Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Nov 15;88(22):10317–10321. doi: 10.1073/pnas.88.22.10317

Molecular phylogeny of the superorder Archonta.

R M Adkins 1, R L Honeycutt 1
PMCID: PMC52919  PMID: 1658802

Abstract

The superorder Archonta has been hypothesized to include primates, tree shrews, bats, and flying lemurs as descendants of a common ancestor. More recently, a diphyletic origin for bats has been proposed. To evaluate these hypotheses, the nucleotide sequence of the mitochondrial cytochrome oxidase subunit II gene was determined from a bushbaby (Galago senegalensis), flying lemur (Cynocephalus variegatus), tree shrew (Tupaia glis), spear-nosed bat (Phyllostomus hastatus), rousette bat (Rousettus leschenaulti), and nine-banded armadillo (Dasypus novemcinctus) and was compared with published sequences of a human, cow, and mouse. Phylogenetic analyses of the sequences give evidence that primates, tree shrews, and flying lemurs have a recent common ancestor but that bats are genealogically distant. The monophyletic origin of bats is supported. Contrary to interpretations based on morphological data, tree shrews are shown to be no more closely affiliated with primates than are flying lemurs. Analyses of the cytochrome oxidase subunit II gene give marginally more support to a Dermoptera-Scandentia clade than to a Dermoptera-Primates clade.

Full text

PDF
10317

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard M. W., Ellsworth D. L., Honeycutt R. L. The production of single-stranded DNA suitable for sequencing using the polymerase chain reaction. Biotechniques. 1991 Jan;10(1):24–26. [PubMed] [Google Scholar]
  2. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  3. Anderson S., de Bruijn M. H., Coulson A. R., Eperon I. C., Sanger F., Young I. G. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. doi: 10.1016/0022-2836(82)90137-1. [DOI] [PubMed] [Google Scholar]
  4. Bennett S., Alexander L. J., Crozier R. H., Mackinlay A. G. Are megabats flying primates? Contrary evidence from a mitochondrial DNA sequence. Aust J Biol Sci. 1988;41(3):327–332. doi: 10.1071/bi9880327. [DOI] [PubMed] [Google Scholar]
  5. Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. doi: 10.1016/0092-8674(81)90300-7. [DOI] [PubMed] [Google Scholar]
  6. Brown W. M. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3605–3609. doi: 10.1073/pnas.77.6.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  9. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  10. Kishino H., Hasegawa M. Converting distance to time: application to human evolution. Methods Enzymol. 1990;183:550–570. doi: 10.1016/0076-6879(90)83036-9. [DOI] [PubMed] [Google Scholar]
  11. Pettigrew J. D. Flying primates? Megabats have the advanced pathway from eye to midbrain. Science. 1986 Mar 14;231(4743):1304–1306. doi: 10.1126/science.3945827. [DOI] [PubMed] [Google Scholar]
  12. Pettigrew J. D., Jamieson B. G., Robson S. K., Hall L. S., McAnally K. I., Cooper H. M. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Philos Trans R Soc Lond B Biol Sci. 1989 Nov 30;325(1229):489–559. doi: 10.1098/rstb.1989.0102. [DOI] [PubMed] [Google Scholar]
  13. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  14. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thewissen J. G., Babcock S. K. Distinctive cranial and cervical innervation of wing muscles: new evidence for bat monophyly. Science. 1991 Feb 22;251(4996):934–936. doi: 10.1126/science.2000493. [DOI] [PubMed] [Google Scholar]
  16. Williams P. L., Fitch W. M. Phylogeny determination using dynamically weighted parsimony method. Methods Enzymol. 1990;183:615–626. doi: 10.1016/0076-6879(90)83040-g. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES