N1A—C8A 126.1 (2) C9C—N1C—C8C 126.9 (2)
C10A—N1A—C8A 126.6 (2) C10C—N1C—C8C 126.4 (3)
C9A—N2A—C11A 105.1 (2) C9C—N2C—C11C 104.8 (2)
C10A—N3A—H3NA 112 (3) C10C—N3C—H3NC 111 (2)
C10A—N3A—H6NA 114 (3) C10C—N3C—H6NC 110 (2)
H3NA—N3A—H6NA 110 (4) H3NC—N3C—H6NC 113 (3)
C12A—N4A—H4NA 118 (2) C12C—N4C—H4NC 122 (2)
C12A—N4A—H5NA 122 (2) C12C—N4C—H5NC 121 (2)
H4NA—N4A—H5NA 119 (3) H4NC—N4C—H5NC 116 (3)
C4A—O1A—C1A 106.5 (2) C5C—O1C—C1C 106.5 (2)
C5A—O2A—C1A 109.6 (2) C4C—O2C—C1C 110.7 (2)
C6A—O3A—H3AO 109 (3) C6C—O3C—H3CO 111 (3)
C7A—O4A—H4AO 106 (3) C7C—O4C—H4CO 103 (3)
O2B—C1B—O1B 104.3 (2) O1D—C1D—O2D 105.1 (2)
O2B—C1B—C3B 110.2 (3) O1D—C1D—C3D 108.0 (3)
O1B—C1B—C3B 108.7 (3) O2D—C1D—C3D 109.8 (3)
O2B—C1B—C2B 109.4 (3) O1D—C1D—C2D 112.0 (3)
O1B—C1B—C2B 111.5 (3) O2D—C1D—C2D 108.5 (3)
C3B—C1B—C2B 112.5 (3) C3D—C1D—C2D 113.2 (3)
C1B—C2B—H2B1 109.5 C1D—C2D—H2D1 109.5
C1B—C2B—H2B2 109.5 C1D—C2D—H2D2 109.5
H2B1—C2B—H2B2 109.5 H2D1—C2D—H2D2 109.5
C1B—C2B—H2B3 109.5 C1D—C2D—H2D3 109.5
H2B1—C2B—H2B3 109.5 H2D1—C2D—H2D3 109.5
H2B2—C2B—H2B3 109.5 H2D2—C2D—H2D3 109.5
C1B—C3B—H3B1 109.5 C1D—C3D—H3D1 109.5
C1B—C3B—H3B2 109.5 C1D—C3D—H3D2 109.5
H3B1—C3B—H3B2 109.5 H3D1—C3D—H3D2 109.5
C1B—C3B—H3B3 109.5 C1D—C3D—H3D3 109.5
H3B1—C3B—H3B3 109.5 H3D1—C3D—H3D3 109.5
H3B2—C3B—H3B3 109.5 H3D2—C3D—H3D3 109.5
O2B—C4B—C6B 112.2 (3) O2D—C4D—C6D 113.1 (2)
O2B—C4B—C5B 103.1 (2) O2D—C4D—C5D 101.5 (2)
C6B—C4B—C5B 115.4 (2) C6D—C4D—C5D 114.9 (2)
O2B—C4B—H4B 108.6 O2D—C4D—H4D 109.0
C6B—C4B—H4B 108.6 C6D—C4D—H4D 109.0
C5B—C4B—H4B 108.6 C5D—C4D—H4D 109.0
O1B—C5B—C8B 108.9 (2) O1D—C5D—C8D 108.1 (2)
O1B—C5B—C4B 101.9 (2) O1D—C5D—C4D 101.7 (2)
C8B—C5B—C4B 118.0 (2) C8D—C5D—C4D 118.9 (2)
O1B—C5B—H5B 109.2 O1D—C5D—H5D 109.2
C8B—C5B—H5B 109.2 C8D—C5D—H5D 109.2
C4B—C5B—H5B 109.2 C4D—C5D—H5D 109.2
O3B—C6B—C7B 111.0 (2) O3D—C6D—C7D 111.3 (2)
O3B—C6B—C4B 105.0 (2) O3D—C6D—C4D 105.6 (2)
C7B—C6B—C4B 112.4 (2) C7D—C6D—C4D 112.0 (2)
O3B—C6B—H6B 109.4 O3D—C6D—H6D 109.3
C7B—C6B—H6B 109.4 C7D—C6D—H6D 109.3
C4B—C6B—H6B 109.4 C4D—C6D—H6D 109.3
O4B—C7B—C6B 111.1 (2) O4D—C7D—C6D 111.8 (3)
O4B—C7B—H7B1 109.4 O4D—C7D—H7D1 109.3
C6B—C7B—H7B1 109.4 C6D—C7D—H7D1 109.3
O4B—C7B—H7B2 109.4 O4D—C7D—H7D2 109.3
C6B—C7B—H7B2 109.4 C6D—C7D—H7D2 109.3
H7B1—C7B—H7B2 108.0 H7D1—C7D—H7D2 107.9
N1B—C8B—C5B 110.9 (2) N1D—C8D—C5D 109.8 (2)
N1B—C8B—H8B1 109.5 N1D—C8D—H8D1 109.7
C5B—C8B—H8B1 109.5 C5D—C8D—H8D1 109.7
N1B—C8B—H8B2 109.5 N1D—C8D—H8D2 109.7
C5B—C8B—H8B2 109.5 C5D—C8D—H8D2 109.7
H8B1—C8B—H8B2 108.0 H8D1—C8D—H8D2 108.2
N2B—C9B—N1B 112.5 (3) N2D—C9D—N1D 112.4 (3)
N2B—C9B—H9B 123.7 N2D—C9D—H9D 123.8
N1B—C9B—H9B 123.7 N1D—C9D—H9D 123.8
N3B—C10B—N1B 122.8 (2) N3D—C10D—N1D 122.8 (3)
N3B—C10B—C11B 132.5 (3) N3D—C10D—C11D 131.5 (3)
N1B—C10B—C11B 104.7 (3) N1D—C10D—C11D 105.4 (3)
C10B—C11B—N2B 110.6 (2) C10D—C11D—N2D 110.1 (2)
C10B—C11B—C12B 126.2 (3) C10D—C11D—C12D 126.4 (3)
N2B—C11B—C12B 123.1 (2) N2D—C11D—C12D 123.3 (2)
O5B—C12B—N4B 122.3 (2) O5D—C12D—N4D 123.3 (3)
O5B—C12B—C11B 120.3 (2) O5D—C12D—C11D 121.0 (2)
N4B—C12B—C11B 117.4 (3) N4D—C12D—C11D 115.7 (3)
C9B—N1B—C10B 107.6 (2) C9D—N1D—C10D 107.1 (2)
C9B—N1B—C8B 126.1 (2) C9D—N1D—C8D 126.1 (2)
C10B—N1B—C8B 126.3 (3) C10D—N1D—C8D 126.7 (2)
C9B—N2B—C11B 104.5 (2) C9D—N2D—C11D 104.9 (2)
C10B—N3B—H3NB 114 (2) C10D—N3D—H3ND 114 (3)
C10B—N3B—H6NB 115 (2) C10D—N3D—H6ND 115 (2)
H3NB—N3B—H6NB 110 (3) H3ND—N3D—H6ND 108 (3)
C12B—N4B—H4NB 116 (2) C12D—N4D—H4ND 122 (2)
C12B—N4B—H5NB 122 (2) C12D—N4D—H5ND 118 (2)
H4NB—N4B—H5NB 122 (3) H4ND—N4D—H5ND 117 (3)
C5B—O1B—C1B 106.8 (2) C5D—O1D—C1D 106.2 (2)
C4B—O2B—C1B 110.8 (2) C4D—O2D—C1D 109.9 (2)
C6B—O3B—H3BO 113 (2) C6D—O3D—H3DO 106 (2)
C7B—O4B—H4BO 105 (2) C7D—O4D—H4DO 109 (3)
O1A—C4A—C5A—O2A 36.6 (3) O2C—C4C—C5C—O1C 30.6 (3)
C8A—C4A—C5A—O2A 155.4 (3) C6C—C4C—C5C—O1C −91.8 (3)
O1A—C4A—C5A—C6A −85.8 (3) O2C—C4C—C5C—C8C 150.6 (3)
C8A—C4A—C5A—C6A 33.1 (4) C6C—C4C—C5C—C8C 28.2 (4)
O2A—C5A—C6A—O3A 164.3 (2) O2C—C4C—C6C—O3C 165.3 (2)
C4A—C5A—C6A—O3A −79.6 (3) C5C—C4C—C6C—O3C −77.6 (3)
O2A—C5A—C6A—C7A 43.9 (3) O2C—C4C—C6C—C7C 45.7 (3)
C4A—C5A—C6A—C7A 159.9 (2) C5C—C4C—C6C—C7C 162.8 (3)
O3A—C6A—C7A—O4A 59.0 (3) O3C—C6C—C7C—O4C 62.4 (3)
C5A—C6A—C7A—O4A 176.8 (2) C4C—C6C—C7C—O4C 178.8 (2)
O1A—C4A—C8A—N1A −57.2 (3) O1C—C5C—C8C—N1C −58.9 (3)
C5A—C4A—C8A—N1A −172.6 (2) C4C—C5C—C8C—N1C −174.9 (3)
N3A—C10A—C11A—N2A 174.9 (3) N1C—C10C—C11C—N2C 0.2 (3)
N1A—C10A—C11A—N2A 0.7 (3) N3C—C10C—C11C—N2C 175.3 (3)
N3A—C10A—C11A—C12A −5.3 (5) N1C—C10C—C11C—C12C 178.4 (3)
N1A—C10A—C11A—C12A −179.6 (3) N3C—C10C—C11C—C12C −6.5 (5)
C10A—C11A—C12A—O5A 5.1 (5) C10C—C11C—C12C—O5C 6.6 (4)
N2A—C11A—C12A—O5A −175.2 (3) N2C—C11C—C12C—O5C −175.5 (3)
C10A—C11A—C12A—N4A −173.3 (3) C10C—C11C—C12C—N4C −172.7 (3)
N2A—C11A—C12A—N4A 6.3 (4) N2C—C11C—C12C—N4C 5.2 (4)
N2A—C9A—N1A—C10A 1.1 (4) N2C—C9C—N1C—C10C 0.5 (3)
N2A—C9A—N1A—C8A 175.9 (3) N2C—C9C—N1C—C8C 178.1 (3)
N3A—C10A—N1A—C9A −175.9 (3) C11C—C10C—N1C—C9C −0.4 (3)
C11A—C10A—N1A—C9A −1.0 (3) N3C—C10C—N1C—C9C −176.1 (3)
N3A—C10A—N1A—C8A 9.3 (5) C11C—C10C—N1C—C8C −178.0 (3)
C11A—C10A—N1A—C8A −175.8 (3) N3C—C10C—N1C—C8C 6.3 (4)
C4A—C8A—N1A—C9A −80.1 (3) C5C—C8C—N1C—C9C −86.2 (3)
C4A—C8A—N1A—C10A 93.7 (4) C5C—C8C—N1C—C10C 90.9 (3)
N1A—C9A—N2A—C11A −0.6 (3) N1C—C9C—N2C—C11C −0.4 (3)
C10A—C11A—N2A—C9A −0.1 (3) C10C—C11C—N2C—C9C 0.1 (3)
C12A—C11A—N2A—C9A −179.8 (3) C12C—C11C—N2C—C9C −178.1 (3)
C8A—C4A—O1A—C1A −163.8 (2) C8C—C5C—O1C—C1C −163.9 (2)
C5A—C4A—O1A—C1A −38.0 (3) C4C—C5C—O1C—C1C −37.5 (3)
O2A—C1A—O1A—C4A 24.6 (3) O2C—C1C—O1C—C5C 30.0 (3)
C3A—C1A—O1A—C4A 142.0 (3) C3C—C1C—O1C—C5C 147.5 (3)
C2A—C1A—O1A—C4A −92.8 (3) C2C—C1C—O1C—C5C −88.2 (3)
C6A—C5A—O2A—C1A 101.6 (3) C6C—C4C—O2C—C1C 111.3 (3)
C4A—C5A—O2A—C1A −22.5 (3) C5C—C4C—O2C—C1C −13.3 (3)
O1A—C1A—O2A—C5A 0.2 (3) O1C—C1C—O2C—C4C −9.1 (3)
C3A—C1A—O2A—C5A −115.7 (3) C3C—C1C—O2C—C4C −126.0 (3)
C2A—C1A—O2A—C5A 119.4 (3) C2C—C1C—O2C—C4C 110.7 (3)
O2B—C4B—C5B—O1B 27.9 (3) O2D—C4D—C5D—O1D 36.2 (3)
C6B—C4B—C5B—O1B −94.8 (3) C6D—C4D—C5D—O1D −86.2 (3)
O2B—C4B—C5B—C8B 147.1 (3) O2D—C4D—C5D—C8D 154.7 (3)
C6B—C4B—C5B—C8B 24.5 (4) C6D—C4D—C5D—C8D 32.2 (3)
O2B—C4B—C6B—O3B 164.1 (2) O2D—C4D—C6D—O3D 163.0 (2)
C5B—C4B—C6B—O3B −78.2 (3) C5D—C4D—C6D—O3D −81.0 (3)
O2B—C4B—C6B—C7B 43.3 (3) O2D—C4D—C6D—C7D 41.7 (3)
C5B—C4B—C6B—C7B 161.0 (3) C5D—C4D—C6D—C7D 157.7 (2)
O3B—C6B—C7B—O4B 63.3 (3) O3D—C6D—C7D—O4D 59.2 (3)
C4B—C6B—C7B—O4B −179.4 (2) C4D—C6D—C7D—O4D 177.2 (2)
O1B—C5B—C8B—N1B −57.6 (3) O1D—C5D—C8D—N1D −57.0 (3)
C4B—C5B—C8B—N1B −173.0 (3) C4D—C5D—C8D—N1D −172.0 (2)
N3B—C10B—C11B—N2B −179.7 (3) N3D—C10D—C11D—N2D 174.9 (3)
N1B—C10B—C11B—N2B 1.3 (3) N1D—C10D—C11D—N2D 0.9 (3)
N3B—C10B—C11B—C12B −3.3 (5) N3D—C10D—C11D—C12D −9.4 (5)
N1B—C10B—C11B—C12B 177.6 (3) N1D—C10D—C11D—C12D 176.6 (3)
C10B—C11B—C12B—O5B 14.5 (4) C10D—C11D—C12D—O5D 8.8 (5)
N2B—C11B—C12B—O5B −169.5 (3) N2D—C11D—C12D—O5D −176.1 (3)
C10B—C11B—C12B—N4B −164.9 (3) C10D—C11D—C12D—N4D −169.1 (3)
N2B—C11B—C12B—N4B 11.1 (4) N2D—C11D—C12D—N4D 6.0 (4)
N2B—C9B—N1B—C10B 0.5 (4) N2D—C9D—N1D—C10D 0.4 (4)
N2B—C9B—N1B—C8B −179.9 (3) N2D—C9D—N1D—C8D 177.8 (3)
N3B—C10B—N1B—C9B 179.8 (3) N3D—C10D—N1D—C9D −175.5 (3)
C11B—C10B—N1B—C9B −1.1 (3) C11D—C10D—N1D—C9D −0.8 (3)
N3B—C10B—N1B—C8B 0.2 (4) N3D—C10D—N1D—C8D 7.2 (5)
C11B—C10B—N1B—C8B 179.4 (3) C11D—C10D—N1D—C8D −178.1 (3)
C5B—C8B—N1B—C9B −89.4 (3) C5D—C8D—N1D—C9D −80.6 (3)
C5B—C8B—N1B—C10B 90.1 (3) C5D—C8D—N1D—C10D 96.2 (3)
N1B—C9B—N2B—C11B 0.3 (3) N1D—C9D—N2D—C11D 0.1 (3)
C10B—C11B—N2B—C9B −1.0 (3) C10D—C11D—N2D—C9D −0.6 (3)
C12B—C11B—N2B—C9B −177.5 (3) C12D—C11D—N2D—C9D −176.5 (3)
C8B—C5B—O1B—C1B −162.2 (2) C8D—C5D—O1D—C1D −164.5 (2)
C4B—C5B—O1B—C1B −36.8 (3) C4D—C5D—O1D—C1D −38.6 (3)
O2B—C1B—O1B—C5B 31.6 (3) O2D—C1D—O1D—C5D 26.1 (3)
C3B—C1B—O1B—C5B 149.1 (3) C3D—C1D—O1D—C5D 143.3 (3)
C2B—C1B—O1B—C5B −86.3 (3) C2D—C1D—O1D—C5D −91.5 (3)
C6B—C4B—O2B—C1B 115.2 (3) C6D—C4D—O2D—C1D 102.3 (3)
C5B—C4B—O2B—C1B −9.6 (3) C5D—C4D—O2D—C1D −21.4 (3)
O1B—C1B—O2B—C4B −12.5 (3) O1D—C1D—O2D—C4D −1.5 (3)
C3B—C1B—O2B—C4B −129.0 (3) C3D—C1D—O2D—C4D −117.4 (3)
C2B—C1B—O2B—C4B 106.9 (3) C2D—C1D—O2D—C4D 118.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8A—H8A1···O4Ci 0.97 2.62 3.444 (4) 143
N3A—H3NA···O5A 0.89 (4) 2.32 (4) 2.945 (4) 127 (3)
N3A—H6NA···O1A 0.89 (4) 2.66 (4) 3.250 (4) 125 (3)
N4A—H4NA···O3Aii 0.92 (4) 2.05 (4) 2.973 (3) 178 (3)
N4A—H5NA···N2C 0.91 (4) 2.23 (4) 3.064 (4) 153 (3)
O3A—H3AO···O4Ci 0.79 (4) 2.05 (4) 2.831 (3) 170 (4)
O4A—H4AO···O5Aiii 0.80 (4) 2.01 (4) 2.798 (3) 166 (4)
C3B—H3B1···N1Div 0.96 2.58 3.398 (5) 144
C8B—H8B1···O5Cv 0.97 2.51 3.243 (4) 132
C8B—H8B2···O4Avi 0.97 2.43 3.291 (4) 147
N3B—H3NB···O1B 0.89 (3) 2.35 (3) 3.037 (3) 133 (3)
N3B—H6NB···O5B 0.95 (4) 2.39 (3) 2.977 (3) 120 (3)
N3B—H6NB···O5Div 0.95 (4) 2.52 (4) 3.196 (4) 129 (3)
N4B—H4NB···O3Biii 0.89 (4) 2.03 (4) 2.901 (3) 170 (3)
N4B—H5NB···N2Diii 0.85 (4) 2.16 (4) 2.920 (4) 150 (3)
O3B—H3BO···N3Cv 0.87 (3) 1.98 (4) 2.838 (4) 168 (3)
O4B—H4BO···O5Bii 0.91 (4) 1.81 (4) 2.715 (3) 170 (3)
C8C—H8C1···O5Bvii 0.97 2.64 3.380 (3) 133
C8C—H8C2···O4Di 0.97 2.41 3.360 (4) 166
N3C—H3NC···O1C 0.87 (4) 2.48 (4) 3.152 (4) 134 (3)
N3C—H6NC···O5C 0.90 (4) 2.21 (3) 2.874 (3) 130 (3)
N4C—H4NC···N2A 0.86 (4) 2.14 (4) 2.934 (4) 154 (3)
N4C—H5NC···O3Ciii 0.84 (4) 2.12 (4) 2.959 (3) 176 (4)
O3C—H3CO···O5Bvii 0.80 (4) 2.03 (4) 2.823 (3) 173 (3)
O4C—H4CO···O5Cii 0.80 (4) 1.97 (4) 2.738 (3) 162 (4)
N3D—H6ND···N4Cviii 0.92 (4) 2.62 (4) 3.268 (4) 128 (3)
N3D—H6ND···O5D 0.92 (4) 2.36 (4) 2.972 (4) 124 (3)
N4D—H4ND···N2Bii 0.89 (4) 2.26 (4) 3.075 (4) 153 (3)
N4D—H5ND···O3Dii 0.87 (4) 2.09 (4) 2.957 (3) 176 (3)
O3D—H3DO···O4Bix 0.90 (4) 1.82 (4) 2.711 (3) 171 (3)
O4D—H4DO···O5Diii 0.79 (3) 2.06 (3) 2.822 (3) 164 (4)

Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+2, y−1/2, −z+2; (v) x, y, z+1; (vi) −x+1, y+1/2, −z+2; (vii) x+1, y, z−1; (viii) −x+2, y+1/2, −z+1; (ix) −x+2, y+1/2, −z+2.

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brock, C. P. (2016). Acta Cryst. B72, 807–821. [DOI] [PubMed]
  3. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721–3728.
  5. Champdoré, M. de, Di Fabio, G., Messere, A., Montesarchio, D., Piccialli, G., Loddo, R., La Colla, M. & La Colla, P. (2004). Tetrahedron, 60, 6555–6563.
  6. D’Atri, V., Oliviero, G., Amato, J., Borbone, N., D’Errico, S., Mayol, L., Piccialli, V., Haider, S., Hoorelbeke, B., Balzarini, J. & Piccialli, G. (2012). Chem. Commun. 48, 9516–9518. [DOI] [PubMed]
  7. D’Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310–9312. [DOI] [PubMed]
  8. D’Errico, S., Oliviero, G., Borbone, N., Amato, J., D’Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036–13044. [DOI] [PMC free article] [PubMed]
  9. D’Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2011). Molecules, 16, 8110–8118. [DOI] [PMC free article] [PubMed]
  10. D’Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2013). Molecules, 18, 9420–9431. [DOI] [PMC free article] [PubMed]
  11. D’Errico, S., Oliviero, G., Borbone, N., Piccialli, V. & Piccialli, G. (2015). Curr. Protoc. Nucleic Acid Chem. 1.35.1–1.35.24. [DOI] [PubMed]
  12. Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.
  13. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
  14. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  15. Galeone, A., Mayol, L., Oliviero, G., Piccialli, G. & Varra, M. (2002). Eur. J. Org. Chem. pp. 4234–4238.
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Jordheim, L. P., Durantel, D., Zoulim, F. & Dumontet, C. (2013). Nat. Rev. Drug Discov. 12, 447–464. [DOI] [PubMed]
  18. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  19. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
  20. Oliviero, G., Amato, J., Borbone, N., D’Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475–6481.
  21. Oliviero, G., Amato, J., Borbone, N., D’Errico, S., Piccialli, G. & Mayol, L. (2007). Tetrahedron Lett. 48, 397–400.
  22. Oliviero, G., D’Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517–1524.
  23. Oliviero, G., D’Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931–1936.
  24. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  25. Piccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131–5135.
  26. Piccialli, V., D’Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789.
  27. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  28. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  29. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017000500/su5343sup1.cif

e-73-00183-sup1.cif (765.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017000500/su5343Isup2.hkl

e-73-00183-Isup2.hkl (898.6KB, hkl)

CCDC reference: 1526562

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES