Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Dec 1;88(23):10701–10705. doi: 10.1073/pnas.88.23.10701

Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo.

B Eghbali 1, J A Kessler 1, L M Reid 1, C Roy 1, D C Spray 1
PMCID: PMC52998  PMID: 1660148

Abstract

Gap junction channels provide a pathway for exchange of ions and small molecules between coupled cells, and this exchange is believed to be critical for normal tissue growth and development. As a test for a role of gap junction-mediated intercellular communication in control of cell growth, we have compared growth rates of communication-deficient human tumor cells (SKHep1) with clones stably transfected with cDNA encoding the rat liver gap junction protein connexin 32. In culture, growth rates for parental and transfected clones were similar. However, when sizes of tumors were evaluated following injection of these clones into athymic nude mice, growth rates for two well-coupled clones were significantly lower than for communication-deficient or poorly coupled clones. This study demonstrates that growth rate of these tumor cells in situ is negatively correlated with strength of intercellular communication.

Full text

PDF
10701

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Ze'ev A. Cell shape, the complex cellular networks, and gene expression. Cytoskeletal protein genes as a model system. Cell Muscle Motil. 1985;6:23–53. doi: 10.1007/978-1-4757-4723-2_2. [DOI] [PubMed] [Google Scholar]
  2. Bissell M. J., Barcellos-Hoff M. H. The influence of extracellular matrix on gene expression: is structure the message? J Cell Sci Suppl. 1987;8:327–343. doi: 10.1242/jcs.1987.supplement_8.18. [DOI] [PubMed] [Google Scholar]
  3. Chang P. L., Gunby J. L., Tomkins D. J., Mak I., Rosa N. E., Mak S. Transformation of human cultured fibroblasts with plasmids carrying dominant selection markers and immortalizing potential. Exp Cell Res. 1986 Dec;167(2):407–416. doi: 10.1016/0014-4827(86)90181-3. [DOI] [PubMed] [Google Scholar]
  4. Cheng C. Y., Ryan R. F., Vo T. P., Hornsby P. J. Cellular senescence involves stochastic processes causing loss of expression of differentiated function genes: transfection with SV40 as a means for dissociating effects of senescence on growth and on differentiated function gene expression. Exp Cell Res. 1989 Jan;180(1):49–62. doi: 10.1016/0014-4827(89)90211-5. [DOI] [PubMed] [Google Scholar]
  5. Doerr R., Zvibel I., Chiuten D., D'Olimpio J., Reid L. M. Clonal growth of tumors on tissue-specific biomatrices and correlation with organ site specificity of metastases. Cancer Res. 1989 Jan 15;49(2):384–392. [PubMed] [Google Scholar]
  6. Eghbali B., Kessler J. A., Spray D. C. Expression of gap junction channels in communication-incompetent cells after stable transfection with cDNA encoding connexin 32. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1328–1331. doi: 10.1073/pnas.87.4.1328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furshpan E. J., Potter D. D. Low-resistance junctions between cells in embryos and tissue culture. Curr Top Dev Biol. 1968;3:95–127. doi: 10.1016/s0070-2153(08)60352-x. [DOI] [PubMed] [Google Scholar]
  8. Guthrie S. C., Gilula N. B. Gap junctional communication and development. Trends Neurosci. 1989 Jan;12(1):12–16. doi: 10.1016/0166-2236(89)90150-1. [DOI] [PubMed] [Google Scholar]
  9. Hertzberg E. L., Spray D. C., Bennett M. V. Reduction of gap junctional conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2412–2416. doi: 10.1073/pnas.82.8.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kalimi G. H., Lo C. W. Communication compartments in the gastrulating mouse embryo. J Cell Biol. 1988 Jul;107(1):241–255. doi: 10.1083/jcb.107.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kleinman H. K., McGarvey M. L., Hassell J. R., Martin G. R. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry. 1983 Oct 11;22(21):4969–4974. doi: 10.1021/bi00290a014. [DOI] [PubMed] [Google Scholar]
  12. Kumar N. M., Gilula N. B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol. 1986 Sep;103(3):767–776. doi: 10.1083/jcb.103.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loewenstein W. R. Junctional intercellular communication and the control of growth. Biochim Biophys Acta. 1979 Feb 4;560(1):1–65. doi: 10.1016/0304-419x(79)90002-7. [DOI] [PubMed] [Google Scholar]
  14. McDonald J. A. Matrix regulation of cell shape and gene expression. Curr Opin Cell Biol. 1989 Oct;1(5):995–999. doi: 10.1016/0955-0674(89)90071-9. [DOI] [PubMed] [Google Scholar]
  15. Mehta P. P., Bertram J. S., Loewenstein W. R. Growth inhibition of transformed cells correlates with their junctional communication with normal cells. Cell. 1986 Jan 17;44(1):187–196. doi: 10.1016/0092-8674(86)90497-6. [DOI] [PubMed] [Google Scholar]
  16. Nicolson G. L., Dulski K. M., Trosko J. E. Loss of intercellular junctional communication correlates with metastatic potential in mammary adenocarcinoma cells. Proc Natl Acad Sci U S A. 1988 Jan;85(2):473–476. doi: 10.1073/pnas.85.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orkin R. W., Gehron P., McGoodwin E. B., Martin G. R., Valentine T., Swarm R. A murine tumor producing a matrix of basement membrane. J Exp Med. 1977 Jan 1;145(1):204–220. doi: 10.1084/jem.145.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paul D. L. Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol. 1986 Jul;103(1):123–134. doi: 10.1083/jcb.103.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Potter D. D., Furshpan E. J., Lennox E. S. Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci U S A. 1966 Feb;55(2):328–336. doi: 10.1073/pnas.55.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shouval D., Rager-Zisman B., Quan P., Shafritz D. A., Bloom B. R., Reid L. M. Role in nude mice of interferon and natural killer cells in inhibiting the tumorigenicity of human hepatocellular carcinoma cells infected with hepatitis B virus. J Clin Invest. 1983 Aug;72(2):707–717. doi: 10.1172/JCI111020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Trosko J. E., Chang C. C., Medcalf A. Mechanisms of tumor promotion: potential role of intercellular communication. Cancer Invest. 1983;1(6):511–526. doi: 10.3109/07357908309020276. [DOI] [PubMed] [Google Scholar]
  22. Weinstein R. S., Pauli B. U. Cell junctions and the biological behaviour of cancer. Ciba Found Symp. 1987;125:240–260. doi: 10.1002/9780470513408.ch14. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES