Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Jan 27;73(Pt 2):254–259. doi: 10.1107/S2056989017001177

Four pyrrole derivatives used as building blocks in the synthesis of minor-groove binders

Alan R Kennedy a,*, Abedawn I Khalaf a, Fraser J Scott b, Colin J Suckling a
PMCID: PMC5290577  PMID: 28217354

The title nitro­pyrrole-based compounds are inter­mediates used in the synthesis of modified DNA minor-groove binders. They are ethyl 4-nitro-1H-pyrrole-2-carboxyl­ate, its derivative ethyl 4-nitro-1-(4-pentyn­yl)-1H-pyrrole-2-carboxyl­ate, N-[3-(di­methyl­amino)­prop­yl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide and 1-(3-azido­prop­yl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)eth­yl]-1H-pyrrole-2-carboxamide.

Keywords: crystal structure, nitro­pyrrole, minor-groove binders, hydrogen bonding

Abstract

The title nitro­pyrrole-based compounds, C7H8N2O4, (I) (ethyl 4-nitro-1H-pyrrole-2-carboxyl­ate), its derivative C12H14N2O4, (II) [ethyl 4-nitro-1-(4-pent­yn­yl)-1H-pyrrole-2-carboxyl­ate], C15H26N4O3, (III) {N-[3-(di­methyamino)prop­yl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide}, and C20H27N9O5, (IV) {1-(3-azido­prop­yl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)eth­yl]-1H-pyrrole-2-carboxamide}, are inter­mediates used in the synthesis of modified DNA minor-groove binders. In all four compounds, the nitro groups lie in the plane of the pyrrole ring. In compounds (I) and (II), the ester groups also lie in the plane of the pyrrole ring. In compound (III), both of the other substituents lie out of the plane of the pyrrole ring. In the case of compound (IV), the coplanarity extends to the second pyrrole ring and through both amide groups. In the crystals of all four compounds, layer-like structures are formed, via a combination of N—H⋯O and C—H⋯O hydrogen bonds for (I), (III) and (IV), but by only C—H⋯O hydrogen bonds for (II).

Chemical context  

Over the past two decades, the field of minor-groove binders (MGBs) has expanded vastly and now these compounds display a wide spectrum of biological activities, such as anti­bacterial, anti­fungal, anti­parasitic and anti­cancer activities. A large number of structural modifications have been carried out on the original, naturally occurring compounds distamycin and netropsin, in order to optimize their biological activities (Lang et al., 2014). In addition to modifying the biological activities, structural changes have been made to the head group, tail group and the heterocyclic moieties in order to modulate their solubility, selectivity and the degree of binding to the minor groove of DNA (Alniss et al., 2014). We have recently turned to developing MGB-biotin hybrid mol­ecules to be used as novel biochemical probes in order to determine the mechanism of action of MGBs. Structural information is important in this field, as inter­molecular contacts are important for minor-groove binding and mol­ecular conformation is relevant to structure–activity and model building (Chenoweth & Dervan, 2009). This paper details the crystal structures of a number of key building blocks that have facilitated this mol­ecular probe development.

Structural commentary  

Compound (I), illustrated in Fig. 1, was produced as an inter­mediate in the synthesis of ethyl 4-nitro-1-(4-pentyn­yl)-1H-pyrrole-2-carboxyl­ate (II). Its mol­ecular structure is essentially planar with both the nitro and the ester functionalities coplanar with the pyrrole ring; torsion angles O1—N1—C2—C1 and N2—C4—C5—O3 are −1.5 (4) and 4.4 (4)°, respectively.graphic file with name e-73-00254-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (I), with the atom labelling and 50% probability displacement ellipsoids.

Compound (II), illustrated in Fig. 2, is an alkyne-functionalized derivative of (I) which allows for late stage diversification, and introduction of biological probe moieties, such as biotin, through application of robust click-chemistry methods. As with (I), the nitro and ester groups are approximately coplanar with the plane of the pyrrole ring. Here torsion angles O4—N2—C3—C2 and N1—C1—C5—O1 are 178.43 (14) and −8.1 (2)°, respectively. However, the overall planarity of the mol­ecule is broken by the pentynyl function, with torsion angle C1—N1—C8—C9 being 86.21 (17)°.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), with the atom labelling and 50% probability displacement ellipsoids.

The mol­ecular structure of compound (III) is shown in Fig. 3. It has the same 4-nitro pyrrole core as compounds (I) and (II) but has an amide substituent rather than an ester, and the pyrrole N atom now bears an iso-pentyl fragment. The introduction of the basic tail group, in this case the di­methyl­amino­propyl moiety, is a crucial feature for biological activity in these MGBs. The nitro group is again coplanar with the pyrrole ring, with torsion angle O2—N2—C2—C1 = 179.34 (15)°, but both the other substituents lie out of the plane of the pyrrole ring.

Figure 3.

Figure 3

The mol­ecular structure of compound (III), with the atom labelling and 50% probability displacement ellipsoids.

The final structure reported, compound (IV), is illustrated in Fig. 4. It is another example of a compound containing a moiety that can be functionalized with click chemistry, this time an azide. Here, there are two pyrrole rings present, one of which is a 4-nitro pyrrole as found in compounds (I), (II) and (III). As with the previous structures, the nitro group is essentially coplanar with the pyrrole ring [torsion angle O4—N6—C15—C14 = −2.8 (3)°] and this coplanarity extends to the second pyrrole ring and through both amide groups [torsion angles O3—C12—C13—N5, C12—N4—C10—C11 and O2—C7—C8—N3 are 3.1 (3), 5.5 (3) and −2.9 (3)°, respectively]. The amide O atoms and the pyrrole N atoms are all mutually syn with respect to the mol­ecular axis running through them.

Figure 4.

Figure 4

The mol­ecular structure of compound (IV), with the atom labelling and 50% probability displacement ellipsoids.

Supra­molecular features  

In the crystal of (I), a primary hydrogen-bonding inter­action is formed, as would be expected, between the N—H donor and the carbonyl acceptor. This gives a centrosymmetric Inline graphic(10) motif. A weaker secondary centrosymmetric Inline graphic(10) hydrogen-bonding motif is also present; see Fig. 5 and Table 1. This is formed by a pyrrole C—H donor and an O atom of the nitro group. Both hydrogen-bonded ring motifs are approximately coplanar with mol­ecular (I) and thus a two-dimensional supra­molecular structure results with layers of mol­ecules parallel to plane (10Inline graphic). Inter­actions between the layers are both through dipole-to-dipole contacts [nitro-to-carbonyl N⋯C distance = 3.174 (4) Å] and through π–π contacts [closest C-to-C distance, C1⋯C4, is 3.304 (4) Å]. The layered structure of (I) seems to be reflected in its crystal morphology. The samples were stacked thin plates. An approximately single sample was obtained by cutting – but some degree of non-single nature is reflected in the slightly high R factors and the higher than expected residual electron density.

Figure 5.

Figure 5

The crystal packing of compound (I), viewed along the c axis. The inter­molecular interactions (See Table 1) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O3i 0.90 (4) 2.00 (5) 2.872 (3) 163 (4)
C1—H1⋯O1ii 0.95 2.34 3.203 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In the crystal of (II), as no strong hydrogen-bond donor is present, the supra­molecular contacts are limited to non-classical C—H⋯O hydrogen bonds (Table 2 and Fig. 6), which combine to give layers parallel to the bc plane, and π–π contacts [C5⋯C4i = 3.319 (2) Å; symmetry code: (i) 2 − x, −y, 1 − z] that link the layers. In contrast to (I) there are no dipole–dipole-type contacts involving the nitro group and, perhaps surprisingly, the carbonyl group is not involved in the inter­molecular hydrogen bonding. There is a short intra­molecular contact [O1⋯C8 = 2.925 (2), O1⋯H8A = 2.41 Å] which may disfavour inter­molecular bonding here.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.95 2.53 3.323 (2) 141
C10—H10B⋯O3ii 0.99 2.51 3.337 (2) 141
C12—H12⋯O4iii 0.95 2.40 3.262 (2) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 6.

Figure 6

The crystal packing of compound (II), viewed along the a axis. The inter­molecular interactions (See Table 2) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

In the crystal of (III), the amide N—H group can be described as acting as a bifurcated donor giving two hydrogen bonds (Table 3 and Fig. 7), forming a short contact with the amide C=O group and a much longer contact to an O atom of a nitro group. These combine to give an Inline graphic(16) motif, shown in Fig. 7. The carbonyl group also makes an intra­molecular C—H-to-O contact similar to that found in the structure of (II) [O3⋯C5 = 2.970 (2), O3⋯H5A = 2.40 Å; see Table 4]; however, here, with a strong N—H hydrogen-bond donor available, this is not enough to prevent O3 taking part in other contacts. The structure of (III), composed of hydrogen-bonded layers parallel to the bc plane, features no short π–π or dipole–dipole contacts.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯O3i 0.91 (1) 2.01 (1) 2.895 (2) 165 (2)
C5—H5A⋯O2ii 0.99 2.54 3.460 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 7.

Figure 7

The crystal packing of compound (III), viewed along the a axis. The inter­molecular interactions (See Table 3) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

Table 4. Hydrogen-bond geometry (Å, °) for (IV) .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O5i 0.83 (2) 2.36 (2) 3.176 (2) 171 (2)
N4—H2N⋯O2ii 0.88 (2) 2.02 (2) 2.864 (2) 162 (2)
C2—H2A⋯O4iii 0.99 2.53 3.498 (3) 165
C6—H6B⋯O3iv 0.99 2.58 3.354 (3) 135
C9—H9⋯O5i 0.95 2.43 3.322 (2) 156
C14—H14⋯O2ii 0.95 2.46 3.317 (3) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

In the crystal of (IV), there are two classical N—H⋯O hydrogen bonds (Table 4 and Fig. 8) that involve both of the amide N—H groups, but surprisingly only one of the potential amide C=O acceptors. The other acceptor O atom is O5 of the nitro group. These hydrogen bonds combine to give layers parallel to the bc plane. As with (II), the reason for the second amide carbonyl group not acting as a classical hydrogen-bond acceptor may lie with a short intra­molecular contact [O3⋯C11 = 2.765 (3) Å, O3⋯H11 = 2.27 Å; see Table 4]. The remaining shortest inter­molecular contact involves the terminal N atom of the N3 group. This forms a short contact with the methyl carbon C17 [N9⋯C17ii 2.968 (3) Å; symmetry code: (ii) = −x + 1, −y, −z + 1) and these contacts form the primary bridges between the layers described above.

Figure 8.

Figure 8

The crystal packing of compound (IV), viewed along the a axis. The inter­molecular interactions (See Table 4) are shown as dashed lines. For clarity, only the H atoms involved in these inter­actions have been included.

Database survey  

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016) yielded zero hits for 4-nitro­pyrrole-2-carboxyl­ates and only 12 hits for 4-nitro­pyrrole-2-carboxamides. One of the latter, viz. dimeth­yl{3-[1-methyl-4-(1-methyl-4-nitro­pyrrole-2-carboxamido)­pyrrole-2-carboxamido]­prop­yl}ammonium chloride methanol solvate (RACBAZ; Lu et al., 2003), has a (4-nitro­pyrrole-2-carboxamido)­pyrrole-2-carboxamide unit present, as in compound (IV). Here, the conformation of this unit is slightly more planar than that for compound (IV). For example, the two pyrrole rings are inclined to one another by 3.7 (2)° compared to 9.3 (1)° in compound (IV).

Synthesis and crystallization  

Ethyl 4-nitro-1 H -pyrrole-2-carboxyl­ate (I). 4-Nitro-1H-pyrrole-2-carb­oxy­lic acid was dissolved in thionyl chloride (10 mL) and heated under reflux for 2 h. Excess thionyl chloride was removed under reduced pressure and the acid chloride so formed was dissolved in di­chloro­methane (25 mL, dry) to which ethanol (10 mL) and TEA (2 mL) were added. The stirring was continued at room temperature overnight. Solvent and excess reagents were removed under reduced pressure and the residue was partitioned between brine (50 mL) and ethyl acetate (100 mL). After the extraction, the water layer was extracted again with ethyl acetate (2 × 100 mL). The combined organic extracts were dried (Na2SO4), filtered and the solvent removed under reduced pressure. The crude product obtained was applied to a silica gel column and eluted with 1/2 ethyl acetate/n-hexane. The required product was obtained as a brown solid (1.070 g, 93%), m.p. 445–447 K [reference m.p. 447–448 K, Lee et al., 1988]. IR: 750, 775, 808, 841, 961, 1017, 1086, 1119, 1148, 1204, 1263, 1316, 1364, 1383, 1420, 14670, 1503, 1566, 1684, 3264 cm−1. 1H NMR (DMSO-d 6): 9.81(1H, br), 7.77(1H, dd, J = 3.5 Hz & J = 1.6 Hz), 7.41(1H, dd, J = 2.6 Hz & J = 1.8 Hz), 4.41(2H, qt, J = 7.1 Hz), 1.4(3H, q, J = 7.1 Hz). HRESIMS: found 185.0555; calculated 185.0557.

Ethyl 4-nitro-1-(4-pentyn­yl)-1 H -pyrrole-2-carboxyl­ate (II). Ethyl 4-nitro-1H-pyrrole-2-carboxyl­ate (0.230 g, 1.25 mmol) was dissolved in acetone (25 mL) to which sodium carbonate (0.395 g, 3.73 mmol), tetra­butyl­ammonium iodide (0.462 g, 1.25 mmol), and propyl bromide solution 80 weight % in toluene (1.50 mL) were added. The reaction mixture was heated under reflux for 6 h after which time it was left stirring at room temperature overnight. Water and ethyl acetate were added to the reaction mixture. After extraction, the organic layers were collected, dried (Na2SO4), filtered and the solvent removed under reduced pressure. The crude product was applied to a silica gel column and eluted with (1/4 ethyl acetate/n-hexane, R F = 0.35). The required product was obtained as a white solid (0.270 g, 83%), m.p. 335–337 K [It was obtained as a colourless oil by Satam et al., 2014]. IR: 754, 808, 864, 1018, 1084, 1107, 1165, 1188, 1250, 1285, 1312, 1364, 1383, 1422, 1497, 1533, 1717 cm−1. 1H NMR (CDCl3): 7.70 (1H, d, J = 2.0 Hz), 7.46 (1H, d, J = 2.0 Hz), 4.53 (2H, t, J = 6.8 Hz), 4.35 (2H, q, J = 7.2 Hz), 2.24 (2H, dt, J = 6.7 Hz & J = 2.7 Hz), 2.09 (1H, t, J = 2.7 Hz), 2.07 (2H, qt, J = 6.7 Hz), 1.40 (3H, t, J = 7.1 Hz). HRESIMS: found 251.1010; calculated 251.1026.

N -[3-(Di­methyl­amino)­prop­yl]-1-isopentyl-4-nitro-1 H -pyrrole-2-carboxamide (III). Following Khalaf et al., 2004, 4-nitro-N-isopropyl-pyrrole-2-carb­oxy­lic acid (0.315g, 1.39 mmol) was dissolved in thionyl chloride (5 mL) and heated at reflux for 4 h. The excess thionyl chloride was removed under reduced pressure at 323 K to give the acid chloride as a white solid that was used without further purification. 3-(Di­methyl­amino)­propyl­amine (0.25 mL, 2.47 mmol) was dissolved in THF (20 mL, dry) to which N-methyl­morpholine (0.25 mL) was added at room temperature with stirring. The acid chloride was dissolved in THF (5 mL, dry) and added dropwise to the amine solution at room temperature with stirring. The reaction mixture was then left stirring at room temperature overnight. Following this, the solvent was removed under reduced pressure at 323 K and then the crude product was extracted with aqueous potassium carbonate solution (25 mL, 10% w/v) and di­chloro­methane (2 × 50 mL). The organic layer was collected, dried (Na2SO4), and filtered, and the solvent was removed under reduced pressure. The crude product was purified by chromatography over silica gel using 100:100:1 methanol/ethyl acetate/tri­ethyl­amine to give the required product as a pale-yellow solid (410 mg, 95%), m.p. 345–346 K. IR (KBr): 1656, 1637, 1565, 1534, 1498, 1417, 1333 cm−1. 1H NMR (CDCl3): 0.95 (6H, d, J = 6.5 Hz), 1.57–1.76 (5H, m), 2.32 (6H, s), 2.51 (2H, t, J = 10.3 Hz), 3.47–3.51 (2H, quintet, J = 4.8 Hz), 4.40–4.44 (2H, q, J = 7.5 Hz), 6.92 (1H, d, J = 1.9 Hz), 7.56 (1H, d, J = 1.9 Hz), 8.61 (1H, s, br, CONH). HRESIMS: found 310.20031; calculated 310.20049.

1-(3-Azido­prop­yl)-4-(1-methyl-4-nitro-1 H -pyrrole-2-carboxamido)- N -[2-(morpholin-4-yl)eth­yl]-1 H -pyrrole-2-carboxamide (IV). 1-(3-chloro­prop­yl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-(2-morpholino­eth­yl)-1H-pyrrole-2-carboxamide (100 mg, 0.214 mmol) was dissolved in DMF (5 mL, anhydrous) to which was added sodium azide (41.7 mg, 0.642 mmol). This solution was heated at 333 K overnight with stirring and then the DMF was removed in vacuo. The resulting residue was dissolved in ethyl acetate (10 mL), washed with water (3 x 10 mL) and the organic layer was reduced in volume by rotary evaporation to approximately 1 mL and the product was obtained as a crystalline solid after several hours (81 mg, 80%). IR: 3357, 3294, 3140, 2954, 2857, 2805, 2097, 1617, 1496, 1303, 1115 cm−1. 1H NMR (DMSO): 10.26 (1H, s), 8.18 (1H, d, J = 1.6 Hz), 8.00 (1H, t, J = 5.6 Hz), 7.58 (1H, d, J = 1.6 Hz), 7.27 (1H, d, J = 1.6 Hz), 6.85 (1H, d, J = 1.6 Hz), 4.34 (2H, t, J = 6.4 Hz), 3.96 (3H, s), 3.58 (4H, t, J = 4.4 Hz), 3.25–3.30 (4H, m), 2.40–2.45 (6H, m), 1.93 (2H, pentet, J = 6.8Hz). HRESIMS: found 474.2202; calculated 474.2208.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The H atoms bound to N were located in difference Fourier maps and freely refined for (I) and (IV). In compound (III), the N—H distance was restrained to be 0.93 (1) Å. For all structures, C-bound H atoms were placed in the expected geometrical positions and treated as riding: C—H = 0.95–0.99 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 5. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C7H8N2O4 C12H14N2O4 C15H26N4O3 C20H27N9O5
M r 184.15 250.25 310.40 473.51
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 123 123 123 123
a, b, c (Å) 11.0318 (13), 10.4108 (13), 7.1659 (8) 7.8839 (4), 16.1443 (7), 10.2058 (5) 17.5744 (7), 11.3718 (6), 8.7299 (4) 11.2809 (4), 16.4528 (6), 12.5130 (5)
β (°) 96.734 (10) 104.472 (5) 92.076 (4) 106.542 (4)
V3) 817.32 (17) 1257.78 (10) 1743.55 (14) 2226.32 (14)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.13 0.10 0.08 0.11
Crystal size (mm) 0.35 × 0.25 × 0.02 0.38 × 0.14 × 0.06 0.40 × 0.30 × 0.04 0.30 × 0.28 × 0.03
 
Data collection
Diffractometer Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E Oxford Diffraction Xcalibur E
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010)
T min, T max 0.679, 1.000 0.918, 1.000 0.995, 1.000 0.828, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4995, 1604, 1240 6098, 2745, 2133 8252, 3971, 2873 14949, 4852, 3295
R int 0.038 0.025 0.030 0.038
(sin θ/λ)max−1) 0.617 0.639 0.650 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.073, 0.210, 1.17 0.041, 0.100, 1.03 0.053, 0.145, 1.03 0.049, 0.128, 1.03
No. of reflections 1604 2745 3971 4852
No. of parameters 123 164 206 316
No. of restraints 0 0 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.73, −0.30 0.22, −0.24 0.33, −0.27 0.29, −0.32

Computer programs: CrysAlis PRO (Agilent, 2014), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S2056989017001177/su5346sup1.cif

e-73-00254-sup1.cif (90.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017001177/su5346Isup2.hkl

e-73-00254-Isup2.hkl (77.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017001177/su5346IIsup3.hkl

e-73-00254-IIsup3.hkl (132KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989017001177/su5346IIIsup4.hkl

e-73-00254-IIIsup4.hkl (190.7KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989017001177/su5346IVsup5.hkl

e-73-00254-IVsup5.hkl (232.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017001177/su5346Isup6.cml

Supporting information file. DOI: 10.1107/S2056989017001177/su5346IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989017001177/su5346IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989017001177/su5346IVsup9.cml

CCDC references: 1529248, 1529247, 1529246, 1529245

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to thank Patricia Keating, Gavin Bain and Craig Irving for their assistance in carrying out this work.

supplementary crystallographic information

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Crystal data

C7H8N2O4 F(000) = 384
Mr = 184.15 Dx = 1.497 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.0318 (13) Å Cell parameters from 1975 reflections
b = 10.4108 (13) Å θ = 3.2–28.3°
c = 7.1659 (8) Å µ = 0.13 mm1
β = 96.734 (10)° T = 123 K
V = 817.32 (17) Å3 Plate, colourless
Z = 4 0.35 × 0.25 × 0.02 mm

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Data collection

Oxford Diffraction Xcalibur E diffractometer 1604 independent reflections
Radiation source: fine-focus sealed tube 1240 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scans θmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −13→13
Tmin = 0.679, Tmax = 1.000 k = −11→12
4995 measured reflections l = −8→8

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210 H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.1052P)2 + 0.5276P] where P = (Fo2 + 2Fc2)/3
1604 reflections (Δ/σ)max = 0.001
123 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.30 e Å3

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6535 (2) 0.5757 (2) 0.6758 (3) 0.0334 (7)
O2 0.8216 (2) 0.5067 (2) 0.8325 (3) 0.0321 (6)
O3 0.6242 (2) −0.0697 (2) 0.6309 (3) 0.0284 (6)
O4 0.79942 (18) −0.0218 (2) 0.8128 (3) 0.0225 (6)
N1 0.7216 (2) 0.4878 (3) 0.7390 (3) 0.0254 (7)
N2 0.5700 (2) 0.1948 (3) 0.6026 (3) 0.0211 (6)
C1 0.5726 (3) 0.3226 (3) 0.6068 (4) 0.0203 (7)
H1 0.5102 0.3788 0.5530 0.024*
C2 0.6831 (3) 0.3584 (3) 0.7041 (4) 0.0189 (7)
C3 0.7498 (3) 0.2472 (3) 0.7609 (4) 0.0181 (7)
H3 0.8287 0.2428 0.8300 0.022*
C4 0.6769 (2) 0.1465 (3) 0.6954 (4) 0.0179 (7)
C5 0.6964 (3) 0.0084 (3) 0.7088 (4) 0.0192 (7)
C6 0.8251 (3) −0.1596 (3) 0.8261 (5) 0.0290 (8)
H6A 0.8214 −0.1978 0.6991 0.035*
H6B 0.7645 −0.2034 0.8954 0.035*
C7 0.9511 (3) −0.1739 (4) 0.9291 (5) 0.0325 (9)
H7A 1.0100 −0.1298 0.8592 0.049*
H7B 0.9720 −0.2653 0.9406 0.049*
H7C 0.9533 −0.1360 1.0546 0.049*
H1N 0.513 (4) 0.143 (4) 0.546 (6) 0.055 (13)*

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0340 (14) 0.0233 (14) 0.0415 (14) 0.0062 (10) −0.0014 (10) 0.0016 (10)
O2 0.0239 (12) 0.0294 (14) 0.0408 (13) −0.0063 (10) −0.0050 (10) −0.0058 (10)
O3 0.0227 (12) 0.0247 (13) 0.0359 (13) −0.0045 (10) −0.0039 (9) −0.0034 (10)
O4 0.0213 (11) 0.0189 (12) 0.0253 (11) 0.0015 (9) −0.0053 (8) 0.0002 (9)
N1 0.0263 (14) 0.0236 (15) 0.0270 (14) 0.0008 (12) 0.0057 (11) 0.0002 (11)
N2 0.0139 (12) 0.0293 (16) 0.0189 (12) −0.0021 (11) −0.0031 (9) −0.0010 (11)
C1 0.0167 (14) 0.0271 (18) 0.0164 (14) 0.0020 (13) −0.0010 (11) 0.0031 (12)
C2 0.0165 (14) 0.0216 (17) 0.0182 (14) 0.0004 (12) −0.0002 (11) −0.0002 (12)
C3 0.0134 (14) 0.0238 (17) 0.0166 (13) 0.0028 (11) −0.0007 (11) 0.0024 (11)
C4 0.0136 (13) 0.0249 (17) 0.0144 (13) 0.0017 (12) −0.0019 (10) 0.0029 (12)
C5 0.0181 (14) 0.0230 (17) 0.0165 (13) −0.0004 (13) 0.0015 (11) 0.0020 (12)
C6 0.0251 (17) 0.0252 (18) 0.0348 (18) 0.0019 (14) −0.0047 (13) −0.0023 (14)
C7 0.0238 (17) 0.033 (2) 0.0397 (19) 0.0033 (15) −0.0013 (14) 0.0006 (15)

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Geometric parameters (Å, º)

O1—N1 1.236 (3) C2—C3 1.406 (4)
O2—N1 1.237 (3) C3—C4 1.371 (4)
O3—C5 1.225 (4) C3—H3 0.9500
O4—C5 1.322 (3) C4—C5 1.455 (4)
O4—C6 1.464 (4) C6—C7 1.502 (4)
N1—C2 1.426 (4) C6—H6A 0.9900
N2—C1 1.331 (5) C6—H6B 0.9900
N2—C4 1.380 (4) C7—H7A 0.9800
N2—H1N 0.90 (4) C7—H7B 0.9800
C1—C2 1.383 (4) C7—H7C 0.9800
C1—H1 0.9500
C5—O4—C6 114.6 (2) C3—C4—C5 131.1 (3)
O1—N1—O2 123.1 (3) N2—C4—C5 120.3 (3)
O1—N1—C2 118.7 (3) O3—C5—O4 124.7 (3)
O2—N1—C2 118.2 (3) O3—C5—C4 122.8 (3)
C1—N2—C4 109.8 (2) O4—C5—C4 112.5 (2)
C1—N2—H1N 129 (3) O4—C6—C7 106.9 (3)
C4—N2—H1N 121 (3) O4—C6—H6A 110.3
N2—C1—C2 107.2 (3) C7—C6—H6A 110.3
N2—C1—H1 126.4 O4—C6—H6B 110.3
C2—C1—H1 126.4 C7—C6—H6B 110.3
C1—C2—C3 109.0 (3) H6A—C6—H6B 108.6
C1—C2—N1 124.7 (3) C6—C7—H7A 109.5
C3—C2—N1 126.3 (3) C6—C7—H7B 109.5
C4—C3—C2 105.3 (3) H7A—C7—H7B 109.5
C4—C3—H3 127.3 C6—C7—H7C 109.5
C2—C3—H3 127.3 H7A—C7—H7C 109.5
C3—C4—N2 108.7 (3) H7B—C7—H7C 109.5
C4—N2—C1—C2 0.0 (3) C2—C3—C4—C5 179.4 (3)
N2—C1—C2—C3 0.0 (3) C1—N2—C4—C3 0.0 (3)
N2—C1—C2—N1 179.8 (3) C1—N2—C4—C5 −179.5 (2)
O1—N1—C2—C1 −1.5 (4) C6—O4—C5—O3 1.7 (4)
O2—N1—C2—C1 178.1 (3) C6—O4—C5—C4 −178.3 (2)
O1—N1—C2—C3 178.3 (3) C3—C4—C5—O3 −175.0 (3)
O2—N1—C2—C3 −2.1 (4) N2—C4—C5—O3 4.4 (4)
C1—C2—C3—C4 0.1 (3) C3—C4—C5—O4 4.9 (4)
N1—C2—C3—C4 −179.8 (3) N2—C4—C5—O4 −175.7 (2)
C2—C3—C4—N2 −0.1 (3) C5—O4—C6—C7 173.4 (3)

(I) Ethyl 4-nitro-1H-pyrrole-2-carboxylate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N···O3i 0.90 (4) 2.00 (5) 2.872 (3) 163 (4)
C1—H1···O1ii 0.95 2.34 3.203 (4) 151

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1.

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Crystal data

C12H14N2O4 F(000) = 528
Mr = 250.25 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2521 reflections
a = 7.8839 (4) Å θ = 3.2–29.3°
b = 16.1443 (7) Å µ = 0.10 mm1
c = 10.2058 (5) Å T = 123 K
β = 104.472 (5)° Rod, colourless
V = 1257.78 (10) Å3 0.38 × 0.14 × 0.06 mm
Z = 4

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Data collection

Oxford Diffraction Xcalibur E diffractometer 2745 independent reflections
Radiation source: fine-focus sealed tube 2133 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
ω scans θmax = 27.0°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −10→9
Tmin = 0.918, Tmax = 1.000 k = −20→17
6098 measured reflections l = −13→12

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.3332P] where P = (Fo2 + 2Fc2)/3
2745 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.24 e Å3

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.67236 (15) −0.08852 (7) 0.29527 (11) 0.0320 (3)
O2 0.66323 (13) −0.10194 (6) 0.51291 (11) 0.0242 (3)
O3 0.8949 (2) 0.18072 (8) 0.77978 (13) 0.0489 (4)
O4 1.00887 (15) 0.25558 (7) 0.64857 (12) 0.0325 (3)
N1 0.84828 (15) 0.07104 (8) 0.37170 (12) 0.0192 (3)
N2 0.93141 (17) 0.19300 (8) 0.67172 (14) 0.0261 (3)
C1 0.77664 (17) 0.01969 (9) 0.45352 (15) 0.0190 (3)
C2 0.79676 (18) 0.05720 (9) 0.57710 (15) 0.0204 (3)
H2 0.7608 0.0365 0.6530 0.024*
C3 0.88142 (18) 0.13247 (9) 0.56798 (15) 0.0203 (3)
C4 0.91140 (18) 0.13959 (9) 0.44135 (15) 0.0201 (3)
H4 0.9667 0.1848 0.4091 0.024*
C5 0.69928 (18) −0.06124 (9) 0.40866 (15) 0.0210 (3)
C6 0.5915 (2) −0.18454 (9) 0.48267 (17) 0.0276 (4)
H6A 0.6748 −0.2201 0.4501 0.033*
H6B 0.4800 −0.1822 0.4117 0.033*
C7 0.5610 (2) −0.21857 (11) 0.61188 (19) 0.0391 (5)
H7A 0.6723 −0.2205 0.6811 0.059*
H7B 0.5123 −0.2746 0.5959 0.059*
H7C 0.4785 −0.1828 0.6430 0.059*
C8 0.86099 (19) 0.05609 (10) 0.23232 (15) 0.0222 (3)
H8A 0.8812 −0.0037 0.2205 0.027*
H8B 0.9626 0.0869 0.2164 0.027*
C9 0.69648 (19) 0.08289 (10) 0.12910 (15) 0.0237 (3)
H9A 0.6743 0.1423 0.1423 0.028*
H9B 0.5953 0.0509 0.1431 0.028*
C10 0.7135 (2) 0.06919 (10) −0.01578 (16) 0.0285 (4)
H10A 0.6022 0.0852 −0.0801 0.034*
H10B 0.8069 0.1057 −0.0323 0.034*
C11 0.75444 (19) −0.01676 (11) −0.04200 (16) 0.0285 (4)
C12 0.7889 (2) −0.08626 (12) −0.0585 (2) 0.0377 (4)
H12 0.8167 −0.1424 −0.0718 0.045*

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0447 (7) 0.0269 (6) 0.0227 (6) −0.0082 (5) 0.0050 (5) −0.0042 (5)
O2 0.0289 (5) 0.0186 (5) 0.0261 (6) −0.0061 (4) 0.0089 (5) −0.0016 (5)
O3 0.0915 (11) 0.0352 (8) 0.0284 (7) −0.0224 (7) 0.0306 (7) −0.0113 (6)
O4 0.0432 (7) 0.0192 (6) 0.0359 (7) −0.0106 (5) 0.0112 (5) −0.0032 (5)
N1 0.0202 (6) 0.0199 (6) 0.0171 (7) 0.0005 (5) 0.0038 (5) 0.0017 (5)
N2 0.0341 (7) 0.0188 (7) 0.0256 (8) −0.0030 (6) 0.0078 (6) −0.0017 (6)
C1 0.0194 (7) 0.0173 (7) 0.0197 (8) 0.0006 (6) 0.0037 (6) 0.0021 (6)
C2 0.0224 (7) 0.0180 (7) 0.0212 (8) 0.0011 (6) 0.0064 (6) 0.0017 (6)
C3 0.0215 (7) 0.0177 (7) 0.0208 (8) 0.0011 (6) 0.0033 (6) 0.0007 (6)
C4 0.0195 (7) 0.0162 (7) 0.0237 (8) −0.0013 (6) 0.0040 (6) 0.0017 (6)
C5 0.0200 (7) 0.0201 (8) 0.0223 (8) 0.0023 (6) 0.0040 (6) 0.0006 (6)
C6 0.0293 (8) 0.0173 (8) 0.0356 (10) −0.0048 (6) 0.0072 (7) −0.0019 (7)
C7 0.0462 (10) 0.0295 (10) 0.0397 (11) −0.0126 (8) 0.0073 (8) 0.0070 (8)
C8 0.0244 (7) 0.0247 (8) 0.0184 (8) 0.0011 (6) 0.0069 (6) −0.0003 (6)
C9 0.0266 (7) 0.0234 (8) 0.0200 (8) 0.0036 (6) 0.0036 (6) 0.0004 (6)
C10 0.0357 (9) 0.0288 (9) 0.0192 (8) 0.0015 (7) 0.0035 (7) 0.0010 (7)
C11 0.0243 (8) 0.0374 (10) 0.0238 (9) −0.0022 (7) 0.0058 (6) −0.0050 (7)
C12 0.0326 (9) 0.0337 (10) 0.0506 (12) −0.0030 (8) 0.0173 (8) −0.0146 (9)

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Geometric parameters (Å, º)

O1—C5 1.2064 (18) C6—H6A 0.9900
O2—C5 1.3399 (18) C6—H6B 0.9900
O2—C6 1.4512 (18) C7—H7A 0.9800
O3—N2 1.2235 (17) C7—H7B 0.9800
O4—N2 1.2336 (16) C7—H7C 0.9800
N1—C4 1.3420 (19) C8—C9 1.515 (2)
N1—C1 1.3926 (18) C8—H8A 0.9900
N1—C8 1.4707 (18) C8—H8B 0.9900
N2—C3 1.4221 (19) C9—C10 1.534 (2)
C1—C2 1.372 (2) C9—H9A 0.9900
C1—C5 1.466 (2) C9—H9B 0.9900
C2—C3 1.401 (2) C10—C11 1.464 (2)
C2—H2 0.9500 C10—H10A 0.9900
C3—C4 1.376 (2) C10—H10B 0.9900
C4—H4 0.9500 C11—C12 1.177 (2)
C6—C7 1.502 (2) C12—H12 0.9500
C5—O2—C6 115.49 (12) H6A—C6—H6B 108.6
C4—N1—C1 109.00 (12) C6—C7—H7A 109.5
C4—N1—C8 122.81 (12) C6—C7—H7B 109.5
C1—N1—C8 128.18 (12) H7A—C7—H7B 109.5
O3—N2—O4 122.99 (13) C6—C7—H7C 109.5
O3—N2—C3 118.42 (13) H7A—C7—H7C 109.5
O4—N2—C3 118.59 (13) H7B—C7—H7C 109.5
C2—C1—N1 108.50 (13) N1—C8—C9 111.85 (11)
C2—C1—C5 128.60 (13) N1—C8—H8A 109.2
N1—C1—C5 122.87 (13) C9—C8—H8A 109.2
C1—C2—C3 105.63 (13) N1—C8—H8B 109.2
C1—C2—H2 127.2 C9—C8—H8B 109.2
C3—C2—H2 127.2 H8A—C8—H8B 107.9
C4—C3—C2 109.36 (13) C8—C9—C10 111.30 (12)
C4—C3—N2 124.15 (13) C8—C9—H9A 109.4
C2—C3—N2 126.49 (14) C10—C9—H9A 109.4
N1—C4—C3 107.50 (12) C8—C9—H9B 109.4
N1—C4—H4 126.2 C10—C9—H9B 109.4
C3—C4—H4 126.2 H9A—C9—H9B 108.0
O1—C5—O2 124.15 (14) C11—C10—C9 112.91 (13)
O1—C5—C1 125.78 (14) C11—C10—H10A 109.0
O2—C5—C1 110.08 (13) C9—C10—H10A 109.0
O2—C6—C7 106.78 (13) C11—C10—H10B 109.0
O2—C6—H6A 110.4 C9—C10—H10B 109.0
C7—C6—H6A 110.4 H10A—C10—H10B 107.8
O2—C6—H6B 110.4 C12—C11—C10 177.77 (19)
C7—C6—H6B 110.4 C11—C12—H12 180.0
C4—N1—C1—C2 −0.32 (16) C2—C3—C4—N1 −0.11 (16)
C8—N1—C1—C2 178.42 (13) N2—C3—C4—N1 179.47 (13)
C4—N1—C1—C5 −178.80 (13) C6—O2—C5—O1 1.6 (2)
C8—N1—C1—C5 −0.1 (2) C6—O2—C5—C1 −177.89 (11)
N1—C1—C2—C3 0.25 (15) C2—C1—C5—O1 173.80 (15)
C5—C1—C2—C3 178.61 (14) N1—C1—C5—O1 −8.1 (2)
C1—C2—C3—C4 −0.09 (16) C2—C1—C5—O2 −6.8 (2)
C1—C2—C3—N2 −179.65 (14) N1—C1—C5—O2 171.39 (12)
O3—N2—C3—C4 178.63 (15) C5—O2—C6—C7 −179.97 (13)
O4—N2—C3—C4 −1.1 (2) C4—N1—C8—C9 −95.21 (16)
O3—N2—C3—C2 −1.9 (2) C1—N1—C8—C9 86.21 (17)
O4—N2—C3—C2 178.43 (14) N1—C8—C9—C10 178.43 (12)
C1—N1—C4—C3 0.26 (16) C8—C9—C10—C11 56.43 (18)
C8—N1—C4—C3 −178.56 (12) C9—C10—C11—C12 −16 (4)

(II) Ethyl 4-nitro-1-(4-pentynyl)-1H-pyrrole-2-carboxylate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O3i 0.95 2.53 3.323 (2) 141
C10—H10B···O3ii 0.99 2.51 3.337 (2) 141
C12—H12···O4iii 0.95 2.40 3.262 (2) 151

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y, z−1; (iii) −x+2, y−1/2, −z+1/2.

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Crystal data

C15H26N4O3 F(000) = 672
Mr = 310.40 Dx = 1.182 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2708 reflections
a = 17.5744 (7) Å θ = 3.2–28.8°
b = 11.3718 (6) Å µ = 0.08 mm1
c = 8.7299 (4) Å T = 123 K
β = 92.076 (4)° Plate, colourless
V = 1743.55 (14) Å3 0.40 × 0.30 × 0.04 mm
Z = 4

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Data collection

Oxford Diffraction Xcalibur E diffractometer 3971 independent reflections
Radiation source: fine-focus sealed tube 2873 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω scans θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −22→22
Tmin = 0.995, Tmax = 1.000 k = −13→14
8252 measured reflections l = −11→10

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.6893P] where P = (Fo2 + 2Fc2)/3
3971 reflections (Δ/σ)max < 0.001
206 parameters Δρmax = 0.33 e Å3
1 restraint Δρmin = −0.27 e Å3

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43676 (7) 1.01567 (12) 0.38580 (15) 0.0292 (3)
O2 0.43689 (8) 0.82473 (12) 0.37406 (17) 0.0343 (4)
O3 0.67675 (7) 0.84955 (11) −0.16325 (14) 0.0257 (3)
N1 0.60351 (8) 0.99423 (12) 0.07012 (16) 0.0183 (3)
N2 0.46097 (8) 0.92217 (13) 0.33535 (17) 0.0226 (3)
N3 0.67714 (8) 0.70166 (13) 0.01195 (17) 0.0200 (3)
H1N 0.6676 (11) 0.6851 (17) 0.1111 (12) 0.024*
N4 0.91585 (10) 0.56415 (18) 0.0944 (2) 0.0422 (5)
C1 0.55171 (9) 1.02695 (15) 0.1723 (2) 0.0195 (4)
H1 0.5396 1.1052 0.2008 0.023*
C2 0.51972 (9) 0.92543 (15) 0.22736 (19) 0.0187 (4)
C3 0.55292 (9) 0.82769 (15) 0.15765 (19) 0.0191 (4)
H3 0.5412 0.7472 0.1738 0.023*
C4 0.60561 (9) 0.87244 (15) 0.06166 (19) 0.0174 (4)
C5 0.65546 (10) 1.07684 (15) −0.0027 (2) 0.0213 (4)
H5A 0.6340 1.1573 0.0008 0.026*
H5B 0.6606 1.0549 −0.1116 0.026*
C6 0.73347 (10) 1.07512 (17) 0.0790 (2) 0.0244 (4)
H6A 0.7536 0.9939 0.0775 0.029*
H6B 0.7276 1.0976 0.1875 0.029*
C7 0.79112 (11) 1.15716 (18) 0.0085 (2) 0.0308 (5)
H7 0.7960 1.1345 −0.1014 0.037*
C8 0.76633 (14) 1.2851 (2) 0.0139 (3) 0.0456 (6)
H8A 0.7200 1.2957 −0.0504 0.068*
H8B 0.8069 1.3352 −0.0242 0.068*
H8C 0.7562 1.3068 0.1198 0.068*
C9 0.86909 (13) 1.1411 (3) 0.0907 (3) 0.0517 (7)
H9A 0.9071 1.1890 0.0398 0.078*
H9B 0.8839 1.0581 0.0869 0.078*
H9C 0.8661 1.1659 0.1978 0.078*
C10 0.65675 (9) 0.80817 (15) −0.04016 (19) 0.0185 (4)
C11 0.71803 (10) 0.61821 (16) −0.0811 (2) 0.0233 (4)
H11A 0.7028 0.6309 −0.1901 0.028*
H11B 0.7023 0.5376 −0.0534 0.028*
C12 0.80398 (11) 0.62648 (19) −0.0639 (2) 0.0303 (5)
H12A 0.8268 0.5728 −0.1389 0.036*
H12B 0.8198 0.7076 −0.0891 0.036*
C13 0.83521 (11) 0.59597 (19) 0.0947 (2) 0.0318 (5)
H13A 0.8286 0.6642 0.1634 0.038*
H13B 0.8059 0.5294 0.1355 0.038*
C14 0.94033 (15) 0.5120 (3) 0.2399 (3) 0.0619 (8)
H14A 0.9326 0.5684 0.3228 0.093*
H14B 0.9944 0.4916 0.2373 0.093*
H14C 0.9105 0.4408 0.2578 0.093*
C15 0.96397 (14) 0.6629 (3) 0.0604 (4) 0.0631 (8)
H15A 0.9505 0.6927 −0.0424 0.095*
H15B 1.0174 0.6378 0.0645 0.095*
H15C 0.9567 0.7253 0.1359 0.095*

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0269 (7) 0.0263 (7) 0.0346 (8) 0.0097 (6) 0.0057 (6) −0.0033 (6)
O2 0.0338 (7) 0.0252 (8) 0.0452 (9) −0.0027 (6) 0.0168 (6) 0.0024 (6)
O3 0.0375 (7) 0.0232 (7) 0.0167 (6) −0.0023 (6) 0.0043 (5) 0.0010 (5)
N1 0.0191 (7) 0.0147 (7) 0.0207 (7) −0.0002 (6) −0.0014 (5) 0.0014 (6)
N2 0.0192 (7) 0.0228 (8) 0.0260 (8) 0.0025 (6) 0.0024 (6) 0.0007 (6)
N3 0.0244 (7) 0.0187 (7) 0.0173 (7) 0.0031 (6) 0.0043 (6) 0.0003 (6)
N4 0.0286 (9) 0.0492 (12) 0.0484 (12) −0.0016 (8) −0.0035 (8) 0.0092 (9)
C1 0.0184 (8) 0.0180 (9) 0.0219 (9) 0.0033 (7) −0.0015 (6) −0.0014 (7)
C2 0.0158 (7) 0.0198 (9) 0.0205 (8) 0.0023 (7) −0.0003 (6) 0.0008 (7)
C3 0.0183 (8) 0.0174 (9) 0.0213 (9) 0.0002 (7) −0.0013 (6) 0.0004 (7)
C4 0.0191 (8) 0.0158 (8) 0.0171 (8) −0.0001 (7) −0.0022 (6) 0.0004 (6)
C5 0.0265 (9) 0.0162 (8) 0.0211 (9) −0.0021 (7) 0.0011 (7) 0.0033 (7)
C6 0.0256 (9) 0.0240 (10) 0.0235 (9) −0.0056 (8) −0.0015 (7) 0.0044 (8)
C7 0.0317 (10) 0.0356 (11) 0.0253 (10) −0.0127 (9) 0.0031 (8) 0.0041 (9)
C8 0.0592 (15) 0.0333 (12) 0.0448 (14) −0.0203 (11) 0.0108 (11) 0.0026 (10)
C9 0.0332 (12) 0.0749 (19) 0.0469 (14) −0.0221 (12) −0.0010 (10) 0.0124 (13)
C10 0.0171 (8) 0.0205 (9) 0.0177 (8) −0.0029 (7) −0.0020 (6) −0.0020 (7)
C11 0.0260 (9) 0.0221 (9) 0.0219 (9) 0.0049 (7) 0.0019 (7) −0.0042 (7)
C12 0.0287 (10) 0.0318 (11) 0.0307 (11) 0.0028 (8) 0.0056 (8) −0.0027 (8)
C13 0.0281 (10) 0.0359 (11) 0.0314 (11) −0.0020 (9) 0.0011 (8) −0.0004 (9)
C14 0.0435 (14) 0.076 (2) 0.0645 (18) −0.0022 (14) −0.0170 (13) 0.0193 (15)
C15 0.0366 (13) 0.074 (2) 0.079 (2) −0.0156 (13) −0.0038 (13) 0.0177 (16)

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Geometric parameters (Å, º)

O1—N2 1.2325 (19) C6—H6B 0.9900
O2—N2 1.2375 (19) C7—C8 1.520 (3)
O3—C10 1.236 (2) C7—C9 1.535 (3)
N1—C1 1.350 (2) C7—H7 1.0000
N1—C4 1.388 (2) C8—H8A 0.9800
N1—C5 1.471 (2) C8—H8B 0.9800
N2—C2 1.424 (2) C8—H8C 0.9800
N3—C10 1.338 (2) C9—H9A 0.9800
N3—C11 1.456 (2) C9—H9B 0.9800
N3—H1N 0.908 (9) C9—H9C 0.9800
N4—C15 1.443 (3) C11—C12 1.515 (3)
N4—C14 1.453 (3) C11—H11A 0.9900
N4—C13 1.463 (3) C11—H11B 0.9900
C1—C2 1.378 (2) C12—C13 1.511 (3)
C1—H1 0.9500 C12—H12A 0.9900
C2—C3 1.404 (2) C12—H12B 0.9900
C3—C4 1.369 (2) C13—H13A 0.9900
C3—H3 0.9500 C13—H13B 0.9900
C4—C10 1.480 (2) C14—H14A 0.9800
C5—C6 1.523 (2) C14—H14B 0.9800
C5—H5A 0.9900 C14—H14C 0.9800
C5—H5B 0.9900 C15—H15A 0.9800
C6—C7 1.524 (2) C15—H15B 0.9800
C6—H6A 0.9900 C15—H15C 0.9800
C1—N1—C4 109.28 (14) H8A—C8—H8B 109.5
C1—N1—C5 123.63 (14) C7—C8—H8C 109.5
C4—N1—C5 126.63 (14) H8A—C8—H8C 109.5
O1—N2—O2 123.30 (15) H8B—C8—H8C 109.5
O1—N2—C2 118.82 (15) C7—C9—H9A 109.5
O2—N2—C2 117.88 (15) C7—C9—H9B 109.5
C10—N3—C11 122.14 (15) H9A—C9—H9B 109.5
C10—N3—H1N 117.1 (13) C7—C9—H9C 109.5
C11—N3—H1N 120.6 (13) H9A—C9—H9C 109.5
C15—N4—C14 109.9 (2) H9B—C9—H9C 109.5
C15—N4—C13 112.51 (19) O3—C10—N3 124.00 (16)
C14—N4—C13 110.86 (19) O3—C10—C4 122.17 (16)
N1—C1—C2 107.04 (15) N3—C10—C4 113.82 (15)
N1—C1—H1 126.5 N3—C11—C12 114.51 (15)
C2—C1—H1 126.5 N3—C11—H11A 108.6
C1—C2—C3 109.31 (15) C12—C11—H11A 108.6
C1—C2—N2 124.59 (15) N3—C11—H11B 108.6
C3—C2—N2 126.09 (15) C12—C11—H11B 108.6
C4—C3—C2 105.77 (15) H11A—C11—H11B 107.6
C4—C3—H3 127.1 C13—C12—C11 113.83 (16)
C2—C3—H3 127.1 C13—C12—H12A 108.8
C3—C4—N1 108.58 (15) C11—C12—H12A 108.8
C3—C4—C10 128.54 (16) C13—C12—H12B 108.8
N1—C4—C10 122.87 (15) C11—C12—H12B 108.8
N1—C5—C6 110.60 (14) H12A—C12—H12B 107.7
N1—C5—H5A 109.5 N4—C13—C12 112.04 (17)
C6—C5—H5A 109.5 N4—C13—H13A 109.2
N1—C5—H5B 109.5 C12—C13—H13A 109.2
C6—C5—H5B 109.5 N4—C13—H13B 109.2
H5A—C5—H5B 108.1 C12—C13—H13B 109.2
C5—C6—C7 113.79 (15) H13A—C13—H13B 107.9
C5—C6—H6A 108.8 N4—C14—H14A 109.5
C7—C6—H6A 108.8 N4—C14—H14B 109.5
C5—C6—H6B 108.8 H14A—C14—H14B 109.5
C7—C6—H6B 108.8 N4—C14—H14C 109.5
H6A—C6—H6B 107.7 H14A—C14—H14C 109.5
C8—C7—C6 112.21 (17) H14B—C14—H14C 109.5
C8—C7—C9 110.58 (19) N4—C15—H15A 109.5
C6—C7—C9 109.48 (17) N4—C15—H15B 109.5
C8—C7—H7 108.1 H15A—C15—H15B 109.5
C6—C7—H7 108.1 N4—C15—H15C 109.5
C9—C7—H7 108.1 H15A—C15—H15C 109.5
C7—C8—H8A 109.5 H15B—C15—H15C 109.5
C7—C8—H8B 109.5
C4—N1—C1—C2 −0.96 (18) C1—N1—C5—C6 98.60 (19)
C5—N1—C1—C2 −173.61 (14) C4—N1—C5—C6 −72.7 (2)
N1—C1—C2—C3 0.21 (18) N1—C5—C6—C7 179.02 (15)
N1—C1—C2—N2 −178.42 (15) C5—C6—C7—C8 61.5 (2)
O1—N2—C2—C1 −0.8 (2) C5—C6—C7—C9 −175.33 (18)
O2—N2—C2—C1 179.34 (15) C11—N3—C10—O3 −7.4 (3)
O1—N2—C2—C3 −179.22 (15) C11—N3—C10—C4 171.01 (14)
O2—N2—C2—C3 0.9 (3) C3—C4—C10—O3 148.08 (18)
C1—C2—C3—C4 0.63 (18) N1—C4—C10—O3 −30.3 (2)
N2—C2—C3—C4 179.23 (15) C3—C4—C10—N3 −30.4 (2)
C2—C3—C4—N1 −1.20 (18) N1—C4—C10—N3 151.23 (15)
C2—C3—C4—C10 −179.77 (15) C10—N3—C11—C12 90.8 (2)
C1—N1—C4—C3 1.39 (18) N3—C11—C12—C13 64.5 (2)
C5—N1—C4—C3 173.75 (15) C15—N4—C13—C12 68.4 (3)
C1—N1—C4—C10 −179.95 (14) C14—N4—C13—C12 −168.0 (2)
C5—N1—C4—C10 −7.6 (2) C11—C12—C13—N4 159.69 (17)

(III) N-[3-(Dimethylamino)propyl]-1-isopentyl-4-nitro-1H-pyrrole-2-carboxamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H1N···O3i 0.91 (1) 2.01 (1) 2.895 (2) 165 (2)
C5—H5A···O2ii 0.99 2.54 3.460 (2) 154

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, y+1/2, −z+1/2.

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Crystal data

C20H27N9O5 F(000) = 1000
Mr = 473.51 Dx = 1.413 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4332 reflections
a = 11.2809 (4) Å θ = 3.3–29.5°
b = 16.4528 (6) Å µ = 0.11 mm1
c = 12.5130 (5) Å T = 123 K
β = 106.542 (4)° Plate, colourless
V = 2226.32 (14) Å3 0.30 × 0.28 × 0.03 mm
Z = 4

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Data collection

Oxford Diffraction Xcalibur E diffractometer 4852 independent reflections
Radiation source: fine-focus sealed tube 3295 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
ω scans θmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) h = −14→14
Tmin = 0.828, Tmax = 1.000 k = −21→20
14949 measured reflections l = −15→15

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.8101P] where P = (Fo2 + 2Fc2)/3
4852 reflections (Δ/σ)max < 0.001
316 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.32 e Å3

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.41300 (15) 0.56045 (11) 1.22578 (13) 0.0398 (4)
O2 0.98973 (13) 0.34257 (9) 0.69343 (11) 0.0258 (3)
O3 0.74904 (13) −0.00393 (9) 0.86469 (11) 0.0283 (4)
O4 0.97289 (14) −0.07180 (11) 1.39704 (12) 0.0368 (4)
O5 0.86665 (15) −0.18352 (10) 1.36804 (12) 0.0340 (4)
N1 1.30194 (15) 0.45013 (11) 1.04738 (14) 0.0241 (4)
N2 1.09195 (16) 0.35509 (11) 0.87526 (14) 0.0246 (4)
N3 0.84913 (15) 0.20896 (10) 0.74083 (13) 0.0200 (4)
N4 0.88041 (15) 0.08236 (11) 0.98173 (14) 0.0198 (4)
N5 0.76427 (15) −0.11643 (11) 1.04131 (13) 0.0212 (4)
N6 0.90337 (16) −0.12010 (12) 1.33493 (14) 0.0261 (4)
N7 0.53925 (18) 0.24820 (15) 0.46339 (15) 0.0422 (6)
N8 0.49433 (18) 0.24723 (13) 0.36178 (16) 0.0379 (5)
N9 0.4479 (2) 0.24057 (16) 0.26908 (19) 0.0575 (7)
C1 1.2953 (2) 0.57601 (15) 1.14934 (18) 0.0345 (6)
H1A 1.2826 0.6354 1.1404 0.041*
H1B 1.2299 0.5537 1.1795 0.041*
C2 1.2846 (2) 0.53840 (13) 1.03754 (17) 0.0272 (5)
H2A 1.2020 0.5506 0.9861 0.033*
H2B 1.3476 0.5623 1.0058 0.033*
C3 1.42227 (19) 0.43408 (15) 1.12873 (18) 0.0312 (5)
H3A 1.4892 0.4540 1.0987 0.037*
H3B 1.4331 0.3747 1.1406 0.037*
C4 1.4324 (2) 0.47497 (16) 1.23829 (19) 0.0373 (6)
H4A 1.3704 0.4513 1.2716 0.045*
H4B 1.5154 0.4645 1.2899 0.045*
C5 1.30008 (19) 0.41485 (14) 0.93966 (17) 0.0271 (5)
H5A 1.3284 0.3577 0.9515 0.032*
H5B 1.3598 0.4447 0.9097 0.032*
C6 1.1751 (2) 0.41652 (14) 0.85378 (17) 0.0280 (5)
H6A 1.1376 0.4709 0.8539 0.034*
H6B 1.1860 0.4073 0.7789 0.034*
C7 1.00628 (18) 0.32014 (12) 0.79114 (15) 0.0194 (4)
C8 0.93886 (17) 0.25098 (12) 0.81991 (15) 0.0180 (4)
C9 0.96041 (17) 0.20919 (12) 0.91950 (15) 0.0187 (4)
H9 1.0175 0.2240 0.9885 0.022*
C10 0.88249 (17) 0.14092 (12) 0.90005 (15) 0.0178 (4)
C11 0.81442 (18) 0.14275 (13) 0.78955 (15) 0.0212 (4)
H11 0.7534 0.1042 0.7535 0.025*
C12 0.81419 (17) 0.01299 (13) 0.95888 (15) 0.0191 (4)
C13 0.82387 (17) −0.04175 (12) 1.05467 (16) 0.0196 (4)
C14 0.88497 (18) −0.03205 (13) 1.16576 (16) 0.0211 (4)
H14 0.9339 0.0131 1.1995 0.025*
C15 0.86064 (18) −0.10201 (13) 1.21902 (15) 0.0209 (4)
C16 0.78689 (18) −0.15307 (13) 1.14111 (16) 0.0226 (4)
H16 0.7573 −0.2049 1.1552 0.027*
C17 0.6959 (2) −0.15598 (14) 0.93648 (17) 0.0296 (5)
H17A 0.6654 −0.2090 0.9529 0.044*
H17B 0.7509 −0.1636 0.8892 0.044*
H17C 0.6258 −0.1218 0.8975 0.044*
C18 0.78428 (19) 0.23250 (13) 0.62593 (15) 0.0233 (5)
H18A 0.7383 0.1850 0.5861 0.028*
H18B 0.8458 0.2488 0.5872 0.028*
C19 0.69467 (19) 0.30212 (14) 0.62105 (16) 0.0266 (5)
H19A 0.6400 0.2886 0.6679 0.032*
H19B 0.7419 0.3515 0.6524 0.032*
C20 0.6165 (2) 0.31976 (15) 0.50420 (18) 0.0321 (5)
H20A 0.5637 0.3679 0.5039 0.039*
H20B 0.6699 0.3312 0.4555 0.039*
H1N 1.094 (2) 0.3458 (14) 0.9407 (19) 0.025 (6)*
H2N 0.922 (2) 0.0947 (15) 1.051 (2) 0.035 (7)*

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0397 (9) 0.0420 (11) 0.0339 (9) −0.0102 (9) 0.0042 (7) −0.0090 (8)
O2 0.0354 (8) 0.0221 (8) 0.0175 (7) −0.0041 (7) 0.0036 (6) 0.0044 (6)
O3 0.0364 (8) 0.0263 (8) 0.0184 (8) −0.0069 (7) 0.0017 (6) 0.0004 (6)
O4 0.0357 (9) 0.0497 (11) 0.0211 (8) −0.0107 (9) 0.0021 (7) 0.0016 (8)
O5 0.0510 (10) 0.0254 (9) 0.0273 (8) 0.0052 (8) 0.0139 (7) 0.0106 (7)
N1 0.0229 (8) 0.0221 (10) 0.0252 (9) −0.0034 (8) 0.0037 (7) 0.0000 (8)
N2 0.0331 (10) 0.0261 (10) 0.0145 (9) −0.0090 (9) 0.0067 (7) −0.0014 (8)
N3 0.0263 (9) 0.0180 (9) 0.0140 (8) −0.0012 (8) 0.0030 (7) 0.0003 (7)
N4 0.0260 (9) 0.0178 (9) 0.0146 (9) −0.0011 (8) 0.0045 (7) 0.0013 (7)
N5 0.0253 (8) 0.0180 (9) 0.0203 (9) −0.0001 (8) 0.0067 (7) 0.0005 (7)
N6 0.0280 (9) 0.0294 (11) 0.0215 (9) 0.0081 (9) 0.0081 (8) 0.0067 (8)
N7 0.0405 (11) 0.0530 (15) 0.0259 (11) −0.0132 (11) −0.0019 (9) 0.0015 (10)
N8 0.0345 (10) 0.0428 (13) 0.0322 (12) 0.0017 (10) 0.0028 (9) −0.0026 (10)
N9 0.0693 (16) 0.0580 (17) 0.0339 (13) 0.0029 (14) −0.0036 (12) −0.0083 (11)
C1 0.0374 (12) 0.0333 (14) 0.0329 (13) −0.0019 (12) 0.0098 (10) −0.0066 (10)
C2 0.0289 (11) 0.0217 (12) 0.0307 (12) −0.0011 (10) 0.0078 (9) −0.0010 (9)
C3 0.0237 (10) 0.0291 (13) 0.0367 (13) −0.0033 (10) 0.0018 (9) 0.0059 (10)
C4 0.0312 (12) 0.0444 (16) 0.0306 (13) −0.0089 (12) −0.0003 (10) 0.0073 (11)
C5 0.0280 (11) 0.0218 (11) 0.0320 (12) −0.0047 (10) 0.0095 (9) −0.0034 (9)
C6 0.0358 (12) 0.0243 (12) 0.0238 (11) −0.0107 (10) 0.0082 (9) −0.0011 (9)
C7 0.0233 (9) 0.0172 (10) 0.0182 (10) 0.0024 (9) 0.0069 (8) −0.0012 (8)
C8 0.0220 (9) 0.0154 (10) 0.0162 (9) 0.0020 (9) 0.0047 (7) −0.0035 (8)
C9 0.0209 (9) 0.0190 (10) 0.0161 (9) 0.0016 (9) 0.0053 (8) −0.0022 (8)
C10 0.0220 (9) 0.0160 (10) 0.0157 (9) 0.0022 (8) 0.0057 (8) 0.0013 (8)
C11 0.0256 (10) 0.0178 (11) 0.0192 (10) −0.0026 (9) 0.0048 (8) 0.0000 (8)
C12 0.0213 (9) 0.0188 (10) 0.0181 (10) 0.0023 (9) 0.0071 (8) −0.0005 (8)
C13 0.0209 (9) 0.0190 (11) 0.0199 (10) 0.0026 (9) 0.0074 (8) 0.0006 (8)
C14 0.0235 (10) 0.0213 (11) 0.0188 (10) 0.0016 (9) 0.0064 (8) 0.0000 (8)
C15 0.0228 (10) 0.0224 (11) 0.0185 (10) 0.0041 (9) 0.0072 (8) 0.0027 (8)
C16 0.0280 (10) 0.0179 (11) 0.0245 (11) 0.0032 (9) 0.0118 (9) 0.0054 (8)
C17 0.0386 (12) 0.0230 (12) 0.0248 (11) −0.0068 (11) 0.0052 (9) −0.0013 (9)
C18 0.0300 (11) 0.0234 (11) 0.0133 (10) −0.0020 (10) 0.0009 (8) −0.0001 (8)
C19 0.0264 (10) 0.0290 (13) 0.0230 (11) 0.0014 (10) 0.0045 (9) 0.0013 (9)
C20 0.0266 (11) 0.0348 (14) 0.0312 (12) −0.0027 (11) 0.0023 (9) 0.0072 (10)

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Geometric parameters (Å, º)

O1—C1 1.421 (3) C3—H3B 0.9900
O1—C4 1.425 (3) C4—H4A 0.9900
O2—C7 1.239 (2) C4—H4B 0.9900
O3—C12 1.230 (2) C5—C6 1.510 (3)
O4—N6 1.226 (2) C5—H5A 0.9900
O5—N6 1.237 (2) C5—H5B 0.9900
N1—C5 1.462 (3) C6—H6A 0.9900
N1—C2 1.466 (3) C6—H6B 0.9900
N1—C3 1.470 (3) C7—C8 1.469 (3)
N2—C7 1.339 (3) C8—C9 1.383 (3)
N2—C6 1.455 (3) C9—C10 1.404 (3)
N2—H1N 0.83 (2) C9—H9 0.9500
N3—C11 1.359 (3) C10—C11 1.378 (3)
N3—C8 1.383 (2) C11—H11 0.9500
N3—C18 1.467 (2) C12—C13 1.478 (3)
N4—C12 1.349 (3) C13—C14 1.374 (3)
N4—C10 1.410 (2) C14—C15 1.396 (3)
N4—H2N 0.88 (2) C14—H14 0.9500
N5—C16 1.344 (2) C15—C16 1.374 (3)
N5—C13 1.388 (3) C16—H16 0.9500
N5—C17 1.471 (3) C17—H17A 0.9800
N6—C15 1.424 (2) C17—H17B 0.9800
N7—N8 1.227 (3) C17—H17C 0.9800
N7—C20 1.467 (3) C18—C19 1.517 (3)
N8—N9 1.134 (3) C18—H18A 0.9900
C1—C2 1.503 (3) C18—H18B 0.9900
C1—H1A 0.9900 C19—C20 1.505 (3)
C1—H1B 0.9900 C19—H19A 0.9900
C2—H2A 0.9900 C19—H19B 0.9900
C2—H2B 0.9900 C20—H20A 0.9900
C3—C4 1.502 (3) C20—H20B 0.9900
C3—H3A 0.9900
C1—O1—C4 109.65 (18) H6A—C6—H6B 107.9
C5—N1—C2 110.46 (17) O2—C7—N2 121.32 (19)
C5—N1—C3 109.57 (17) O2—C7—C8 121.96 (17)
C2—N1—C3 108.13 (17) N2—C7—C8 116.62 (16)
C7—N2—C6 120.80 (17) N3—C8—C9 107.54 (17)
C7—N2—H1N 120.7 (16) N3—C8—C7 122.45 (16)
C6—N2—H1N 118.2 (16) C9—C8—C7 129.45 (17)
C11—N3—C8 109.00 (16) C8—C9—C10 107.51 (17)
C11—N3—C18 121.61 (16) C8—C9—H9 126.2
C8—N3—C18 128.93 (17) C10—C9—H9 126.2
C12—N4—C10 123.17 (17) C11—C10—C9 107.40 (17)
C12—N4—H2N 120.6 (16) C11—C10—N4 128.53 (18)
C10—N4—H2N 116.1 (16) C9—C10—N4 124.06 (17)
C16—N5—C13 109.14 (17) N3—C11—C10 108.55 (17)
C16—N5—C17 122.87 (18) N3—C11—H11 125.7
C13—N5—C17 127.76 (17) C10—C11—H11 125.7
O4—N6—O5 123.31 (17) O3—C12—N4 122.55 (18)
O4—N6—C15 118.70 (18) O3—C12—C13 121.67 (19)
O5—N6—C15 117.98 (18) N4—C12—C13 115.78 (17)
N8—N7—C20 113.6 (2) C14—C13—N5 108.13 (17)
N9—N8—N7 174.3 (3) C14—C13—C12 130.51 (19)
O1—C1—C2 111.39 (19) N5—C13—C12 121.36 (17)
O1—C1—H1A 109.3 C13—C14—C15 106.08 (18)
C2—C1—H1A 109.3 C13—C14—H14 127.0
O1—C1—H1B 109.3 C15—C14—H14 127.0
C2—C1—H1B 109.3 C16—C15—C14 109.09 (17)
H1A—C1—H1B 108.0 C16—C15—N6 123.80 (19)
N1—C2—C1 110.88 (18) C14—C15—N6 127.11 (19)
N1—C2—H2A 109.5 N5—C16—C15 107.55 (19)
C1—C2—H2A 109.5 N5—C16—H16 126.2
N1—C2—H2B 109.5 C15—C16—H16 126.2
C1—C2—H2B 109.5 N5—C17—H17A 109.5
H2A—C2—H2B 108.1 N5—C17—H17B 109.5
N1—C3—C4 111.51 (19) H17A—C17—H17B 109.5
N1—C3—H3A 109.3 N5—C17—H17C 109.5
C4—C3—H3A 109.3 H17A—C17—H17C 109.5
N1—C3—H3B 109.3 H17B—C17—H17C 109.5
C4—C3—H3B 109.3 N3—C18—C19 112.29 (16)
H3A—C3—H3B 108.0 N3—C18—H18A 109.1
O1—C4—C3 111.86 (19) C19—C18—H18A 109.1
O1—C4—H4A 109.2 N3—C18—H18B 109.1
C3—C4—H4A 109.2 C19—C18—H18B 109.1
O1—C4—H4B 109.2 H18A—C18—H18B 107.9
C3—C4—H4B 109.2 C20—C19—C18 112.59 (18)
H4A—C4—H4B 107.9 C20—C19—H19A 109.1
N1—C5—C6 114.48 (18) C18—C19—H19A 109.1
N1—C5—H5A 108.6 C20—C19—H19B 109.1
C6—C5—H5A 108.6 C18—C19—H19B 109.1
N1—C5—H5B 108.6 H19A—C19—H19B 107.8
C6—C5—H5B 108.6 N7—C20—C19 108.00 (19)
H5A—C5—H5B 107.6 N7—C20—H20A 110.1
N2—C6—C5 112.10 (18) C19—C20—H20A 110.1
N2—C6—H6A 109.2 N7—C20—H20B 110.1
C5—C6—H6A 109.2 C19—C20—H20B 110.1
N2—C6—H6B 109.2 H20A—C20—H20B 108.4
C5—C6—H6B 109.2
C20—N7—N8—N9 −177 (3) C18—N3—C11—C10 −173.55 (17)
C4—O1—C1—C2 −58.5 (2) C9—C10—C11—N3 0.7 (2)
C5—N1—C2—C1 −175.98 (17) N4—C10—C11—N3 −178.01 (18)
C3—N1—C2—C1 −56.1 (2) C10—N4—C12—O3 −0.9 (3)
O1—C1—C2—N1 59.5 (2) C10—N4—C12—C13 179.47 (17)
C5—N1—C3—C4 175.41 (19) C16—N5—C13—C14 0.0 (2)
C2—N1—C3—C4 55.0 (2) C17—N5—C13—C14 −174.61 (18)
C1—O1—C4—C3 57.3 (2) C16—N5—C13—C12 −179.14 (17)
N1—C3—C4—O1 −56.8 (3) C17—N5—C13—C12 6.2 (3)
C2—N1—C5—C6 −69.5 (2) O3—C12—C13—C14 −175.9 (2)
C3—N1—C5—C6 171.44 (18) N4—C12—C13—C14 3.7 (3)
C7—N2—C6—C5 −148.35 (19) O3—C12—C13—N5 3.1 (3)
N1—C5—C6—N2 −75.6 (2) N4—C12—C13—N5 −177.36 (17)
C6—N2—C7—O2 −4.8 (3) N5—C13—C14—C15 −0.3 (2)
C6—N2—C7—C8 171.58 (18) C12—C13—C14—C15 178.8 (2)
C11—N3—C8—C9 0.4 (2) C13—C14—C15—C16 0.4 (2)
C18—N3—C8—C9 172.56 (18) C13—C14—C15—N6 −179.62 (18)
C11—N3—C8—C7 172.58 (17) O4—N6—C15—C16 177.15 (19)
C18—N3—C8—C7 −15.3 (3) O5—N6—C15—C16 −3.9 (3)
O2—C7—C8—N3 −2.9 (3) O4—N6—C15—C14 −2.8 (3)
N2—C7—C8—N3 −179.27 (18) O5—N6—C15—C14 176.11 (19)
O2—C7—C8—C9 167.3 (2) C13—N5—C16—C15 0.2 (2)
N2—C7—C8—C9 −9.0 (3) C17—N5—C16—C15 175.17 (17)
N3—C8—C9—C10 0.0 (2) C14—C15—C16—N5 −0.4 (2)
C7—C8—C9—C10 −171.38 (19) N6—C15—C16—N5 179.63 (17)
C8—C9—C10—C11 −0.5 (2) C11—N3—C18—C19 101.0 (2)
C8—C9—C10—N4 178.35 (17) C8—N3—C18—C19 −70.2 (3)
C12—N4—C10—C11 5.5 (3) N3—C18—C19—C20 −172.88 (17)
C12—N4—C10—C9 −173.06 (18) N8—N7—C20—C19 −163.3 (2)
C8—N3—C11—C10 −0.7 (2) C18—C19—C20—N7 63.8 (2)

(IV) 1-(3-Azidopropyl)-4-(1-methyl-4-nitro-1H-pyrrole-2-carboxamido)-N-[2-(morpholin-4-yl)ethyl]-1H-pyrrole-2-carboxamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N···O5i 0.83 (2) 2.36 (2) 3.176 (2) 171 (2)
N4—H2N···O2ii 0.88 (2) 2.02 (2) 2.864 (2) 162 (2)
C2—H2A···O4iii 0.99 2.53 3.498 (3) 165
C6—H6B···O3iv 0.99 2.58 3.354 (3) 135
C9—H9···O5i 0.95 2.43 3.322 (2) 156
C14—H14···O2ii 0.95 2.46 3.317 (3) 149

Symmetry codes: (i) −x+2, y+1/2, −z+5/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+2, y+1/2, −z+3/2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Alniss, H. Y., Salvia, M., Sadikov, M., Golovchenko, I., Anthony, N. G., Khalaf, A. I., MacKay, S. P., Suckling, C. J. & Parkinson, J. A. (2014). ChemBioChem, 15, 1978–1990. [DOI] [PubMed]
  3. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  4. Chenoweth, D. M. & Dervan, P. B. (2009). PNAS, 106, 13175–1319. [DOI] [PMC free article] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Khalaf, A. I., Waigh, R. D., Drummond, A. J., Pringle, B., McGroarty, I., Skellern, G. G. & Suckling, C. J. (2004). J. Med. Chem. 47, 2133–2156. [DOI] [PubMed]
  7. Lang, S., Khalaf, A. I., Breen, D., Huggan, J. K., Clements, C. J., MacKay, S. P. & Suckling, C. J. (2014). Med. Chem. Res. 23, 1170–1179.
  8. Lee, M., Coulter, D. M. & Lown, J. W. (1988). J. Org. Chem. 53, 1855–1859.
  9. Lu, L., Zhu, M., Li, J. & Yang, P. (2003). Acta Cryst. E59, o417–o419.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
  12. Satam, V., Patil, P., Babu, B., Rice, T., Porte, A., Alger, S., Zeller, M. & Lee, M. (2014). Synth. Commun. 44, 968–975.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S2056989017001177/su5346sup1.cif

e-73-00254-sup1.cif (90.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017001177/su5346Isup2.hkl

e-73-00254-Isup2.hkl (77.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989017001177/su5346IIsup3.hkl

e-73-00254-IIsup3.hkl (132KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989017001177/su5346IIIsup4.hkl

e-73-00254-IIIsup4.hkl (190.7KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989017001177/su5346IVsup5.hkl

e-73-00254-IVsup5.hkl (232.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989017001177/su5346Isup6.cml

Supporting information file. DOI: 10.1107/S2056989017001177/su5346IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989017001177/su5346IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989017001177/su5346IVsup9.cml

CCDC references: 1529248, 1529247, 1529246, 1529245

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES