Abstract
Pentosidine is a recently discovered protein crosslink, involving lysine and arginine residues linked together in an imidazo [4,5,6] pyridinium ring formed by a 5-carbon sugar during nonenzymatic browning (Maillard reaction). The presence of high ascorbate levels in the human lens and its ability to undergo nonenzymatic browning led us to investigate pentosidine formation in the aging human lens. Incubation of lens crystallins with ascorbate and its oxidation products dehydroascorbate and 2,3-diketogulonate leads progressively to the formation of pentosidine crosslinks in the presence of oxygen. Under nitrogen, however, pentosidine forms only from 2,3-diketogulonate or xylosone, a degradation product of 2,3-diketogulonate. A high correlation between pentosidine crosslinks and the degree of lens pigmentation is noted in cataractous lenses. Pentosidine is found to be primarily associated with alpha-crystallin fractions of 300-5000 kDa. These results suggest that redox imbalance in cellular senescent systems such as the ocular lens may lead to irreversible ascorbate oxidation and protein crosslinking by xylosone. This mechanism may play an important role in the pathogenesis of "brunescent" cataracts.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bando M., Obazawa H. Activities of ascorbate free radical reductase and H2O2-dependent NADH oxidation in senile cataractous human lenses. Exp Eye Res. 1990 Jun;50(6):779–786. doi: 10.1016/0014-4835(90)90128-h. [DOI] [PubMed] [Google Scholar]
- Bensch K. G., Fleming J. E., Lohmann W. The role of ascorbic acid in senile cataract. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7193–7196. doi: 10.1073/pnas.82.21.7193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiMattio J. Active transport of ascorbic acid into lens epithelium of the rat. Exp Eye Res. 1989 Nov;49(5):873–885. doi: 10.1016/s0014-4835(89)80046-6. [DOI] [PubMed] [Google Scholar]
- Dyer D. G., Blackledge J. A., Thorpe S. R., Baynes J. W. Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem. 1991 Jun 25;266(18):11654–11660. [PubMed] [Google Scholar]
- Garland D., Zigler J. S., Jr, Kinoshita J. Structural changes in bovine lens crystallins induced by ascorbate, metal, and oxygen. Arch Biochem Biophys. 1986 Dec;251(2):771–776. doi: 10.1016/0003-9861(86)90389-9. [DOI] [PubMed] [Google Scholar]
- Grandhee S. K., Monnier V. M. Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J Biol Chem. 1991 Jun 25;266(18):11649–11653. [PubMed] [Google Scholar]
- Jedziniak J. A., Kinoshita J. H., Yates E. M., Hocker L. O., Benedek G. B. On the presence and mechanism of formation of heavy molecular weight aggregates in human normal and cataractous lenses. Exp Eye Res. 1973 Feb;15(2):185–192. doi: 10.1016/0014-4835(73)90118-8. [DOI] [PubMed] [Google Scholar]
- Kosower N. S., Kosower E. M. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
- Kurzel R. B., Wolbarsht M. L., Yamanashi B. S. Spectral studies on normal and cataractous intact human lenses. Exp Eye Res. 1973 Oct 10;17(1):65–71. doi: 10.1016/0014-4835(73)90168-1. [DOI] [PubMed] [Google Scholar]
- Lohmann W., Schmehl W., Strobel J. Nuclear cataract: oxidative damage to the lens. Exp Eye Res. 1986 Nov;43(5):859–862. doi: 10.1016/s0014-4835(86)80015-x. [DOI] [PubMed] [Google Scholar]
- Lorand L., Hsu L. K., Siefring G. E., Jr, Rafferty N. S. Lens transglutaminase and cataract formation. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1356–1360. doi: 10.1073/pnas.78.3.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyons T. J., Silvestri G., Dunn J. A., Dyer D. G., Baynes J. W. Role of glycation in modification of lens crystallins in diabetic and nondiabetic senile cataracts. Diabetes. 1991 Aug;40(8):1010–1015. doi: 10.2337/diab.40.8.1010. [DOI] [PubMed] [Google Scholar]
- MOORE S., STEIN W. H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem. 1954 Dec;211(2):907–913. [PubMed] [Google Scholar]
- Mostafapour M. K., Schwartz C. A. Age-related changes in the protein concentration gradient and the crystallin polypeptides of the lens. Invest Ophthalmol Vis Sci. 1982 May;22(5):606–612. [PubMed] [Google Scholar]
- Ortwerth B. J., Olesen P. R. Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction. Biochim Biophys Acta. 1988 Aug 31;956(1):10–22. doi: 10.1016/0167-4838(88)90292-0. [DOI] [PubMed] [Google Scholar]
- Ortwerth B. J., Olesen P. R. Glutathione inhibits the glycation and crosslinking of lens proteins by ascorbic acid. Exp Eye Res. 1988 Nov;47(5):737–750. doi: 10.1016/0014-4835(88)90041-3. [DOI] [PubMed] [Google Scholar]
- Pirie A. Color and solubility of the proteins of human cataracts. Invest Ophthalmol. 1968 Dec;7(6):634–650. [PubMed] [Google Scholar]
- Prabhakaram M., Ortwerth B. J. The glycation-associated crosslinking of lens proteins by ascorbic acid is not mediated by oxygen free radicals. Exp Eye Res. 1991 Aug;53(2):261–268. doi: 10.1016/0014-4835(91)90082-p. [DOI] [PubMed] [Google Scholar]
- Rogers K. M., Augusteyn R. C. Glutathione reductase in normal and cataractous human lenses. Exp Eye Res. 1978 Dec;27(6):719–721. doi: 10.1016/0014-4835(78)90041-6. [DOI] [PubMed] [Google Scholar]
- Satoh K. Age-related changes in the structural proteins of human lens. Exp Eye Res. 1972 Jul;14(1):53–57. doi: 10.1016/0014-4835(72)90142-x. [DOI] [PubMed] [Google Scholar]
- Sell D. R., Monnier V. M. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest. 1990 Feb;85(2):380–384. doi: 10.1172/JCI114449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
- Shin D. B., Feather M. S. 3-Deoxy-L-glycero-pentos-2-ulose (3-deoxy-L-xylosone) and L-threo-pentos-2-ulose (L-xylosone) as intermediates in the degradation of L-ascorbic acid. Carbohydr Res. 1990 Dec 15;208:246–250. doi: 10.1016/0008-6215(90)80104-b. [DOI] [PubMed] [Google Scholar]
- Slight S. H., Feather M. S., Ortwerth B. J. Glycation of lens proteins by the oxidation products of ascorbic acid. Biochim Biophys Acta. 1990 May 8;1038(3):367–374. doi: 10.1016/0167-4838(90)90250-j. [DOI] [PubMed] [Google Scholar]
- Sparrow J. M., Hill A. R., Ayliffe W., Bron A. J., Brown N. P. Human lens nuclear colour matching and brunescence grading in vivo. Int Ophthalmol. 1988 Jan;11(3):139–149. doi: 10.1007/BF00130615. [DOI] [PubMed] [Google Scholar]
- Spector A., Garner W. H. Hydrogen peroxide and human cataract. Exp Eye Res. 1981 Dec;33(6):673–681. doi: 10.1016/s0014-4835(81)80107-8. [DOI] [PubMed] [Google Scholar]
- Spector A., Li S., Sigelman J. Age-dependent changes in the molecular size of human lens proteins and their relationship to light scatter. Invest Ophthalmol. 1974 Oct;13(10):795–798. [PubMed] [Google Scholar]
- Spector A., Roy D. Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3244–3248. doi: 10.1073/pnas.75.7.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spector A. The search for a solution to senile cataracts. Proctor lecture. Invest Ophthalmol Vis Sci. 1984 Feb;25(2):130–146. [PubMed] [Google Scholar]
- Stevens V. J., Rouzer C. A., Monnier V. M., Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. doi: 10.1073/pnas.75.6.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Truscott R. J., Augusteyn R. C. The state of sulphydryl groups in normal and cataractous human lenses. Exp Eye Res. 1977 Aug;25(2):139–148. doi: 10.1016/0014-4835(77)90126-9. [DOI] [PubMed] [Google Scholar]
- Varma S. D., Chand D., Sharma Y. R., Kuck J. F., Jr, Richards R. D. Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res. 1984 Jan;3(1):35–57. doi: 10.3109/02713688408997186. [DOI] [PubMed] [Google Scholar]
- Winkler B. S. In vitro oxidation of ascorbic acid and its prevention by GSH. Biochim Biophys Acta. 1987 Sep 11;925(3):258–264. doi: 10.1016/0304-4165(87)90190-5. [DOI] [PubMed] [Google Scholar]