Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Dec 1;88(23):10850–10854. doi: 10.1073/pnas.88.23.10850

Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia.

S E Arnold 1, V M Lee 1, R E Gur 1, J Q Trojanowski 1
PMCID: PMC53029  PMID: 1961755

Abstract

A variety of cytoarchitectural disturbances have been described in limbic regions in postmortem studies of schizophrenia, many of which suggest a developmental disturbance of normal neuronal geometry. This geometry is established and maintained by elements of the neuronal cytoskeleton. Immunohistochemistry with a panel of 15 monoclonal antibodies was used to monitor the presence of neuronal cytoskeletal proteins in the hippocampal formations of six patients with schizophrenia, six normal controls, and six with neurodegenerative disorders. In five of the six subjects with schizophrenia, prominent and specific alterations were found in the distribution of two microtubule-associated proteins, MAP2 and MAP5, which were anatomically selective for the subiculum and entorhinal cortex. In contrast, the immunoreactivity of other cytoskeletal proteins (i.e., tau, tubulins, and selected neurofilament protein phosphoisoforms) was similar for all subjects. Defects in the expression of MAP2 and MAP5, two proteins that contribute to the establishment and maintenance of neuronal polarity, could underlie some of the cytoarchitectural abnormalities described in schizophrenia and impair signal transduction in the affected dendrites. The subiculum and entorhinal cortex interconnect the hippocampal formation with widespread cortices and subcortical nuclei and play important roles in higher cognitive functions. Hence, pathologic lesions that distort the polarized geometry of neurons could play a role in the emergence of aberrant behavior in schizophrenia.

Full text

PDF
10850

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altshuler L. L., Conrad A., Kovelman J. A., Scheibel A. Hippocampal pyramidal cell orientation in schizophrenia. A controlled neurohistologic study of the Yakovlev collection. Arch Gen Psychiatry. 1987 Dec;44(12):1094–1098. doi: 10.1001/archpsyc.1987.01800240070010. [DOI] [PubMed] [Google Scholar]
  2. Arnold S. E., Hyman B. T., Van Hoesen G. W., Damasio A. R. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry. 1991 Jul;48(7):625–632. doi: 10.1001/archpsyc.1991.01810310043008. [DOI] [PubMed] [Google Scholar]
  3. Benes F. M., Bird E. D. An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiatry. 1987 Jul;44(7):608–616. doi: 10.1001/archpsyc.1987.01800190024004. [DOI] [PubMed] [Google Scholar]
  4. Benes F. M., Davidson J., Bird E. D. Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry. 1986 Jan;43(1):31–35. doi: 10.1001/archpsyc.1986.01800010033004. [DOI] [PubMed] [Google Scholar]
  5. Binder L. I., Frankfurter A., Rebhun L. I. Differential localization of MAP-2 and tau in mammalian neurons in situ. Ann N Y Acad Sci. 1986;466:145–166. doi: 10.1111/j.1749-6632.1986.tb38392.x. [DOI] [PubMed] [Google Scholar]
  6. Black M. M., Baas P. W. The basis of polarity in neurons. Trends Neurosci. 1989 Jun;12(6):211–214. doi: 10.1016/0166-2236(89)90124-0. [DOI] [PubMed] [Google Scholar]
  7. Brown R., Colter N., Corsellis J. A., Crow T. J., Frith C. D., Jagoe R., Johnstone E. C., Marsh L. Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry. 1986 Jan;43(1):36–42. doi: 10.1001/archpsyc.1986.01800010038005. [DOI] [PubMed] [Google Scholar]
  8. Carden M. J., Trojanowski J. Q., Schlaepfer W. W., Lee V. M. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci. 1987 Nov;7(11):3489–3504. doi: 10.1523/JNEUROSCI.07-11-03489.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Falkai P., Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatry Neurol Sci. 1986;236(3):154–161. doi: 10.1007/BF00380943. [DOI] [PubMed] [Google Scholar]
  10. Falkai P., Bogerts B., Rozumek M. Limbic pathology in schizophrenia: the entorhinal region--a morphometric study. Biol Psychiatry. 1988 Sep;24(5):515–521. doi: 10.1016/0006-3223(88)90162-x. [DOI] [PubMed] [Google Scholar]
  11. Jakob H., Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm. 1986;65(3-4):303–326. doi: 10.1007/BF01249090. [DOI] [PubMed] [Google Scholar]
  12. Jeste D. V., Lohr J. B. Hippocampal pathologic findings in schizophrenia. A morphometric study. Arch Gen Psychiatry. 1989 Nov;46(11):1019–1024. doi: 10.1001/archpsyc.1989.01810110061009. [DOI] [PubMed] [Google Scholar]
  13. Kovelman J. A., Scheibel A. B. A neurohistological correlate of schizophrenia. Biol Psychiatry. 1984 Dec;19(12):1601–1621. [PubMed] [Google Scholar]
  14. Lee V. M., Carden M. J., Schlaepfer W. W., Trojanowski J. Q. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 1987 Nov;7(11):3474–3488. doi: 10.1523/JNEUROSCI.07-11-03474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee V. M., Otvos L., Jr, Schmidt M. L., Trojanowski J. Q. Alzheimer disease tangles share immunological similarities with multiphosphorylation repeats in the two large neurofilament proteins. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7384–7388. doi: 10.1073/pnas.85.19.7384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lewis S. A., Ivanov I. E., Lee G. H., Cowan N. J. Organization of microtubules in dendrites and axons is determined by a short hydrophobic zipper in microtubule-associated proteins MAP2 and tau. Nature. 1989 Nov 30;342(6249):498–505. doi: 10.1038/342498a0. [DOI] [PubMed] [Google Scholar]
  17. Matus A. Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci. 1988;11:29–44. doi: 10.1146/annurev.ne.11.030188.000333. [DOI] [PubMed] [Google Scholar]
  18. Riederer B., Matus A. Differential expression of distinct microtubule-associated proteins during brain development. Proc Natl Acad Sci U S A. 1985 Sep;82(17):6006–6009. doi: 10.1073/pnas.82.17.6006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Simon H., Le Moal M., Calas A. Efferents and afferents of the ventral tegmental-A10 region studied after local injection of [3H]leucine and horseradish peroxidase. Brain Res. 1979 Dec 7;178(1):17–40. doi: 10.1016/0006-8993(79)90085-4. [DOI] [PubMed] [Google Scholar]
  20. Sloboda R. D., Dentler W. L., Rosenbaum J. L. Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry. 1976 Oct 5;15(20):4497–4505. doi: 10.1021/bi00665a026. [DOI] [PubMed] [Google Scholar]
  21. Sur M., Garraghty P. E., Roe A. W. Experimentally induced visual projections into auditory thalamus and cortex. Science. 1988 Dec 9;242(4884):1437–1441. doi: 10.1126/science.2462279. [DOI] [PubMed] [Google Scholar]
  22. Trojanowski J. Q., Schuck T., Schmidt M. L., Lee V. M. Distribution of phosphate-independent MAP2 epitopes revealed with monoclonal antibodies in microwave-denatured human nervous system tissues. J Neurosci Methods. 1989 Aug;29(2):171–180. doi: 10.1016/0165-0270(89)90030-7. [DOI] [PubMed] [Google Scholar]
  23. Trojanowski J. Q., Schuck T., Schmidt M. L., Lee V. M. Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem. 1989 Feb;37(2):209–215. doi: 10.1177/37.2.2492045. [DOI] [PubMed] [Google Scholar]
  24. Tucker R. P., Binder L. I., Matus A. I. Neuronal microtubule-associated proteins in the embryonic avian spinal cord. J Comp Neurol. 1988 May 1;271(1):44–55. doi: 10.1002/cne.902710106. [DOI] [PubMed] [Google Scholar]
  25. Viereck C., Tucker R. P., Binder L. I., Matus A. Phylogenetic conservation of brain microtubule-associated proteins MAP2 and tau. Neuroscience. 1988 Sep;26(3):893–904. doi: 10.1016/0306-4522(88)90107-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES