Abstract
Liver parenchymal cells continuously extract high amounts of bile acids from portal blood plasma. This uptake process is mediated by a Na+/bile acid cotransport system. A cDNA encoding the rat liver bile acid uptake system has been isolated by expression cloning in Xenopus laevis oocytes. The cloned transporter is strictly sodium-dependent and can be inhibited by various non-bile-acid organic compounds. Sequence analysis of the cDNA revealed an open reading frame of 1086 nucleotides coding for a protein of 362 amino acids (calculated molecular mass 39 kDa) with five possible N-linked glycosylation sites and seven putative transmembrane domains. Translation experiments in vitro and in oocytes indicate that the transporter is indeed glycosylated and that its polypeptide backbone has an apparent molecular mass of 33-35 kDa. Northern blot analysis with the cloned probe revealed crossreactivity with mRNA species from rat kidney and intestine as well as from liver tissues of mouse, guinea pig, rabbit, and man.
Full text
PDF![10629](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf4/52983/4c9e2a1a185c/pnas01073-0264.png)
![10630](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf4/52983/3bb05c9d44e0/pnas01073-0265.png)
![10631](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf4/52983/278b110bcd95/pnas01073-0266.png)
![10632](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf4/52983/56c25c593db3/pnas01073-0267.png)
![10633](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf4/52983/35b01147d896/pnas01073-0268.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alcalay M., Toniolo D. CpG islands of the X chromosome are gene associated. Nucleic Acids Res. 1988 Oct 25;16(20):9527–9543. doi: 10.1093/nar/16.20.9527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ananthanarayanan M., von Dippe P., Levy D. Identification of the hepatocyte Na+-dependent bile acid transport protein using monoclonal antibodies. J Biol Chem. 1988 Jun 15;263(17):8338–8343. [PubMed] [Google Scholar]
- Berk P. D., Potter B. J., Stremmel W. Role of plasma membrane ligand-binding proteins in the hepatocellular uptake of albumin-bound organic anions. Hepatology. 1987 Jan-Feb;7(1):165–176. doi: 10.1002/hep.1840070131. [DOI] [PubMed] [Google Scholar]
- Birnbaum M. J., Haspel H. C., Rosen O. M. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5784–5788. doi: 10.1073/pnas.83.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burckhardt G., Kramer W., Kurz G., Wilson F. A. Photoaffinity labeling studies of the rat renal sodium bile salt cotransport system. Biochem Biophys Res Commun. 1987 Mar 30;143(3):1018–1023. doi: 10.1016/0006-291x(87)90353-6. [DOI] [PubMed] [Google Scholar]
- Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
- Deguchi Y., Yamato I., Anraku Y. Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. J Biol Chem. 1990 Dec 15;265(35):21704–21708. [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frimmer M., Ziegler K. The transport of bile acids in liver cells. Biochim Biophys Acta. 1988 Feb 24;947(1):75–99. doi: 10.1016/0304-4157(88)90020-2. [DOI] [PubMed] [Google Scholar]
- Hagenbuch B., Lübbert H., Stieger B., Meier P. J. Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. J Biol Chem. 1990 Apr 5;265(10):5357–5360. [PubMed] [Google Scholar]
- Hardison W. G., Lowe P. J., Gosink E. Nature of taurodehydrocholic acid uptake in rat hepatocytes. Am J Physiol. 1988 Feb;254(2 Pt 1):G269–G274. doi: 10.1152/ajpgi.1988.254.2.G269. [DOI] [PubMed] [Google Scholar]
- Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
- Hediger M. A., Ikeda T., Coady M., Gundersen C. B., Wright E. M. Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1987 May;84(9):2634–2637. doi: 10.1073/pnas.84.9.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hediger M. A., Turk E., Wright E. M. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5748–5752. doi: 10.1073/pnas.86.15.5748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein P., Kanehisa M., DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta. 1985 May 28;815(3):468–476. doi: 10.1016/0005-2736(85)90375-x. [DOI] [PubMed] [Google Scholar]
- Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer W., Burckhardt G., Wilson F. A., Kurz G. Bile salt-binding polypeptides in brush-border membrane vesicles from rat small intestine revealed by photoaffinity labeling. J Biol Chem. 1983 Mar 25;258(6):3623–3627. [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lack L., Tantawi A., Halevy C., Rockett D. Positional requirements for anionic charge for ileal absorption of bile salt analogues. Am J Physiol. 1984 Jun;246(6 Pt 1):G745–G749. doi: 10.1152/ajpgi.1984.246.6.G745. [DOI] [PubMed] [Google Scholar]
- Lücke H., Stange G., Kinne R., Murer H. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum. Biochem J. 1978 Sep 15;174(3):951–958. doi: 10.1042/bj1740951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matter K., McDowell W., Schwartz R. T., Hauri H. P. Asynchronous transport to the cell surface of intestinal brush border hydrolases is not due to differential trimming of N-linked oligosaccharides. J Biol Chem. 1989 Aug 5;264(22):13131–13139. [PubMed] [Google Scholar]
- McCormick M. Sib selection. Methods Enzymol. 1987;151:445–449. doi: 10.1016/s0076-6879(87)51036-9. [DOI] [PubMed] [Google Scholar]
- Nakao T., Yamato I., Anraku Y. Nucleotide sequence of putP, the proline carrier gene of Escherichia coli K12. Mol Gen Genet. 1987 Jun;208(1-2):70–75. doi: 10.1007/BF00330424. [DOI] [PubMed] [Google Scholar]
- Nash B., Tate S. S. In vitro translation and processing of rat kidney gamma-glutamyl transpeptidase. J Biol Chem. 1984 Jan 10;259(1):678–685. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turk E., Zabel B., Mundlos S., Dyer J., Wright E. M. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature. 1991 Mar 28;350(6316):354–356. doi: 10.1038/350354a0. [DOI] [PubMed] [Google Scholar]
- Weinberg S. L., Burckhardt G., Wilson F. A. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. J Clin Invest. 1986 Jul;78(1):44–50. doi: 10.1172/JCI112571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieland T., Nassal M., Kramer W., Fricker G., Bickel U., Kurz G. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labeling. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5232–5236. doi: 10.1073/pnas.81.16.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A., Burckhardt G., Murer H., Rumrich G., Ullrich K. J. Sodium-coupled taurocholate transport in the proximal convolution of the rat kidney in vivo and in vitro. J Clin Invest. 1981 Apr;67(4):1141–1150. doi: 10.1172/JCI110128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A. Intestinal transport of bile acids. Am J Physiol. 1981 Aug;241(2):G83–G92. doi: 10.1152/ajpgi.1981.241.2.G83. [DOI] [PubMed] [Google Scholar]
- Wilson F. A. Modern approaches to bile acid transport proteins. Hosp Pract (Off Ed) 1990 Apr 15;25(4):95-9, 104-8, 110. doi: 10.1080/21548331.1990.11703937. [DOI] [PubMed] [Google Scholar]
- Zimmerli B., Valantinas J., Meier P. J. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles. J Pharmacol Exp Ther. 1989 Jul;250(1):301–308. [PubMed] [Google Scholar]
- von Dippe P., Levy D. Reconstitution of the immunopurified 49-kDa sodium-dependent bile acid transport protein derived from hepatocyte sinusoidal plasma membranes. J Biol Chem. 1990 Sep 5;265(25):14812–14816. [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]