Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1991 Dec 15;88(24):10998–11002. doi: 10.1073/pnas.88.24.10998

Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease.

A M Cataldo 1, P A Paskevich 1, E Kominami 1, R A Nixon 1
PMCID: PMC53060  PMID: 1837142

Abstract

beta-Amyloid formation requires multiple abnormal proteolytic cleavages of amyloid precursor protein (APP), including one within its intramembrane domain. Lysosomes, which contain a wide variety of proteases (cathepsins) and other acid hydrolases, are major sites for the turnover of membrane proteins and other cell constituents. Using immunocytochemistry, immunoelectron microscopy, and enzyme histochemistry, we studied the expression and cellular distributions of 10 lysosomal hydrolases, including 4 cathepsins, in neocortex from patients with Alzheimer disease and control (non-Alzheimer-disease) individuals. In control brains, acid hydrolases were localized exclusively to intracellular lysosome-related compartments, and 8 of the 10 enzymes predominated in neurons. In Alzheimer disease brains, strongly immunoreactive lysosomes and lipofuscin granules accumulated markedly in the perikarya and proximal dendrites of many cortical neurons, some of which were undergoing degeneration. More strikingly, these same hydrolases were present in equally high or higher levels in senile plaques in Alzheimer disease, but they were not found extracellularly in control brains, including those from Parkinson or Huntington disease patients. At the ultrastructural level, hydrolase immunoreactivity in senile plaques was localized to extracellular lipofuscin granules similar in morphology to those within degenerating neurons. Two cathepsins that were undetectable in neurons were absent from senile plaques. These results show that lysosome function is altered in cortical neurons in Alzheimer disease. The presence of a broad spectrum of acid hydrolases in senile plaques indicates that lysosomes and their contents may be liberated from cells, principally neurons and their processes, as they degenerate. Because cathepsins can cleave polypeptide sites on APP relevant for beta-amyloid formation, their abnormal extracellular localization and dysregulation in Alzheimer disease can account for the multiple hydrolytic events in beta-amyloid formation. The actions of membrane-degrading acid hydrolases could also explain how the intramembrane portion of APP containing the C terminus of beta-amyloid becomes accessible to proteases.

Full text

PDF
10998

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERG G. G. Histochemical demonstration of acid trimetaphosphatase and tetrametaphosphatase. J Histochem Cytochem. 1960 Mar;8:92–101. doi: 10.1177/8.2.92. [DOI] [PubMed] [Google Scholar]
  2. Bando Y., Kominami E., Katunuma N. Purification and tissue distribution of rat cathepsin L. J Biochem. 1986 Jul;100(1):35–42. doi: 10.1093/oxfordjournals.jbchem.a121703. [DOI] [PubMed] [Google Scholar]
  3. Bernstein H. G., Sormunen R., Järvinen M., Kloss P., Kirschke H., Rinne A. Cathepsin B immunoreactive neurons in rat brain. A combined light and electron microscopic study. J Hirnforsch. 1989;30(3):313–317. [PubMed] [Google Scholar]
  4. Boellaard J. W., Schlote W. Ultrastructural heterogeneity of neuronal lipofuscin in the normal human cerebral cortex. Acta Neuropathol. 1986;71(3-4):285–294. doi: 10.1007/BF00688051. [DOI] [PubMed] [Google Scholar]
  5. Bowen D. M., Flack R. H., Martin R. O., Smith C. B., White P., Davison A. N. Biochemical studies on degenerative neurological disorders. I. Acute experimental encephalitis. J Neurochem. 1974 Jun;22(6):1099–1107. doi: 10.1111/j.1471-4159.1974.tb04342.x. [DOI] [PubMed] [Google Scholar]
  6. Cataldo A. M., Nixon R. A. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci U S A. 1990 May;87(10):3861–3865. doi: 10.1073/pnas.87.10.3861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cataldo A. M., Thayer C. Y., Bird E. D., Wheelock T. R., Nixon R. A. Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer's disease: evidence for a neuronal origin. Brain Res. 1990 Apr 16;513(2):181–192. doi: 10.1016/0006-8993(90)90456-l. [DOI] [PubMed] [Google Scholar]
  8. Dyrks T., Weidemann A., Multhaup G., Salbaum J. M., Lemaire H. G., Kang J., Müller-Hill B., Masters C. L., Beyreuther K. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease. EMBO J. 1988 Apr;7(4):949–957. doi: 10.1002/j.1460-2075.1988.tb02900.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Esch F. S., Keim P. S., Beattie E. C., Blacher R. W., Culwell A. R., Oltersdorf T., McClure D., Ward P. J. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science. 1990 Jun 1;248(4959):1122–1124. doi: 10.1126/science.2111583. [DOI] [PubMed] [Google Scholar]
  10. Goldfischer S. The cytochemical demonstration of lysosomal aryl sulfatase activity by light and electron microscopy. J Histochem Cytochem. 1965 Jul-Aug;13(6):520–523. doi: 10.1177/13.6.520. [DOI] [PubMed] [Google Scholar]
  11. Gonatas N. K., Anderson W., Evangelista I. The contribution of altered synapses in the senile plaque: an electron microscopic study in Alzheimer's dementia. J Neuropathol Exp Neurol. 1967 Jan;26(1):25–39. doi: 10.1097/00005072-196701000-00003. [DOI] [PubMed] [Google Scholar]
  12. Hirsch H. E., Duquette P., Parks M. E. The quantitative histochemistry of multiple sclerosis plaques: acid proteinase and other acid hydrolases. J Neurochem. 1976 Mar;26(3):505–512. doi: 10.1111/j.1471-4159.1976.tb01503.x. [DOI] [PubMed] [Google Scholar]
  13. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  14. Ishiura S., Nishikawa T., Tsukahara T., Momoi T., Ito H., Suzuki K., Sugita H. Distribution of Alzheimer's disease amyloid A4-generating enzymes in rat brain tissue. Neurosci Lett. 1990 Jul 31;115(2-3):329–334. doi: 10.1016/0304-3940(90)90477-q. [DOI] [PubMed] [Google Scholar]
  15. Ishiura S. Proteolytic cleavage of the Alzheimer's disease amyloid A4 precursor protein. J Neurochem. 1991 Feb;56(2):363–369. doi: 10.1111/j.1471-4159.1991.tb08160.x. [DOI] [PubMed] [Google Scholar]
  16. Joachim C. L., Mori H., Selkoe D. J. Amyloid beta-protein deposition in tissues other than brain in Alzheimer's disease. Nature. 1989 Sep 21;341(6239):226–230. doi: 10.1038/341226a0. [DOI] [PubMed] [Google Scholar]
  17. KRIGMAN M. R., FELDMAN R. G., BENSCH K. ALZHEIMER'S PRESENILE DEMENTIA. A HISTOCHEMICAL AND ELECTRON MICROSCOPIC STUDY. Lab Invest. 1965 Apr;14:381–396. [PubMed] [Google Scholar]
  18. Katunuma N., Kominami E. Structures and functions of lysosomal thiol proteinases and their endogenous inhibitor. Curr Top Cell Regul. 1983;22:71–101. doi: 10.1016/b978-0-12-152822-5.50007-5. [DOI] [PubMed] [Google Scholar]
  19. Koh J. Y., Yang L. L., Cotman C. W. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 1990 Nov 19;533(2):315–320. doi: 10.1016/0006-8993(90)91355-k. [DOI] [PubMed] [Google Scholar]
  20. Kominami E., Katunuma N. Immunological studies on cathepsins B and H from rat liver. J Biochem. 1982 Jan;91(1):67–71. doi: 10.1093/oxfordjournals.jbchem.a133709. [DOI] [PubMed] [Google Scholar]
  21. Kominami E., Tsukahara T., Bando Y., Katunuma N. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem. 1985 Jul;98(1):87–93. doi: 10.1093/oxfordjournals.jbchem.a135277. [DOI] [PubMed] [Google Scholar]
  22. Kominami E., Tsukahara T., Bando Y., Katunuma N. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem. 1985 Jul;98(1):87–93. doi: 10.1093/oxfordjournals.jbchem.a135277. [DOI] [PubMed] [Google Scholar]
  23. Kosik K. S., Joachim C. L., Selkoe D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4044–4048. doi: 10.1073/pnas.83.11.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suzuki K., Terry R. D. Fine structural localization of acid phosphatase in senile plaques in Alzheimer's presenile dementia. Acta Neuropathol. 1967 May 5;8(3):276–284. doi: 10.1007/BF00688828. [DOI] [PubMed] [Google Scholar]
  26. Tapper H., Sundler R. Role of lysosomal and cytosolic pH in the regulation of macrophage lysosomal enzyme secretion. Biochem J. 1990 Dec 1;272(2):407–414. doi: 10.1042/bj2720407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Nostrand W. E., Wagner S. L., Suzuki M., Choi B. H., Farrow J. S., Geddes J. W., Cotman C. W., Cunningham D. D. Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid beta-protein precursor. Nature. 1989 Oct 12;341(6242):546–549. doi: 10.1038/341546a0. [DOI] [PubMed] [Google Scholar]
  29. Whitson J. S., Selkoe D. J., Cotman C. W. Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science. 1989 Mar 17;243(4897):1488–1490. doi: 10.1126/science.2928783. [DOI] [PubMed] [Google Scholar]
  30. Yankner B. A., Duffy L. K., Kirschner D. A. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 1990 Oct 12;250(4978):279–282. doi: 10.1126/science.2218531. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES