Skip to main content
Springer logoLink to Springer
. 2017 Feb 7;2017(1):38. doi: 10.1186/s13660-017-1311-5

On modified Dunkl generalization of Szász operators via q-calculus

M Mursaleen 1,2,, Md Nasiruzzaman 1, Abdullah Alotaibi 2
PMCID: PMC5306192  PMID: 28239243

Abstract

The purpose of this paper is to introduce a modification of q-Dunkl generalization of exponential functions. These types of operators enable better error estimation on the interval [12,) than the classical ones. We obtain some approximation results via a well-known Korovkin-type theorem and a weighted Korovkin-type theorem. Further, we obtain the rate of convergence of the operators for functions belonging to the Lipschitz class.

Keywords: q-integers, Dunkl analogue, Szász operator, q-Szász-Mirakjan-Kantorovich, modulus of continuity, Peetre’s K-functional

Introduction and preliminaries

In 1912, Bernstein [1] introduced the following sequence of operators Bn:C[0,1]C[0,1] defined by

Bn(f;x)=k=0n(nk)xk(1x)nkf(kn),x[0,1] 1.1

for nN and fC[0,1].

In 1950, for x0, Szász [2] introduced the operators

Sn(f;x)=enxk=0(nx)kk!f(kn),fC[0,). 1.2

In the field of approximation theory, the application of q-calculus emerged as a new area. The first q-analogue of well-known Bernstein polynomials was introduced by Lupaş by applying the idea of q-integers [3]. In 1997, Phillips [4] considered another q-analogue of the classical Bernstein polynomials. Later on, many authors introduced q-generalizations of various operators and investigated several approximation properties [514].

We now present some basic definitions and notations of the q-calculus which are used in this paper [15].

Definition 1.1

For |q|<1, the q-number [λ]q is defined by

[λ]q={1qλ1q(λC),k=0n1qk=1+q+q2++qn1(λ=nN). 1.3

Definition 1.2

For |q|<1, the q-factorial [n]q! is defined by

[n]q!={1(n=0),k=1n[k]q(nN). 1.4

Our investigation is to construct a linear positive operator generated by a generalization of the exponential function defined by (see [16])

eμ(x)=n=0xnγμ(n),

where

γμ(2k)=22kk!Γ(k+μ+12)Γ(μ+12),

and

γμ(2k+1)=22k+1k!Γ(k+μ+32)Γ(μ+12).

The recursion formula for γμ is given by

γμ(k+1)=(k+1+2μθk+1)γμ(k),k=0,1,2,,

where μ>12 and

θk={0if k2N,1if k2N+1.

Sucu [17] defined a Dunkl analogue of Szász operators via a generalization of the exponential function [16] as follows:

Sn(f;x):=1eμ(nx)k=0(nx)kγμ(k)f(k+2μθkn), 1.5

where x0, fC[0,), μ0, nN.

Cheikh et al. [18] stated the q-Dunkl classical q-Hermite-type polynomials and gave definitions of q-Dunkl analogues of exponential functions and recursion relations for μ>12 and 0<q<1,

eμ,q(x)=n=0xnγμ,q(n),x[0,), 1.6
Eμ,q(x)=n=0qn(n1)2xnγμ,q(n),x[0,), 1.7

where

γμ,q(n)=(q2μ+1,q2)[n+12](q2,q2)[n2](1q)n,nN. 1.8

Some of the special cases of γμ,q(n) are defined as follows:

γμ,q(0)=1,γμ,q(1)=1q2μ+11q,γμ,q(2)=(1q2μ+11q)(1q21q),γμ,q(3)=(1q2μ+11q)(1q21q)(1q2μ+31q),γμ,q(4)=(1q2μ+11q)(1q21q)(1q2μ+31q)(1q41q).

In [19], Içöz and Çekim gave the Dunkl generalization of Szász operators via q-calculus as follows:

Dn,q(f;x)=1eμ,q([n]qx)k=0([n]qx)kγμ,q(k)f(1q2μθk+k1qn) 1.9

for μ>12, x0, 0<q<1 and fC[0,).

Previous studies demonstrate that providing a better error estimation for positive linear operators plays an important role in approximation theory, which allows us to approximate much faster to the function being approximated.

Motivated essentially by Içöz and Çekim’s [19] recent investigation of Dunkl generalization of Szász-Mirakjan operators via q-calculus, we show that our modified operators have better error estimation than those in [19]. We also prove several approximation results and successfully extend the results of [19]. Several other related results are also discussed.

Construction of operators and moments estimation

Let {r[n]q} be a sequence of real-valued continuous functions defined on [0,) with 0r[n]q(x)< such that

r[n]q(x)=x12[n]q,where 12nx<11qn and nN. 2.1

Then, for any 12nx<11qn, 0<q<1, μ>12n and nN, we define

Dn,q(f;x)=1eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ,q(k)f(1q2μθk+k1qn), 2.2

where eμ,q(x), γμ,q are defined in (1.6), (1.8) by [17] and fCζ[0,) with ζ0 and

Cζ[0,)={fC[0,):|f(t)|M(1+t)ζ for some M>0,ζ>0}. 2.3

Lemma 2.1

Let Dn,q(;) be the operators given by (2.2). Then, for each 12nx<11qn, nN, we have the following identities/estimates:

  1. Dn,q(1;x)=1,

  2. Dn,q(t;x)=x12[n]q,

  3. x2+(q2μ[12μ]qeμ,q(q[n]qr[n]q(x))eμ,q([n]qr[n]q(x))1)x[n]q14[n]q2(2q2μ[12μ]qeμ,q(q[n]qr[n]q(x))eμ,q([n]qr[n]q(x))1)Dn,q(t2;x)x2+([1+2μ]q1)x[n]q14[n]q2(2[1+2μ]q1).

Proof

As Dn,q(1;x)=1eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ(k)=1, and

Dn,q(t;x)=1eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ(k)(1q2μθk+k1qn)=1[n]qeμ,q([n]qr[n]q(x))k=1([n]qr[n]q(x))kγμ(k1)=x12[n]q,

then (1) and (2) hold. Similarly,

Dn,q(t2;x)=1eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ(k)(1q2μθk+k1qn)2=1[n]q2eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ(k1)(1q2μθk+k1q)=1[n]q2eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))k+1γμ(k)(1q2μθk+1+k+11q).

From [19] we know that

[2μθk+1+k+1]q=[2μθk+k]q+q2μθk+k[2μ(1)k+1]q. 2.4

Now, by separating to the even and odd terms and using (2.4), we get

Dn,q(t2;x)=1[n]q2eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))k+1γμ(k)(1q2μθk+1+k+11q)+[1+2μ]q[n]q2eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))2k+1γμ(2k)q2μθ2k+2k+[12μ]q[n]q2eμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))2k+2γμ(2k)q2μθ2k+1+2k+1.

Since

[12μ]q[1+2μ]q, 2.5

we have

Dn,q(t2;x)(r[n]q(x))2+r[n]q(x)[12μ]q[n]qeμ,q([n]qr[n]q(x))k=0(q[n]qr[n]q(x))2kγμ(2k)+q2μr[n]q(x)[12μ]q[n]qeμ,q([n]qr[n]q(x))k=0(q[n]qr[n]q(x))2k+1γμ(2k+1)(r[n]q(x))2+q2μ[12μ]qeμ,q(q[n]qr[n]q(x))eμ,q([n]qr[n]q(x))r[n]q(x)[n]q.

On the other hand, we have

Dn,q(t2;x)(r[n]q(x))2+[1+2μ]qr[n]q(x)[n]q.

This completes the proof. □

Lemma 2.2

Let the operators Dn,q(;) be given by (2.2). Then, for each x12n, nN, we have

  1. Dn,q(tx;x)=12[n]q,

  2. Dn,q((tx)2;x)[1+2μ]qx[n]q14[n]q2(2[1+2μ]q1).

Proof

For the proof of this lemma, we use Lemma 2.1. In view of

Dn(tx;x)=Dn(t;x)Dn(1;x),

(1) follows immediately.

Also

Dn((tx)2;x)=Dn(t2;x)2xDn(t;x)+x2Dn(1;x)x2+([1+2μ]q1)x[n]q14[n]q2(2[1+2μ]q1)2x(x12[n]q)+x2[1+2μ]qx[n]q14[n]q2(2[1+2μ]q1).

This proves (2). □

Main results

We obtain the Korovkin-type approximation properties for our operators (see [2022]).

Let CB(R+) be the set of all bounded and continuous functions on R+=[0,), which is a linear normed space with

fCB=supx0|f(x)|.

Let

H:={f:x[0,),f(x)1+x2 is convergent as x}.

Theorem 3.1

Let Dn,q(;) be the operators defined by (2.2). Then, for any function fCζ[0,)H, ζ2,

limnDn,q(f;x)=f(x)

is uniform on each compact subset of [0,), where x[12,b), b>12.

Proof

The proof is based on Lemma 2.1 and the well-known Korovkin theorem regarding the convergence of a sequence of linear positive operators, so it is enough to prove the conditions

limnDn,q(tj;x)=xj,j=0,1,2(as n)

uniformly on [0,1].

Clearly, 1[n]q0 (n) we have

limnDn,q(t;x)=x,limnDn,q(t2;x)=x2.

This completes the proof. □

We recall the weighted spaces of the functions on R+, which are defined as follows:

Pρ(R+)={f:|f(x)|Mfρ(x)},Qρ(R+)={f:fPρ(R+)C[0,)},Qρk(R+)={f:fQρ(R+) and limxf(x)ρ(x)=k(k is a constant)},

where ρ(x)=1+x2 is a weight function and Mf is a constant depending only on f. Note that Qρ(R+) is a normed space with the norm fρ=supx0|f(x)|ρ(x).

Lemma 3.2

[23]

The linear positive operators Ln, n1 act from Qρ(R+)Pρ(R+) if and only if

Ln(φ;x)Kφ(x),

where φ(x)=1+x2, xR+ and K is a positive constant.

Theorem 3.3

[23]

Let {Ln}n1 be a sequence of positive linear operators acting from Qρ(R+)Pρ(R+) and satisfying the condition

limnLn(ρτ)ρτφ=0,τ=0,1,2.

Then, for any function fQρk(R+), we have

limnLn(f;x)fφ=0.

Theorem 3.4

Let Dn,q(;) be the operators defined by (2.2). Then, for each function fQρk(R+), we have

limnDn,q(f;x)fρ=0.

Proof

From Lemma 2.1 and Theorem 3.3, for τ=0, the first condition is fulfilled. Therefore,

limnDn,q(1;x)1ρ=0.

Similarly, from Lemma 2.1 and Theorem 3.3, for τ=1,2 we have that

supx[0,)|Dn,q(t;x)x|1+x212[n]qsupx[0,)11+x2=12[n]q,

which implies that

limnDn,q(t;x)xρ=0,supx[0,)|Dn,q(t2;x)x2|1+x2|[1+2μ]q1|[n]qsupx[0,)x1+x2supx[0,)|Dn,q(t2;x)x2|1+x2+14[n]q2|[1+2μ]q1|supx[0,)11+x2.

Hence

limnDn,q(t2;x)x2ρ=0.

This completes the proof. □

Rate of convergence

Let fCB[0,], the space of all bounded and continuous functions on [0,) and x12n, nN. Then, for δ>0, the modulus of continuity of f denoted by ω(f,δ) gives the maximum oscillation of f in any interval of length not exceeding δ>0, and it is given by

ω(f,δ)=sup|tx|δ|f(t)f(x)|,t[0,). 4.1

It is known that limδ0+ω(f,δ)=0 for fCB[0,), and for any δ>0 we have

|f(t)f(x)|(|tx|δ+1)ω(f,δ). 4.2

Now we calculate the rate of convergence of operators (2.2) by means of modulus of continuity and Lipschitz-type maximal functions.

Theorem 4.1

Let Dn,q(;) be the operators defined by (2.2). Then, for fCB[0,), x12n and nN, we have

|Dn,q(f;x)f(x)|2ω(f;δn,x),

where

δn,x=[1+2μ]qx[n]q14[n]q2(2[1+2μ]q1). 4.3

Proof

We prove it by using (4.1), (4.2) and the Cauchy-Schwarz inequality. We can easily get

|Dn,q(f;x)f(x)|{1+1δ(Dn,q(tx)2;x)12}ω(f;δ)

if we choose δ=δn,x, and by applying the result (2) of Lemma 2.2, we get the result. □

Remark 4.2

For the operators Dn,q(;) defined by (1.9) we may write that, for every fCB[0,), x0 and nN,

|Dn,q(f;x)f(x)|2ω(f;λn,x), 4.4

where by [19] we have

λn,x=Dn,q((tx)2;x)[1+2μ]qx[n]q. 4.5

Now we claim that the error estimation in Theorem 4.1 is better than that of (4.4) provided fCB[0,) and x12n, nN. Indeed, for x12n, μ12n and nN, it is guaranteed that

Dn,q((tx)2;x)Dn,q((tx)2;x), 4.6
[1+2μ]qx[n]q14[n]q2(2[1+2μ]q1)[1+2μ]qx[n]q, 4.7

which implies that

[1+2μ]qx[n]q14[n]q2(2[1+2μ]q1)[1+2μ]qx[n]q. 4.8

Now we give the rate of convergence of the operators Dn,q(f;x) defined in (2.2) in terms of the elements of the usual Lipschitz class LipM(ν).

Let fCB[0,), M>0 and 0<ν1. The class LipM(ν) is defined as

LipM(ν)={f:|f(ζ1)f(ζ2)|M|ζ1ζ2|ν(ζ1,ζ2[0,))}. 4.9

Theorem 4.3

Let Dn,q(;) be the operators defined in (2.2).Then, for each fLipM(ν) (M>0, 0<ν1) satisfying (4.9), we have

|Dn,q(f;x)f(x)|M(δn,x)ν2,

where δn,x is given in Theorem  4.1.

Proof

We prove it by using (4.9) and Hölder’s inequality. We have

|Dn,q(f;x)f(x)||Dn,q(f(t)f(x);x)|Dn,q(|f(t)f(x)|;x)MDn,q(|tx|ν;x).

Therefore,

|Dn,q(f;x)f(x)|M[n]qeμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ,q(k)|1q2μθk+k1qnx|νM[n]qeμ,q([n]qr[n]q(x))k=0(([n]qr[n]q(x))kγμ,q(k))2ν2×(([n]qr[n]q(x))kγμ,q(k))ν2|1q2μθk+k1qnx|νM(neμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ,q(k))2ν2×([n]qeμ,q([n]qr[n]q(x))k=0([n]qr[n]q(x))kγμ,q(k)|1q2μθk+k1qnx|2)ν2=M(Dn,q(tx)2;x)ν2.

This completes the proof. □

Let

CB2(R+)={gCB(R+):g,gCB(R+)}, 4.10

with the norm

gCB2(R+)=gCB(R+)+gCB(R+)+gCB(R+), 4.11

also

gCB(R+)=supxR+|g(x)|. 4.12

Theorem 4.4

Let Dn,q(;) be the operators defined in (2.2). Then for any gCB2(R+) we have

|Dn,q(f;x)f(x)|{(12[n]q)+δn,x2}gCB2(R+),

where δn,x is given in Theorem  4.1.

Proof

Let gCB2(R+). Then, by using the generalized mean value theorem in the Taylor series expansion, we have

g(t)=g(x)+g(x)(tx)+g(ψ)(tx)22,ψ(x,t).

By applying the linearity property on Dn,q, we have

Dn,q(g,x)g(x)=g(x)Dn,q((tx);x)+g(ψ)2Dn,q((tx)2;x),

which implies that

|Dn,q(g;x)g(x)|(12[n]q)gCB(R+)+([1+2μ]qx[n]q14[n]q2(2[1+2μ]q1))gCB(R+)2.

From (4.11) we have gCB[0,)gCB2[0,),

|Dn,q(g;x)g(x)|(12[n]q)gCB2(R+)+([1+2μ]qx[n]q14[n]q2(2[1+2μ]q1))gCB2(R+)2.

The proof follows from (2) of Lemma 2.2. □

The Peetre’s K-functional is defined by

K2(f,δ)=infCB2(R+){(fgCB(R+)+δgCB2(R+)):gW2}, 4.13

where

W2={gCB(R+):g,gCB(R+)}. 4.14

There exists a positive constant C>0 such that K2(f,δ)Cω2(f,δ12), δ>0, where the second-order modulus of continuity is given by

ω2(f,δ12)=sup0<h<δ12supxR+|f(x+2h)2f(x+h)+f(x)|. 4.15

Theorem 4.5

For x12n, nN and fCB(R+), we have

|Dn,q(f;x)f(x)|2M{ω2(f;(1[n]q)+δn,x4)+min(1,(1[n]q)+δn,x4)fCB(R+)},

where M is a positive constant, δn,x is given in Theorem  4.3 and ω2(f;δ) is the second-order modulus of continuity of the function f defined in (4.15).

Proof

We prove this by using Theorem 4.4

|Dn,q(f;x)f(x)||Dn,q(fg;x)|+|Dn,q(g;x)g(x)|+|f(x)g(x)|2fgCB(R+)+δn,x2gCB2(R+)+(12[n]q)gCB(R+).

From (4.11), clearly, we have gCB[0,)gCB2[0,).

Therefore,

|Dn,q(f;x)f(x)|2(fgCB(R+)+(1[n]q)+δn,x4gCB2(R+)),

where δn,x is given in Theorem 4.1.

By taking infimum over all gCB2(R+) and by using (4.13), we get

|Dn,q(f;x)f(x)|2K2(f;(1[n]q)+δn,x4).

Now, for an absolute constant Q>0 in [24], we use the relation

K2(f;δ)Q{ω2(f;δ)+min(1,δ)f}.

This completes the proof. □

Conclusion

The purpose of this paper is to provide a better error estimation of convergence by modification of the q-Dunkl analogue of Szász operators. Here we have defined a Dunkl generalization of these modified operators. This type of modification enables better error estimation on the interval [1/2,) if compared to the classical Dunkl-Szász operators [19]. We obtained some approximation results via the well-known Korovkin-type theorem. We have also calculated the rate of convergence of operators by means of modulus of continuity and Lipschitz-type maximal functions.

Acknowledgements

The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

Footnotes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors of the manuscript have read and agreed to its content and are accountable for all aspects of the accuracy and integrity of the manuscript.

Contributor Information

M Mursaleen, Email: mursaleenm@gmail.com.

Md Nasiruzzaman, Email: nasir3489@gmail.com.

Abdullah Alotaibi, Email: mathker11@hotmail.com.

References

  • 1.Bernstein SN. Démonstration du théoréme de Weierstrass fondée sur le calcul des probabilités. Commun. Soc. Math. Kharkow. 2012;2(13):1–2. [Google Scholar]
  • 2.Szász O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 1950;45:239–245. doi: 10.6028/jres.045.024. [DOI] [Google Scholar]
  • 3.Lupaş A. Seminar on Numerical and Statistical Calculus. Cluj-Napoca: University of Cluj-Napoca; 1987. A q-analogue of the Bernstein operator; pp. 85–92. [Google Scholar]
  • 4.Phillips GM. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997;4:511–518. [Google Scholar]
  • 5.Mursaleen M, Ansari KJ. Approximation of q-Stancu-beta operators which preserve x2. Bull. Malays. Math. Sci. Soc. 2015 [Google Scholar]
  • 6.Mursaleen M, Khan A. Statistical approximation properties of modified q-Stancu-beta operators. Bull. Malays. Math. Sci. Soc. (2) 2013;36(3):683–690. [Google Scholar]
  • 7.Mursaleen M, Khan A. Generalized q-Bernstein-Schurer operators and some approximation theorems. J. Funct. Spaces Appl. 2013;2013 doi: 10.1155/2013/719834. [DOI] [Google Scholar]
  • 8.Mursaleen M, Khan F, Khan A. Approximation properties for modified q-Bernstein-Kantorovich operators. Numer. Funct. Anal. Optim. 2015;36(9):1178–1197. doi: 10.1080/01630563.2015.1056914. [DOI] [Google Scholar]
  • 9.Mursaleen M, Khan F, Khan A. Approximation properties for King’s type modified q-Bernstein-Kantorovich operators. Math. Methods Appl. Sci. 2015;38:5242–5252. doi: 10.1002/mma.3454. [DOI] [Google Scholar]
  • 10.Mursaleen M, Khan T, Nasiruzzaman M. Approximating properties of generalized Dunkl analogue of Szász operators. Appl. Math. Inf. Sci. 2016;10(6):1–8. doi: 10.18576/amis/100633. [DOI] [Google Scholar]
  • 11.Örkcü M, Doğru O. Weighted statistical approximation by Kantorovich type q-Szász Mirakjan operators. Appl. Math. Comput. 2011;217:7913–7919. [Google Scholar]
  • 12.Örkcü M, Doğru O. q-Szász-Mirakyan-Kantorovich type operators preserving some test functions. Appl. Math. Lett. 2011;24:1588–1593. doi: 10.1016/j.aml.2011.04.001. [DOI] [Google Scholar]
  • 13.Wafi A, Rao N, Rai D. Approximation properties by generalized-Baskakov-Kantorovich-Stancu type operators. Appl. Math. Inf. Sci. Lett. 2016;4(3):111–118. doi: 10.18576/amisl/040303. [DOI] [Google Scholar]
  • 14.Wafi A, Rao N. A generalization of Szász-type operators which preserves constant and quadratic test functions. Cogent Math. 2016;3 doi: 10.1080/23311835.2016.1227023. [DOI] [Google Scholar]
  • 15.Aral A, Gupta V, Agarwal RP. Applications of q-Calculus in Operator Theory. New York: Springer; 2013. [Google Scholar]
  • 16.Rosenblum M. Generalized Hermite polynomials and the Bose-like oscillator calculus. Oper. Theory, Adv. Appl. 1994;73:369–396. [Google Scholar]
  • 17.Sucu S. Dunkl analogue of Szász operators. Appl. Math. Comput. 2014;244:42–48. [Google Scholar]
  • 18.Cheikh B, Gaied Y, Zaghouani M. A q-Dunkl-classical q-Hermite type polynomials. Georgian Math. J. 2014;21(2):125–137. [Google Scholar]
  • 19.İçōz G, Çekim B. Dunkl generalization of Szász operators via q-calculus. J. Inequal. Appl. 2015;2015 doi: 10.1186/s13660-015-0809-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Braha NL, Srivastava HM, Mohiuddine SA. A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean. Appl. Math. Comput. 2014;228:162–169. [Google Scholar]
  • 21.Edely OHH, Mohiuddine SA, Noman AK. Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 2010;23(11):1382–1387. doi: 10.1016/j.aml.2010.07.004. [DOI] [Google Scholar]
  • 22.Mohiuddine SA. An application of almost convergence in approximation theorems. Appl. Math. Lett. 2011;24(11):1856–1860. doi: 10.1016/j.aml.2011.05.006. [DOI] [Google Scholar]
  • 23.Gadzhiev AD. The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of PP Korovkin. Sov. Math. Dokl. 1974;15(5):1433–1436. [Google Scholar]
  • 24.Ciupa A. A class of integral Favard-Szász type operators. Stud. Univ. Babeş-Bolyai, Math. 1995;40(1):39–47. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES