Skip to main content
Springer logoLink to Springer
. 2016 Jun 14;76(6):325. doi: 10.1140/epjc/s10052-016-4156-z

Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at s=8TeV

V Khachatryan 1, A M Sirunyan 1, A Tumasyan 1, W Adam 2, E Asilar 2, T Bergauer 2, J Brandstetter 2, E Brondolin 2, M Dragicevic 2, J Erö 2, M Flechl 2, M Friedl 2, R Frühwirth 2, V M Ghete 2, C Hartl 2, N Hörmann 2, J Hrubec 2, M Jeitler 2, V Knünz 2, A König 2, M Krammer 2, I Krätschmer 2, D Liko 2, T Matsushita 2, I Mikulec 2, D Rabady 2, B Rahbaran 2, H Rohringer 2, J Schieck 2, R Schöfbeck 2, J Strauss 2, W Treberer-Treberspurg 2, W Waltenberger 2, C -E Wulz 2, V Mossolov 3, N Shumeiko 3, J Suarez Gonzalez 3, S Alderweireldt 4, T Cornelis 4, E A De Wolf 4, X Janssen 4, A Knutsson 4, J Lauwers 4, S Luyckx 4, M Van De Klundert 4, H Van Haevermaet 4, P Van Mechelen 4, N Van Remortel 4, A Van Spilbeeck 4, S Abu Zeid 5, F Blekman 5, J D’Hondt 5, N Daci 5, I De Bruyn 5, K Deroover 5, N Heracleous 5, J Keaveney 5, S Lowette 5, L Moreels 5, A Olbrechts 5, Q Python 5, D Strom 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, G P Van Onsem 5, I Van Parijs 5, P Barria 6, H Brun 6, C Caillol 6, B Clerbaux 6, G De Lentdecker 6, G Fasanella 6, L Favart 6, A Grebenyuk 6, G Karapostoli 6, T Lenzi 6, A Léonard 6, T Maerschalk 6, A Marinov 6, L Perniè 6, A Randle-conde 6, T Reis 6, T Seva 6, C Vander Velde 6, P Vanlaer 6, R Yonamine 6, F Zenoni 6, F Zhang 6, K Beernaert 7, L Benucci 7, A Cimmino 7, S Crucy 7, D Dobur 7, A Fagot 7, G Garcia 7, M Gul 7, J Mccartin 7, A A Ocampo Rios 7, D Poyraz 7, D Ryckbosch 7, S Salva 7, M Sigamani 7, N Strobbe 7, M Tytgat 7, W Van Driessche 7, E Yazgan 7, N Zaganidis 7, S Basegmez 8, C Beluffi 8, O Bondu 8, S Brochet 8, G Bruno 8, A Caudron 8, L Ceard 8, G G Da Silveira 8, C Delaere 8, D Favart 8, L Forthomme 8, A Giammanco 8, J Hollar 8, A Jafari 8, P Jez 8, M Komm 8, V Lemaitre 8, A Mertens 8, M Musich 8, C Nuttens 8, L Perrini 8, A Pin 8, K Piotrzkowski 8, A Popov 8, L Quertenmont 8, M Selvaggi 8, M Vidal Marono 8, N Beliy 9, G H Hammad 9, W L Aldá Júnior 10, F L Alves 10, G A Alves 10, L Brito 10, M Correa Martins Junior 10, M Hamer 10, C Hensel 10, C Mora Herrera 10, A Moraes 10, M E Pol 10, P Rebello Teles 10, E Belchior Batista Das Chagas 11, W Carvalho 11, J Chinellato 11, A Custódio 11, E M Da Costa 11, D De Jesus Damiao 11, C De Oliveira Martins 11, S Fonseca De Souza 11, L M Huertas Guativa 11, H Malbouisson 11, D Matos Figueiredo 11, L Mundim 11, H Nogima 11, W L Prado Da Silva 11, A Santoro 11, A Sznajder 11, E J Tonelli Manganote 11, A Vilela Pereira 11, S Ahuja 12, C A Bernardes 12, A De Souza Santos 12, S Dogra 12, T R Fernandez Perez Tomei 12, E M Gregores 12, P G Mercadante 12, C S Moon 12, S F Novaes 12, Sandra S Padula 12, D Romero Abad 12, J C Ruiz Vargas 12, A Aleksandrov 13, R Hadjiiska 13, P Iaydjiev 13, M Rodozov 13, S Stoykova 13, G Sultanov 13, M Vutova 13, A Dimitrov 14, I Glushkov 14, L Litov 14, B Pavlov 14, P Petkov 14, M Ahmad 15, J G Bian 15, G M Chen 15, H S Chen 15, M Chen 15, T Cheng 15, R Du 15, C H Jiang 15, R Plestina 15, F Romeo 15, S M Shaheen 15, A Spiezia 15, J Tao 15, C Wang 15, Z Wang 15, H Zhang 15, C Asawatangtrakuldee 16, Y Ban 16, Q Li 16, S Liu 16, Y Mao 16, S J Qian 16, D Wang 16, Z Xu 16, C Avila 17, A Cabrera 17, L F Chaparro Sierra 17, C Florez 17, J P Gomez 17, B Gomez Moreno 17, J C Sanabria 17, N Godinovic 18, D Lelas 18, I Puljak 18, P M Ribeiro Cipriano 18, Z Antunovic 19, M Kovac 19, V Brigljevic 20, K Kadija 20, J Luetic 20, S Micanovic 20, L Sudic 20, A Attikis 21, G Mavromanolakis 21, J Mousa 21, C Nicolaou 21, F Ptochos 21, P A Razis 21, H Rykaczewski 21, M Bodlak 22, M Finger 22, M Finger Jr 22, Y Assran 23, S Elgammal 23, A Ellithi Kamel 23, M A Mahmoud 23, Y Mohammed 23, B Calpas 24, M Kadastik 24, M Murumaa 24, M Raidal 24, A Tiko 24, C Veelken 24, P Eerola 25, J Pekkanen 25, M Voutilainen 25, J Härkönen 26, V Karimäki 26, R Kinnunen 26, T Lampén 26, K Lassila-Perini 26, S Lehti 26, T Lindén 26, P Luukka 26, T Mäenpää 26, T Peltola 26, E Tuominen 26, J Tuominiemi 26, E Tuovinen 26, L Wendland 26, J Talvitie 27, T Tuuva 27, M Besancon 28, F Couderc 28, M Dejardin 28, D Denegri 28, B Fabbro 28, J L Faure 28, C Favaro 28, F Ferri 28, S Ganjour 28, A Givernaud 28, P Gras 28, G Hamel de Monchenault 28, P Jarry 28, E Locci 28, M Machet 28, J Malcles 28, J Rander 28, A Rosowsky 28, M Titov 28, A Zghiche 28, I Antropov 29, S Baffioni 29, F Beaudette 29, P Busson 29, L Cadamuro 29, E Chapon 29, C Charlot 29, T Dahms 29, O Davignon 29, N Filipovic 29, A Florent 29, R Granier de Cassagnac 29, S Lisniak 29, L Mastrolorenzo 29, P Miné 29, I N Naranjo 29, M Nguyen 29, C Ochando 29, G Ortona 29, P Paganini 29, P Pigard 29, S Regnard 29, R Salerno 29, J B Sauvan 29, Y Sirois 29, T Strebler 29, Y Yilmaz 29, A Zabi 29, J-L Agram 30, J Andrea 30, A Aubin 30, D Bloch 30, J-M Brom 30, M Buttignol 30, E C Chabert 30, N Chanon 30, C Collard 30, E Conte 30, X Coubez 30, J-C Fontaine 30, D Gelé 30, U Goerlach 30, C Goetzmann 30, A-C Le Bihan 30, J A Merlin 30, K Skovpen 30, P Van Hove 30, S Gadrat 31, S Beauceron 32, C Bernet 32, G Boudoul 32, E Bouvier 32, C A Carrillo Montoya 32, R Chierici 32, D Contardo 32, B Courbon 32, P Depasse 32, H El Mamouni 32, J Fan 32, J Fay 32, S Gascon 32, M Gouzevitch 32, B Ille 32, F Lagarde 32, I B Laktineh 32, M Lethuillier 32, L Mirabito 32, A L Pequegnot 32, S Perries 32, J D Ruiz Alvarez 32, D Sabes 32, L Sgandurra 32, V Sordini 32, M Vander Donckt 32, P Verdier 32, S Viret 32, T Toriashvili 33, I Bagaturia 34, C Autermann 35, S Beranek 35, M Edelhoff 35, L Feld 35, A Heister 35, M K Kiesel 35, K Klein 35, M Lipinski 35, A Ostapchuk 35, M Preuten 35, F Raupach 35, S Schael 35, J F Schulte 35, T Verlage 35, H Weber 35, B Wittmer 36, V Zhukov 35, M Ata 36, M Brodski 36, E Dietz-Laursonn 36, D Duchardt 36, M Endres 36, M Erdmann 36, S Erdweg 36, T Esch 36, R Fischer 36, A Güth 36, T Hebbeker 36, C Heidemann 36, K Hoepfner 36, D Klingebiel 36, S Knutzen 36, P Kreuzer 36, M Merschmeyer 36, A Meyer 36, P Millet 36, M Olschewski 36, K Padeken 36, P Papacz 36, T Pook 36, M Radziej 36, H Reithler 36, M Rieger 36, F Scheuch 36, L Sonnenschein 36, D Teyssier 36, S Thüer 36, V Cherepanov 37, Y Erdogan 37, G Flügge 37, H Geenen 37, M Geisler 37, F Hoehle 37, B Kargoll 37, T Kress 37, Y Kuessel 37, A Künsken 37, J Lingemann 37, A Nehrkorn 37, A Nowack 37, I M Nugent 37, C Pistone 37, O Pooth 37, A Stahl 37, M Aldaya Martin 38, I Asin 38, N Bartosik 38, O Behnke 38, U Behrens 38, A J Bell 38, K Borras 38, A Burgmeier 38, A Cakir 38, A Campbell 38, S Choudhury 38, F Costanza 38, C Diez Pardos 38, G Dolinska 38, S Dooling 38, T Dorland 38, G Eckerlin 38, D Eckstein 38, T Eichhorn 38, G Flucke 38, E Gallo 38, J Garay Garcia 38, A Geiser 38, A Gizhko 38, P Gunnellini 38, J Hauk 38, M Hempel 38, H Jung 38, A Kalogeropoulos 38, O Karacheban 38, M Kasemann 38, P Katsas 38, J Kieseler 38, C Kleinwort 38, I Korol 38, W Lange 38, J Leonard 38, K Lipka 38, A Lobanov 38, W Lohmann 38, R Mankel 38, I Marfin 38, I-A Melzer-Pellmann 38, A B Meyer 38, G Mittag 38, J Mnich 38, A Mussgiller 38, S Naumann-Emme 38, A Nayak 38, E Ntomari 38, H Perrey 38, D Pitzl 38, R Placakyte 38, A Raspereza 38, B Roland 38, M Ö Sahin 38, P Saxena 38, T Schoerner-Sadenius 38, M Schröder 38, C Seitz 38, S Spannagel 38, K D Trippkewitz 38, R Walsh 38, C Wissing 38, V Blobel 39, M Centis Vignali 39, A R Draeger 39, J Erfle 39, E Garutti 39, K Goebel 39, D Gonzalez 39, M Görner 39, J Haller 39, M Hoffmann 39, R S Höing 39, A Junkes 39, R Klanner 39, R Kogler 39, T Lapsien 39, T Lenz 39, I Marchesini 39, D Marconi 39, M Meyer 39, D Nowatschin 39, J Ott 39, F Pantaleo 39, T Peiffer 39, A Perieanu 39, N Pietsch 39, J Poehlsen 39, D Rathjens 39, C Sander 39, H Schettler 39, P Schleper 39, E Schlieckau 39, A Schmidt 39, J Schwandt 39, V Sola 39, H Stadie 39, G Steinbrück 39, H Tholen 39, D Troendle 39, E Usai 39, L Vanelderen 39, A Vanhoefer 39, B Vormwald 39, M Akbiyik 40, C Barth 40, C Baus 40, J Berger 40, C Böser 40, E Butz 40, T Chwalek 40, F Colombo 40, W De Boer 40, A Descroix 40, A Dierlamm 40, S Fink 40, F Frensch 40, R Friese 40, M Giffels 40, A Gilbert 40, D Haitz 40, F Hartmann 40, S M Heindl 40, U Husemann 40, I Katkov 40, A Kornmayer 40, P Lobelle Pardo 40, B Maier 40, H Mildner 40, M U Mozer 40, T Müller 40, Th Müller 40, M Plagge 40, G Quast 40, K Rabbertz 40, S Röcker 40, F Roscher 40, G Sieber 40, H J Simonis 40, F M Stober 40, R Ulrich 40, J Wagner-Kuhr 40, S Wayand 40, M Weber 40, T Weiler 40, C Wöhrmann 40, R Wolf 40, G Anagnostou 41, G Daskalakis 41, T Geralis 41, V A Giakoumopoulou 41, A Kyriakis 41, D Loukas 41, A Psallidas 41, I Topsis-Giotis 41, A Agapitos 42, S Kesisoglou 42, A Panagiotou 42, N Saoulidou 42, E Tziaferi 42, I Evangelou 43, G Flouris 43, C Foudas 43, P Kokkas 43, N Loukas 43, N Manthos 43, I Papadopoulos 43, E Paradas 43, J Strologas 43, G Bencze 44, C Hajdu 44, A Hazi 44, P Hidas 44, D Horvath 44, F Sikler 44, V Veszpremi 44, G Vesztergombi 44, A J Zsigmond 44, N Beni 45, S Czellar 45, J Karancsi 45, J Molnar 45, Z Szillasi 45, M Bartók 46, A Makovec 46, P Raics 46, Z L Trocsanyi 46, B Ujvari 46, P Mal 47, K Mandal 47, D K Sahoo 47, N Sahoo 47, S K Swain 47, S Bansal 48, S B Beri 48, V Bhatnagar 48, R Chawla 48, R Gupta 48, U Bhawandeep 48, A K Kalsi 48, A Kaur 48, M Kaur 48, R Kumar 48, A Mehta 48, M Mittal 48, J B Singh 48, G Walia 48, Ashok Kumar 49, A Bhardwaj 49, B C Choudhary 49, R B Garg 49, A Kumar 49, S Malhotra 49, M Naimuddin 49, N Nishu 49, K Ranjan 49, R Sharma 49, V Sharma 49, S Bhattacharya 50, K Chatterjee 50, S Dey 50, S Dutta 50, Sa Jain 50, N Majumdar 50, A Modak 50, K Mondal 50, S Mukherjee 50, S Mukhopadhyay 50, A Roy 50, D Roy 50, S Roy Chowdhury 50, S Sarkar 50, M Sharan 50, A Abdulsalam 51, R Chudasama 51, D Dutta 51, V Jha 51, V Kumar 51, A K Mohanty 51, L M Pant 51, P Shukla 51, A Topkar 51, T Aziz 52, S Banerjee 52, S Bhowmik 52, R M Chatterjee 52, R K Dewanjee 52, S Dugad 52, S Ganguly 52, S Ghosh 52, M Guchait 52, A Gurtu 52, G Kole 52, S Kumar 52, B Mahakud 52, M Maity 52, G Majumder 52, K Mazumdar 52, S Mitra 52, G B Mohanty 52, B Parida 52, T Sarkar 52, N Sur 52, B Sutar 52, N Wickramage 52, S Chauhan 53, S Dube 53, S Sharma 53, H Bakhshiansohi 54, H Behnamian 54, S M Etesami 54, A Fahim 54, R Goldouzian 54, M Khakzad 54, M Mohammadi Najafabadi 54, M Naseri 54, S Paktinat Mehdiabadi 54, F Rezaei Hosseinabadi 54, B Safarzadeh 54, M Zeinali 54, M Felcini 55, M Grunewald 55, M Abbrescia 56, C Calabria 56, C Caputo 56, A Colaleo 56, D Creanza 56, L Cristella 56, N De Filippis 56, M De Palma 56, L Fiore 56, G Iaselli 56, G Maggi 56, M Maggi 56, G Miniello 56, S My 56, S Nuzzo 56, A Pompili 56, G Pugliese 56, R Radogna 56, A Ranieri 56, G Selvaggi 56, L Silvestris 56, R Venditti 56, P Verwilligen 56, G Abbiendi 57, C Battilana 57, A C Benvenuti 57, D Bonacorsi 57, S Braibant-Giacomelli 57, L Brigliadori 57, R Campanini 57, P Capiluppi 57, A Castro 57, F R Cavallo 57, S S Chhibra 57, G Codispoti 57, M Cuffiani 57, G M Dallavalle 57, F Fabbri 57, A Fanfani 57, D Fasanella 57, P Giacomelli 57, C Grandi 57, L Guiducci 57, S Marcellini 57, G Masetti 57, A Montanari 57, F L Navarria 57, A Perrotta 57, A M Rossi 57, T Rovelli 57, G P Siroli 57, N Tosi 57, R Travaglini 57, G Cappello 58, M Chiorboli 58, S Costa 58, F Giordano 58, R Potenza 58, A Tricomi 58, C Tuve 58, G Barbagli 59, V Ciulli 59, C Civinini 59, R D’Alessandro 59, E Focardi 59, S Gonzi 59, V Gori 59, P Lenzi 59, M Meschini 59, S Paoletti 59, G Sguazzoni 59, A Tropiano 59, L Viliani 59, L Benussi 60, S Bianco 60, F Fabbri 60, D Piccolo 60, F Primavera 60, V Calvelli 61, F Ferro 61, M Lo Vetere 61, M R Monge 61, E Robutti 61, S Tosi 61, L Brianza 62, M E Dinardo 62, S Fiorendi 62, S Gennai 62, R Gerosa 62, A Ghezzi 62, P Govoni 62, S Malvezzi 62, R A Manzoni 62, B Marzocchi 62, D Menasce 62, L Moroni 62, M Paganoni 62, D Pedrini 62, S Ragazzi 62, N Redaelli 62, T Tabarelli de Fatis 62, S Buontempo 63, N Cavallo 63, S Di Guida 63, M Esposito 63, F Fabozzi 63, A O M Iorio 63, G Lanza 63, L Lista 63, S Meola 63, M Merola 63, P Paolucci 63, C Sciacca 63, F Thyssen 63, P Azzi 64, N Bacchetta 64, L Benato 64, D Bisello 64, A Boletti 64, R Carlin 64, P Checchia 64, M Dall’Osso 64, T Dorigo 64, S Fantinel 64, F Fanzago 64, F Gasparini 64, U Gasparini 64, F Gonella 64, A Gozzelino 64, S Lacaprara 64, M Margoni 64, A T Meneguzzo 64, F Montecassiano 64, J Pazzini 64, N Pozzobon 64, P Ronchese 64, F Simonetto 64, E Torassa 64, M Tosi 64, M Zanetti 64, P Zotto 64, A Zucchetta 64, G Zumerle 64, A Braghieri 65, A Magnani 65, P Montagna 65, S P Ratti 65, V Re 65, C Riccardi 65, P Salvini 65, I Vai 65, P Vitulo 65, L Alunni Solestizi 66, M Biasini 66, G M Bilei 66, D Ciangottini 66, L Fanò 66, P Lariccia 66, G Mantovani 66, M Menichelli 66, A Saha 66, A Santocchia 66, K Androsov 67, P Azzurri 67, G Bagliesi 67, J Bernardini 67, T Boccali 67, R Castaldi 67, M A Ciocci 67, R Dell’Orso 67, S Donato 67, G Fedi 67, L Foà 67, A Giassi 67, M T Grippo 67, F Ligabue 67, T Lomtadze 67, L Martini 67, A Messineo 67, F Palla 67, A Rizzi 67, A Savoy-Navarro 67, A T Serban 67, P Spagnolo 67, R Tenchini 67, G Tonelli 67, A Venturi 67, P G Verdini 67, L Barone 68, F Cavallari 68, G D’imperio 68, D Del Re 68, M Diemoz 68, S Gelli 68, C Jorda 68, E Longo 68, F Margaroli 68, P Meridiani 68, G Organtini 68, R Paramatti 68, F Preiato 68, S Rahatlou 68, C Rovelli 68, F Santanastasio 68, P Traczyk 68, N Amapane 69, R Arcidiacono 69, S Argiro 69, M Arneodo 69, R Bellan 69, C Biino 69, N Cartiglia 69, M Costa 69, R Covarelli 69, A Degano 69, N Demaria 69, L Finco 69, B Kiani 69, C Mariotti 69, S Maselli 69, E Migliore 69, V Monaco 69, E Monteil 69, M M Obertino 69, L Pacher 69, N Pastrone 69, M Pelliccioni 69, G L Pinna Angioni 69, F Ravera 69, A Romero 69, M Ruspa 69, R Sacchi 69, A Solano 69, A Staiano 69, U Tamponi 69, S Belforte 70, V Candelise 70, M Casarsa 70, F Cossutti 70, G Della Ricca 70, B Gobbo 70, C La Licata 70, M Marone 70, A Schizzi 70, A Zanetti 70, A Kropivnitskaya 71, S K Nam 71, D H Kim 72, G N Kim 72, M S Kim 72, D J Kong 72, S Lee 72, Y D Oh 72, A Sakharov 72, D C Son 72, J A Brochero Cifuentes 73, H Kim 73, T J Kim 73, S Song 74, S Choi 75, Y Go 75, D Gyun 75, B Hong 75, M Jo 75, H Kim 75, Y Kim 75, B Lee 75, K Lee 75, K S Lee 75, S Lee 75, S K Park 75, Y Roh 75, H D Yoo 76, M Choi 77, H Kim 77, J H Kim 77, J S H Lee 77, I C Park 77, G Ryu 77, M S Ryu 77, Y Choi 78, J Goh 78, D Kim 78, E Kwon 78, J Lee 78, I Yu 78, A Juodagalvis 79, J Vaitkus 79, I Ahmed 80, Z A Ibrahim 80, J R Komaragiri 80, M A B Md Ali 80, F Mohamad Idris 80, W A T Wan Abdullah 80, M N Yusli 80, E Casimiro Linares 81, H Castilla-Valdez 81, E De La Cruz-Burelo 81, I Heredia-De La Cruz 81, A Hernandez-Almada 81, R Lopez-Fernandez 81, A Sanchez-Hernandez 81, S Carrillo Moreno 82, F Vazquez Valencia 82, I Pedraza 83, H A Salazar Ibarguen 83, A Morelos Pineda 84, D Krofcheck 85, P H Butler 86, A Ahmad 87, M Ahmad 87, Q Hassan 87, H R Hoorani 87, W A Khan 87, T Khurshid 87, M Shoaib 87, H Bialkowska 88, M Bluj 88, B Boimska 88, T Frueboes 88, M Górski 88, M Kazana 88, K Nawrocki 88, K Romanowska-Rybinska 88, M Szleper 88, P Zalewski 88, G Brona 89, K Bunkowski 89, A Byszuk 89, K Doroba 89, A Kalinowski 89, M Konecki 89, J Krolikowski 89, M Misiura 89, M Olszewski 89, M Walczak 89, P Bargassa 90, C Beirão Da Cruz E Silva 90, A Di Francesco 90, P Faccioli 90, P G Ferreira Parracho 90, M Gallinaro 90, N Leonardo 90, L Lloret Iglesias 90, F Nguyen 90, J Rodrigues Antunes 90, J Seixas 90, O Toldaiev 90, D Vadruccio 90, J Varela 90, P Vischia 90, S Afanasiev 91, P Bunin 91, M Gavrilenko 91, I Golutvin 91, I Gorbunov 91, A Kamenev 91, V Karjavin 91, V Konoplyanikov 91, A Lanev 91, A Malakhov 91, V Matveev 91, P Moisenz 91, V Palichik 91, V Perelygin 91, S Shmatov 91, S Shulha 91, N Skatchkov 91, V Smirnov 91, A Zarubin 91, V Golovtsov 92, Y Ivanov 92, V Kim 92, E Kuznetsova 92, P Levchenko 92, V Murzin 92, V Oreshkin 92, I Smirnov 92, V Sulimov 92, L Uvarov 92, S Vavilov 92, A Vorobyev 92, Yu Andreev 93, A Dermenev 93, S Gninenko 93, N Golubev 93, A Karneyeu 93, M Kirsanov 93, N Krasnikov 93, A Pashenkov 93, D Tlisov 93, A Toropin 93, V Epshteyn 94, V Gavrilov 94, N Lychkovskaya 94, V Popov 94, l Pozdnyakov 94, G Safronov 94, A Spiridonov 94, E Vlasov 94, A Zhokin 94, A Bylinkin 95, V Andreev 96, M Azarkin 96, I Dremin 96, M Kirakosyan 96, A Leonidov 96, G Mesyats 96, S V Rusakov 96, A Baskakov 97, A Belyaev 97, E Boos 97, M Dubinin 97, L Dudko 97, A Ershov 97, A Gribushin 97, V Klyukhin 97, O Kodolova 97, I Lokhtin 97, I Myagkov 97, S Obraztsov 97, S Petrushanko 97, V Savrin 97, A Snigirev 97, I Azhgirey 98, I Bayshev 98, S Bitioukov 98, V Kachanov 98, A Kalinin 98, D Konstantinov 98, V Krychkine 98, V Petrov 98, R Ryutin 98, A Sobol 98, L Tourtchanovitch 98, S Troshin 98, N Tyurin 98, A Uzunian 98, A Volkov 98, P Adzic 99, J Milosevic 99, V Rekovic 99, J Alcaraz Maestre 100, E Calvo 100, M Cerrada 100, M Chamizo Llatas 100, N Colino 100, B De La Cruz 100, A Delgado Peris 100, D Domínguez Vázquez 100, A Escalante Del Valle 100, C Fernandez Bedoya 100, J P Fernández Ramos 100, J Flix 100, M C Fouz 100, P Garcia-Abia 100, O Gonzalez Lopez 100, S Goy Lopez 100, J M Hernandez 100, M I Josa 100, E Navarro De Martino 100, A Pérez-Calero Yzquierdo 100, J Puerta Pelayo 100, A Quintario Olmeda 100, I Redondo 100, L Romero 100, J Santaolalla 100, M S Soares 100, C Albajar 101, J F de Trocóniz 101, M Missiroli 101, D Moran 101, J Cuevas 102, J Fernandez Menendez 102, S Folgueras 102, I Gonzalez Caballero 102, E Palencia Cortezon 102, J M Vizan Garcia 102, I J Cabrillo 103, A Calderon 103, J R Castiñeiras De Saa 103, P De Castro Manzano 103, J Duarte Campderros 103, M Fernandez 103, J Garcia-Ferrero 103, G Gomez 103, A Lopez Virto 103, J Marco 103, R Marco 103, C Martinez Rivero 103, F Matorras 103, F J Munoz Sanchez 103, J Piedra Gomez 103, T Rodrigo 103, A Y Rodríguez-Marrero 103, A Ruiz-Jimeno 103, L Scodellaro 103, N Trevisani 103, I Vila 103, R Vilar Cortabitarte 103, D Abbaneo 104, E Auffray 104, G Auzinger 104, M Bachtis 104, P Baillon 104, A H Ball 104, D Barney 104, A Benaglia 104, J Bendavid 104, L Benhabib 104, J F Benitez 104, G M Berruti 104, P Bloch 104, A Bocci 104, A Bonato 104, C Botta 104, H Breuker 104, T Camporesi 104, R Castello 104, G Cerminara 104, M D’Alfonso 104, D d’Enterria 104, A Dabrowski 104, V Daponte 104, A David 104, M De Gruttola 104, F De Guio 104, A De Roeck 104, S De Visscher 104, E Di Marco 104, M Dobson 104, M Dordevic 104, B Dorney 104, T du Pree 104, M Dünser 104, N Dupont 104, A Elliott-Peisert 104, G Franzoni 104, W Funk 104, D Gigi 104, K Gill 104, D Giordano 104, M Girone 104, F Glege 104, R Guida 104, S Gundacker 104, M Guthoff 104, J Hammer 104, P Harris 104, J Hegeman 104, V Innocente 104, P Janot 104, H Kirschenmann 104, M J Kortelainen 104, K Kousouris 104, K Krajczar 104, P Lecoq 104, C Lourenço 104, M T Lucchini 104, N Magini 104, L Malgeri 104, M Mannelli 104, A Martelli 104, L Masetti 104, F Meijers 104, S Mersi 104, E Meschi 104, F Moortgat 104, S Morovic 104, M Mulders 104, M V Nemallapudi 104, H Neugebauer 104, S Orfanelli 104, L Orsini 104, L Pape 104, E Perez 104, M Peruzzi 104, A Petrilli 104, G Petrucciani 104, A Pfeiffer 104, D Piparo 104, A Racz 104, G Rolandi 104, M Rovere 104, M Ruan 104, H Sakulin 104, C Schäfer 104, C Schwick 104, M Seidel 104, A Sharma 104, P Silva 104, M Simon 104, P Sphicas 104, J Steggemann 104, B Stieger 104, M Stoye 104, Y Takahashi 104, D Treille 104, A Triossi 104, A Tsirou 104, G I Veres 104, N Wardle 104, H K Wöhri 104, A Zagozdzinska 104, W D Zeuner 104, W Bertl 105, K Deiters 105, W Erdmann 105, R Horisberger 105, Q Ingram 105, H C Kaestli 105, D Kotlinski 105, U Langenegger 105, D Renker 106, T Rohe 105, F Bachmair 106, L Bäni 106, L Bianchini 106, B Casal 106, G Dissertori 106, M Dittmar 106, M Donegà 106, P Eller 106, C Grab 106, C Heidegger 106, D Hits 106, J Hoss 106, G Kasieczka 106, W Lustermann 106, B Mangano 106, M Marionneau 106, P Martinez Ruiz del Arbol 106, M Masciovecchio 106, D Meister 106, F Micheli 106, P Musella 106, F Nessi-Tedaldi 106, F Pandolfi 106, J Pata 106, F Pauss 106, L Perrozzi 106, M Quittnat 106, M Rossini 106, A Starodumov 106, M Takahashi 106, V R Tavolaro 106, K Theofilatos 106, R Wallny 106, T K Aarrestad 107, C Amsler 107, L Caminada 107, M F Canelli 107, V Chiochia 107, A De Cosa 107, C Galloni 107, A Hinzmann 107, T Hreus 107, B Kilminster 107, C Lange 107, J Ngadiuba 107, D Pinna 107, P Robmann 107, F J Ronga 107, D Salerno 107, Y Yang 107, M Cardaci 108, K H Chen 108, T H Doan 108, Sh Jain 108, R Khurana 108, M Konyushikhin 108, C M Kuo 108, W Lin 108, Y J Lu 108, S S Yu 108, Arun Kumar 109, R Bartek 109, P Chang 109, Y H Chang 109, Y W Chang 109, Y Chao 109, K F Chen 109, P H Chen 109, C Dietz 109, F Fiori 109, U Grundler 109, W-S Hou 109, Y Hsiung 109, Y F Liu 109, R-S Lu 109, M Miñano Moya 109, E Petrakou 109, J f Tsai 109, Y M Tzeng 109, B Asavapibhop 110, K Kovitanggoon 110, G Singh 110, N Srimanobhas 110, N Suwonjandee 110, A Adiguzel 111, M N Bakirci 111, S Cerci 111, Z S Demiroglu 111, C Dozen 111, I Dumanoglu 111, E Eskut 111, S Girgis 111, G Gokbulut 111, Y Guler 111, E Gurpinar 111, I Hos 111, E E Kangal 111, A Kayis Topaksu 111, G Onengut 111, K Ozdemir 111, A Polatoz 111, M Vergili 111, C Zorbilmez 111, I V Akin 112, B Bilin 112, S Bilmis 112, B Isildak 112, G Karapinar 112, M Yalvac 112, M Zeyrek 112, E Gülmez 113, M Kaya 113, O Kaya 113, E A Yetkin 113, T Yetkin 113, K Cankocak 114, S Sen 114, F I Vardarlı 114, B Grynyov 115, L Levchuk 116, P Sorokin 116, R Aggleton 117, F Ball 117, L Beck 117, J J Brooke 117, E Clement 117, D Cussans 117, H Flacher 117, J Goldstein 117, M Grimes 117, G P Heath 117, H F Heath 117, J Jacob 117, L Kreczko 117, C Lucas 117, Z Meng 117, D M Newbold 117, S Paramesvaran 117, A Poll 117, T Sakuma 117, S Seif El Nasr-storey 117, S Senkin 117, D Smith 117, V J Smith 117, K W Bell 118, A Belyaev 118, C Brew 118, R M Brown 118, L Calligaris 118, D Cieri 118, D J A Cockerill 118, J A Coughlan 118, K Harder 118, S Harper 118, E Olaiya 118, D Petyt 118, C H Shepherd-Themistocleous 118, A Thea 118, I R Tomalin 118, T Williams 118, W J Womersley 119, S D Worm 118, M Baber 119, R Bainbridge 119, O Buchmuller 119, A Bundock 119, D Burton 119, S Casasso 119, M Citron 119, D Colling 119, L Corpe 119, N Cripps 119, P Dauncey 119, G Davies 119, A De Wit 119, M Della Negra 119, P Dunne 119, A Elwood 119, W Ferguson 119, J Fulcher 119, D Futyan 119, G Hall 119, G Iles 119, M Kenzie 119, R Lane 119, R Lucas 119, L Lyons 119, A-M Magnan 119, S Malik 119, J Nash 119, A Nikitenko 119, J Pela 119, M Pesaresi 119, K Petridis 119, D M Raymond 119, A Richards 119, A Rose 119, C Seez 119, A Tapper 119, K Uchida 119, M Vazquez Acosta 119, T Virdee 119, S C Zenz 119, J E Cole 120, P R Hobson 120, A Khan 120, P Kyberd 120, D Leggat 120, D Leslie 120, I D Reid 120, P Symonds 120, L Teodorescu 120, M Turner 120, A Borzou 121, K Call 121, J Dittmann 121, K Hatakeyama 121, H Liu 121, N Pastika 121, O Charaf 122, S I Cooper 122, C Henderson 122, P Rumerio 122, D Arcaro 123, A Avetisyan 123, T Bose 123, C Fantasia 123, D Gastler 123, P Lawson 123, D Rankin 123, C Richardson 123, J Rohlf 123, J St John 123, L Sulak 123, D Zou 123, J Alimena 124, E Berry 124, S Bhattacharya 124, D Cutts 124, N Dhingra 124, A Ferapontov 124, A Garabedian 124, J Hakala 124, U Heintz 124, E Laird 124, G Landsberg 124, Z Mao 124, M Narain 124, S Piperov 124, S Sagir 124, R Syarif 124, R Breedon 125, G Breto 125, M Calderon De La Barca Sanchez 125, S Chauhan 125, M Chertok 125, J Conway 125, R Conway 125, P T Cox 125, R Erbacher 125, M Gardner 125, W Ko 125, R Lander 125, M Mulhearn 125, D Pellett 125, J Pilot 125, F Ricci-Tam 125, S Shalhout 125, J Smith 125, M Squires 125, D Stolp 125, M Tripathi 125, S Wilbur 125, R Yohay 125, R Cousins 126, P Everaerts 126, C Farrell 126, J Hauser 126, M Ignatenko 126, D Saltzberg 126, E Takasugi 126, V Valuev 126, M Weber 126, K Burt 127, R Clare 127, J Ellison 127, J W Gary 127, G Hanson 127, J Heilman 127, M Ivova PANEVA 127, P Jandir 127, E Kennedy 127, F Lacroix 127, O R Long 127, A Luthra 127, M Malberti 127, M Olmedo Negrete 127, A Shrinivas 127, H Wei 127, S Wimpenny 127, B R Yates 127, J G Branson 128, G B Cerati 128, S Cittolin 128, R T D’Agnolo 128, M Derdzinski 128, A Holzner 128, R Kelley 128, D Klein 128, J Letts 128, I Macneill 128, D Olivito 128, S Padhi 128, M Pieri 128, M Sani 128, V Sharma 128, S Simon 128, M Tadel 128, A Vartak 128, S Wasserbaech 128, C Welke 128, F Würthwein 128, A Yagil 128, G Zevi Della Porta 128, J Bradmiller-Feld 129, C Campagnari 129, A Dishaw 129, V Dutta 129, K Flowers 129, M Franco Sevilla 129, P Geffert 129, C George 129, F Golf 129, L Gouskos 129, J Gran 129, J Incandela 129, N Mccoll 129, S D Mullin 129, J Richman 129, D Stuart 129, I Suarez 129, C West 129, J Yoo 129, D Anderson 130, A Apresyan 130, A Bornheim 130, J Bunn 130, Y Chen 130, J Duarte 130, A Mott 130, H B Newman 130, C Pena 130, M Pierini 130, M Spiropulu 130, J R Vlimant 130, S Xie 130, R Y Zhu 130, M B Andrews 131, V Azzolini 131, A Calamba 131, B Carlson 131, T Ferguson 131, M Paulini 131, J Russ 131, M Sun 131, H Vogel 131, I Vorobiev 131, J P Cumalat 132, W T Ford 132, A Gaz 132, F Jensen 132, A Johnson 132, M Krohn 132, T Mulholland 132, U Nauenberg 132, K Stenson 132, S R Wagner 132, J Alexander 133, A Chatterjee 133, J Chaves 133, J Chu 133, S Dittmer 133, N Eggert 133, N Mirman 133, G Nicolas Kaufman 133, J R Patterson 133, A Rinkevicius 133, A Ryd 133, L Skinnari 133, L Soffi 133, W Sun 133, S M Tan 133, W D Teo 133, J Thom 133, J Thompson 133, J Tucker 133, Y Weng 133, P Wittich 133, S Abdullin 134, M Albrow 134, J Anderson 134, G Apollinari 134, S Banerjee 134, L A T Bauerdick 134, A Beretvas 134, J Berryhill 134, P C Bhat 134, G Bolla 134, K Burkett 134, J N Butler 134, H W K Cheung 134, F Chlebana 134, S Cihangir 134, V D Elvira 134, I Fisk 134, J Freeman 134, E Gottschalk 134, L Gray 134, D Green 134, S Grünendahl 134, O Gutsche 134, J Hanlon 134, D Hare 134, R M Harris 134, S Hasegawa 134, J Hirschauer 134, Z Hu 134, S Jindariani 134, M Johnson 134, U Joshi 134, A W Jung 134, B Klima 134, B Kreis 134, S Kwan 134, S Lammel 134, J Linacre 134, D Lincoln 134, R Lipton 134, T Liu 134, R Lopes De Sá 134, J Lykken 134, K Maeshima 134, J M Marraffino 134, V I Martinez Outschoorn 134, S Maruyama 134, D Mason 134, P McBride 134, P Merkel 134, K Mishra 134, S Mrenna 134, S Nahn 134, C Newman-Holmes 134, V O’Dell 134, K Pedro 134, O Prokofyev 134, G Rakness 134, E Sexton-Kennedy 134, A Soha 134, W J Spalding 134, L Spiegel 134, L Taylor 134, S Tkaczyk 134, N V Tran 134, L Uplegger 134, E W Vaandering 134, C Vernieri 134, M Verzocchi 134, R Vidal 134, H A Weber 134, A Whitbeck 134, F Yang 134, D Acosta 135, P Avery 135, P Bortignon 135, D Bourilkov 135, A Carnes 135, M Carver 135, D Curry 135, S Das 135, G P Di Giovanni 135, R D Field 135, I K Furic 135, S V Gleyzer 135, J Hugon 135, J Konigsberg 135, A Korytov 135, J F Low 135, P Ma 135, K Matchev 135, H Mei 135, P Milenovic 135, G Mitselmakher 135, D Rank 135, R Rossin 135, L Shchutska 135, M Snowball 135, D Sperka 135, N Terentyev 135, L Thomas 135, J Wang 135, S Wang 135, J Yelton 135, S Hewamanage 136, S Linn 136, P Markowitz 136, G Martinez 136, J L Rodriguez 136, A Ackert 137, J R Adams 137, T Adams 137, A Askew 137, J Bochenek 137, B Diamond 137, J Haas 137, S Hagopian 137, V Hagopian 137, K F Johnson 137, A Khatiwada 137, H Prosper 137, M Weinberg 137, M M Baarmand 138, V Bhopatkar 138, S Colafranceschi 138, M Hohlmann 138, H Kalakhety 138, D Noonan 138, T Roy 138, F Yumiceva 138, M R Adams 139, L Apanasevich 139, D Berry 139, R R Betts 139, I Bucinskaite 139, R Cavanaugh 139, O Evdokimov 139, L Gauthier 139, C E Gerber 139, D J Hofman 139, P Kurt 139, C O’Brien 139, l D Sandoval Gonzalez 139, C Silkworth 139, P Turner 139, N Varelas 139, Z Wu 139, M Zakaria 139, B Bilki 140, W Clarida 140, K Dilsiz 140, S Durgut 140, R P Gandrajula 140, M Haytmyradov 140, V Khristenko 140, J-P Merlo 140, H Mermerkaya 140, A Mestvirishvili 140, A Moeller 140, J Nachtman 140, H Ogul 140, Y Onel 140, F Ozok 140, A Penzo 140, C Snyder 140, E Tiras 140, J Wetzel 140, K Yi 140, I Anderson 141, B A Barnett 141, B Blumenfeld 141, N Eminizer 141, D Fehling 141, L Feng 141, A V Gritsan 141, P Maksimovic 141, C Martin 141, M Osherson 141, J Roskes 141, A Sady 141, U Sarica 141, M Swartz 141, M Xiao 141, Y Xin 141, C You 141, P Baringer 142, A Bean 142, G Benelli 142, C Bruner 142, R P Kenny III 142, D Majumder 142, M Malek 142, M Murray 142, S Sanders 142, R Stringer 142, Q Wang 142, A Ivanov 143, K Kaadze 143, S Khalil 143, M Makouski 143, Y Maravin 143, A Mohammadi 143, L K Saini 143, N Skhirtladze 143, S Toda 143, D Lange 144, F Rebassoo 144, D Wright 144, C Anelli 145, A Baden 145, O Baron 145, A Belloni 145, B Calvert 145, S C Eno 145, C Ferraioli 145, J A Gomez 145, N J Hadley 145, S Jabeen 145, R G Kellogg 145, T Kolberg 145, J Kunkle 145, Y Lu 145, A C Mignerey 145, Y H Shin 145, A Skuja 145, M B Tonjes 145, S C Tonwar 145, A Apyan 146, R Barbieri 146, A Baty 146, K Bierwagen 146, S Brandt 146, W Busza 146, I A Cali 146, Z Demiragli 146, L Di Matteo 146, G Gomez Ceballos 146, M Goncharov 146, D Gulhan 146, Y Iiyama 146, G M Innocenti 146, M Klute 146, D Kovalskyi 146, Y S Lai 146, Y-J Lee 146, A Levin 146, P D Luckey 146, A C Marini 146, C Mcginn 146, C Mironov 146, S Narayanan 146, X Niu 146, C Paus 146, D Ralph 146, C Roland 146, G Roland 146, J Salfeld-Nebgen 146, G S F Stephans 146, K Sumorok 146, M Varma 146, D Velicanu 146, J Veverka 146, J Wang 146, T W Wang 146, B Wyslouch 146, M Yang 146, V Zhukova 146, B Dahmes 147, A Evans 147, A Finkel 147, A Gude 147, P Hansen 147, S Kalafut 147, S C Kao 147, K Klapoetke 147, Y Kubota 147, Z Lesko 147, J Mans 147, S Nourbakhsh 147, N Ruckstuhl 147, R Rusack 147, N Tambe 147, J Turkewitz 147, J G Acosta 148, S Oliveros 148, E Avdeeva 149, K Bloom 149, S Bose 149, D R Claes 149, A Dominguez 149, C Fangmeier 149, R Gonzalez Suarez 149, R Kamalieddin 149, J Keller 149, D Knowlton 149, I Kravchenko 149, J Lazo-Flores 149, F Meier 149, J Monroy 149, F Ratnikov 149, J E Siado 149, G R Snow 149, M Alyari 150, J Dolen 150, J George 150, A Godshalk 150, C Harrington 150, I Iashvili 150, J Kaisen 150, A Kharchilava 150, A Kumar 150, S Rappoccio 150, B Roozbahani 150, G Alverson 151, E Barberis 151, D Baumgartel 151, M Chasco 151, A Hortiangtham 151, A Massironi 151, D M Morse 151, D Nash 151, T Orimoto 151, R Teixeira De Lima 151, D Trocino 151, R-J Wang 151, D Wood 151, J Zhang 151, K A Hahn 152, A Kubik 152, N Mucia 152, N Odell 152, B Pollack 152, A Pozdnyakov 152, M Schmitt 152, S Stoynev 152, K Sung 152, M Trovato 152, M Velasco 152, A Brinkerhoff 153, N Dev 153, M Hildreth 153, C Jessop 153, D J Karmgard 153, N Kellams 153, K Lannon 153, S Lynch 153, N Marinelli 153, F Meng 153, C Mueller 153, Y Musienko 153, T Pearson 153, M Planer 153, A Reinsvold 153, R Ruchti 153, G Smith 153, S Taroni 153, N Valls 153, M Wayne 153, M Wolf 153, A Woodard 153, L Antonelli 154, J Brinson 154, B Bylsma 154, L S Durkin 154, S Flowers 154, A Hart 154, C Hill 154, R Hughes 154, W Ji 154, K Kotov 154, T Y Ling 154, B Liu 154, W Luo 154, D Puigh 154, M Rodenburg 154, B L Winer 154, H W Wulsin 154, O Driga 155, P Elmer 155, J Hardenbrook 155, P Hebda 155, S A Koay 155, P Lujan 155, D Marlow 155, T Medvedeva 155, M Mooney 155, J Olsen 155, C Palmer 155, P Piroué 155, X Quan 155, H Saka 155, D Stickland 155, C Tully 155, J S Werner 157, A Zuranski 155, S Malik 156, V E Barnes 157, D Benedetti 157, D Bortoletto 157, L Gutay 157, M K Jha 157, M Jones 157, K Jung 157, D H Miller 157, N Neumeister 157, B C Radburn-Smith 157, X Shi 157, I Shipsey 157, D Silvers 157, J Sun 157, A Svyatkovskiy 157, F Wang 157, W Xie 157, L Xu 157, N Parashar 158, J Stupak 158, A Adair 159, B Akgun 159, Z Chen 159, K M Ecklund 159, F J M Geurts 159, M Guilbaud 159, W Li 159, B Michlin 159, M Northup 159, B P Padley 159, R Redjimi 159, J Roberts 159, J Rorie 159, Z Tu 159, J Zabel 159, B Betchart 160, A Bodek 160, P de Barbaro 160, R Demina 160, Y Eshaq 160, T Ferbel 160, M Galanti 160, A Garcia-Bellido 160, J Han 160, A Harel 160, O Hindrichs 160, A Khukhunaishvili 160, G Petrillo 160, P Tan 160, M Verzetti 160, S Arora 161, A Barker 161, J P Chou 161, C Contreras-Campana 161, E Contreras-Campana 161, D Duggan 161, D Ferencek 161, Y Gershtein 161, R Gray 161, E Halkiadakis 161, D Hidas 161, E Hughes 161, S Kaplan 161, R Kunnawalkam Elayavalli 161, A Lath 161, K Nash 161, S Panwalkar 161, M Park 161, S Salur 161, S Schnetzer 161, D Sheffield 161, S Somalwar 161, R Stone 161, S Thomas 161, P Thomassen 161, M Walker 161, M Foerster 162, G Riley 162, K Rose 162, S Spanier 162, A York 162, O Bouhali 163, A Castaneda Hernandez 163, M Dalchenko 163, M De Mattia 163, A Delgado 163, S Dildick 163, R Eusebi 163, J Gilmore 163, T Kamon 163, V Krutelyov 163, R Mueller 163, I Osipenkov 163, Y Pakhotin 163, R Patel 163, A Perloff 163, A Rose 163, A Safonov 163, A Tatarinov 163, K A Ulmer 163, N Akchurin 164, C Cowden 164, J Damgov 164, C Dragoiu 164, P R Dudero 164, J Faulkner 164, S Kunori 164, K Lamichhane 164, S W Lee 164, T Libeiro 164, S Undleeb 164, I Volobouev 164, E Appelt 165, A G Delannoy 165, S Greene 165, A Gurrola 165, R Janjam 165, W Johns 165, C Maguire 165, Y Mao 165, A Melo 165, H Ni 165, P Sheldon 165, B Snook 165, S Tuo 165, J Velkovska 165, Q Xu 165, M W Arenton 166, B Cox 166, B Francis 166, J Goodell 166, R Hirosky 166, A Ledovskoy 166, H Li 166, C Lin 166, C Neu 166, T Sinthuprasith 166, X Sun 166, Y Wang 166, E Wolfe 166, J Wood 166, F Xia 166, C Clarke 167, R Harr 167, P E Karchin 167, C Kottachchi Kankanamge Don 167, P Lamichhane 167, J Sturdy 167, D A Belknap 168, D Carlsmith 168, M Cepeda 168, S Dasu 168, L Dodd 168, S Duric 168, E Friis 168, B Gomber 168, M Grothe 168, R Hall-Wilton 168, M Herndon 168, A Hervé 168, P Klabbers 168, A Lanaro 168, A Levine 168, K Long 168, R Loveless 168, A Mohapatra 168, I Ojalvo 168, T Perry 168, G A Pierro 168, G Polese 168, T Ruggles 168, T Sarangi 168, A Savin 168, A Sharma 168, N Smith 168, W H Smith 168, D Taylor 168, N Woods 168, [Authorinst]The CMS Collaboration 169,
PMCID: PMC5321276  PMID: 28280439

Abstract

A measurement of the forward–backward asymmetry AFB of oppositely charged lepton pairs (μμ and ee) produced via Z/γ boson exchange in pp collisions at s=8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.7fb-1 collected with the CMS detector at the LHC. The measurement of AFB is performed for dilepton masses between 40GeV and 2TeV and for dilepton rapidity up to 5. The AFB measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.

Introduction

A forward–backward asymmetry AFB in the production of Drell–Yan lepton pairs arises from the presence of both vector and axial-vector couplings of electroweak bosons to fermions. For a given dilepton invariant mass M the differential cross section at the parton level at leading order (LO) can be expressed as

dσd(cosθ)=A(1+cos2θ)+Bcosθ, 1

where θ represents the emission angle of the negatively charged lepton relative to the quark momentum in the rest frame of the dilepton system, and A and B are parameters that depend on M, the electroweak mixing angle θW, and the weak isospin and charge of the incoming and outgoing fermions. The AFB quantity is

AFB=σF-σBσF+σB, 2

where σF (σB) is the total cross section for the forward (backward) events, defined by cosθ>0 (cosθ<0). AFB depends on M , quark flavor, and the electroweak mixing angle θW. Near the Z boson mass peak AFB is close to zero because of the small value of the lepton vector coupling to Z bosons. Due to weak-electromagnetic interference, AFB is large and negative for M below the Z peak (M<80 GeV) and large and positive above the Z peak (M>110 GeV). Deviations from the SM predictions could result from the presence of additional neutral gauge bosons [15], quark-lepton compositeness [6], supersymmetric particles, or extra dimensions [7]. Around the Z peak, measurements of AFB can also be used to extract the effective weak mixing angle sin2θlepteff(mZ) [8, 9] as well as the u and d quark weak coupling [912].

To reduce the uncertainties due to the transverse momentum (pT) of the incoming quarks, this measurement uses the Collins–Soper (CS) frame [13]. In this frame, θCS is defined as the angle between the negatively charged lepton momentum and the axis that bisects the angle between the quark momentum direction and the opposite direction to the antiquark momentum. In the laboratory frame, θCS is calculated as

cosθCS=2(P1+P2--P1-P2+)Q2(Q2+QT2), 3

where Q and QT represent the four-momentum and the pT of the dilepton system, respectively, while P1 (P2) represents the four-momentum of - (+) with Pi±=(Ei±Pz,i)/2, and Ei represents the energy of the lepton.

The production of lepton pairs arises mainly from the annihilation of valence quarks with sea antiquarks. At the LHC, the quark and antiquark directions are not known for each collision because both beams consist of protons. In general, however, the quark carries more momentum than the antiquark as the antiquark must originate from the parton sea. Therefore, on average, the dilepton system is boosted in the direction of the valence quark [2, 14, 15]. In this paper, the positive axis is defined to be along the boost direction using the following transformation on an event-by-event basis:

cosθCS|Qz|QzcosθCS, 4

where Qz is the longitudinal momentum of the dilepton system. The fraction of events for which the quark direction is the same as the direction of the boost depends on M and increases with the absolute value of the dilepton rapidity y=12ln[(E+Qz)/(E-Qz)].

AFB was previously measured by the CMS [16] and ATLAS [8] experiments using data samples collected at s=7 TeV. The techniques used in this analysis are similar to those used in the previous CMS measurement at 7TeV, and the rapidity range of this measurement is extended to |y|=5 by including electrons in the forward calorimeter. Since large Z boson rapidities are better correlated with the direction of the valence quark, AFB is measured as a function of the invariant mass and the rapidity of Z boson. The number of selected events at 8TeV is about a factor of 5 larger than the number of events at 7TeV. The larger data sample collected at 8TeV extends the measurement of AFB in the high-mass region where the number of events in the 7TeV samples was limited.

The CMS detector

The central feature of the CMS detector is a superconducting solenoid with a 6 m internal diameter that provides a magnetic field of 3.8 T. Inside the solenoid are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Extensive forward calorimetry complements the coverage provided by the barrel and endcap calorimeters. Outside the solenoid, gas-ionization detectors embedded in the steel flux-return yoke are used to measure muons.

Muons are measured in the pseudorapidity [17] range |η|<2.4 using the silicon tracker and muon systems. The muon detectors are constructed using three different technologies: drift tubes for |η|<1.2, cathode strip chambers for 0.9<|η|<2.4, and resistive plate chambers for |η|<1.6. Matching muons to tracks measured in the silicon tracker results in a relative pT resolution of 1.3–2.0 % in the barrel, and better than 6 % in the endcaps for muons with 20<pT<100 GeV  [18].

Electrons are measured in the range |η|<2.5 using both the tracking system and the ECAL. The energy resolution for electrons produced in Z boson decays varies from 1.7 % in the barrel (|η|<1.48) to 4.5 % in the endcap region (|η|>1.48) [19].

The η coverage of the CMS detector is extended up to |η|=5 by the hadron forward (HF) calorimeters [20]. The HF is constructed from steel absorbers as shower initiators and quartz fibers as active material. Half of the fibers extend over the full depth of the detector (long fibers) while the other half does not cover the first 22 cm measured from the front face (short fibers). As the two sets of fibers are read out separately, electromagnetic showers can be distinguished from hadronic showers. Electrons in the HF are measured in the range 3<|η|<5. The energy resolution for HF electrons is 32% at 50 GeV and the angular resolution is up to 0.05 in η and ϕ.

The CMS experiment uses a two-level trigger system. The level-1 trigger, composed of custom-designed processing hardware, selects events of interest based on information from the muon detectors and calorimeters [21]. The high-level trigger is software based, running a faster version of the offline reconstruction code on the full detector information, including the tracker [22]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [17].

Data and Monte Carlo samples

The analysis is performed using the pp collision data collected with the CMS detector in 2012 at a center-of-mass energy of 8TeV. The total integrated luminosity for the entire data set amounts to 19.7fb-1.

The simulated Z/γμμ and Z/γee signal samples are generated at next-to-leading order (NLO) based in perturbative QCD using powheg  [2326] with the NLO CT10 parton distribution functions (PDFs) [27]. The parton showering and hadronization are simulated using the pythia v6.426 [28] generator with the Z2* tune [29].

The background processes, Z/γττ, tt¯, tW- and t¯W+, are generated with powheg, and the inclusive W production with MadGraph  [30]. The backgrounds from WW, WZ, and ZZ production are generated using pythia v6.426. The τ lepton decays in the background processes are simulated using tauola  [31]. For all processes, the detector response is simulated using a detailed description of the CMS detector based on the Geant4 package [32, 33]. GFlash [34] is used for the HF [35], and the event reconstruction is performed with the same algorithms used for the data. The data contain multiple proton-proton interactions per bunch crossing (pileup) with an average value of 21. A pileup reweighting procedure is applied to the Monte Carlo (MC) simulation so the pileup distribution matches the data.

Event selection

The inclusive dimuon events are selected by a trigger that requires two muons, the leading one with pT>17 GeV and the second one with pT>8 GeV. Muons are selected offline by the standard CMS muon identification [18], which requires at least one muon chamber hit in the global muon track fit, muon segments in at least two muon stations, at least one hit in the pixel detector, more than five inner tracker layers with hits, and a χ2/dof less than 10 for the global muon fit. The vertex with the highest pT sum for associated tracks is defined as the primary vertex. The distance between the muon candidate trajectories and the primary vertex is required to be smaller than 2 mm in the transverse plane and smaller than 5 mm in the longitudinal direction. This requirement significantly reduces the background from cosmic ray muons. To remove muons produced during jet fragmentation, the fractional track isolation, pTtrk/pTμ, is required to be smaller than 0.1, where the sum runs over all tracks originating from the primary vertex within a cone of ΔR=(Δη)2+(Δϕ)2<0.3 around each of the identified muons. Furthermore, each selected muon is required to have pT>20 GeV and |η|<2.4.

The inclusive dielectron events include electrons that are produced in an extended lepton pseudorapidity range, |η|<5. The events with dilepton rapidity |y|<2.4 are selected by triggers requiring either two central electrons, |η|<2.4, with pT>17 and >8 GeV. In the analysis, the central electron candidates are required to have pT>20 GeV, have opposite charges, and to pass tight electron identification and isolation requirements [19]. The particle-flow (PF) event reconstruction [36, 37] consists of reconstructing and identifying each single particle with an optimized combination of all subdetector information. In this process, the identification of the particle type (photon, electron, muon, charged hadron, or neutral hadron) plays an important role in the determination of the particle direction and energy. The fractional PF isolation, pTPF/pTe, is required to be smaller than 0.1. The isolation variable is calculated from the energy sum over all PF candidates within a cone of size 0.3 around each of the identified electrons. This sample is used to perform the analysis for the dilepton rapidity, |y|<2.4.

For the events with dilepton rapidity 2.4<|y|<5, one central (|η|<2.4) and one forward electron (3<|η|<5) are used requiring one isolated central electron trigger with pT>27 GeV. In this case, the central (forward) electron candidate is required to have pT>30(20) GeV, as well as to pass stringent electron identification and isolation requirements (forward electron identification criteria). Since the 2.4<|η|<3 region is outside the tracker acceptance, the particle flow variables cannot be defined in this region, and are therefore not considered in the analysis.

Forward electron identification requires an isolated energy deposition in the core of the electron cluster [35]. To reduce the contribution from jet background in the forward region, both electrons are required to be on the same side of the detector (ηe1ηe2>0) and almost back-to-back in azimuth (|Δϕ(e1,e2)|>2π/3). Because the forward electrons do not have charge information, no oppositely-charged requirement is applied.

After the event selection, about 8 million μμ and 4.3 million ee events remain with |y|<2.4, and 0.5 million ee events with 2.4<|y|<5.

Simulation corrections

Scale factors are derived and applied to the simulated MC events to account for differences of detector performance between data and the MC simulation. The efficiencies for the trigger, lepton identification, and lepton isolation are measured using a “tag-and-probe” method [18, 38] for both data and simulation. For the muon channel, the trigger efficiency is measured as a function of η only because the pT dependence is small for pT>20 GeV, while in the electron channel the efficiency is measured as a function of ET and η. Similarly, the identification and isolation efficiencies for the muons and central electrons are measured in data and simulation as a function of pT and η. The difference in trigger efficiency between data and simulation is 1 to 4 % for the muon channel, depending on the η region, and less than 1 % for the electron channel. The differences in the muon identification and isolation efficiencies are less than 1 %. For central electrons the absolute difference is at the 5 % level in the barrel and increases to 12 % in the endcaps.

For forward electrons, the identification efficiency is measured as a function of ET and η. We observe a 9 to 18 % difference in the identification efficiency between data and MC simulation. The simulation is scaled using these factors to reproduce the data. Forward electrons require additional corrections in GFlash simulation in order to match the η distribution of the data. Furthermore, a global normalization factor of 0.6±0.3 is applied to account for the data/simulation difference in the event yields in HF. Its effect is negligible in the AFB(M) measurement.

The muon momentum and electron energy scales are affected by detector misalignment and imperfect calibration, which cause a degradation in the energy measurements and the measurement of AFB. Such effects are accounted for by additional momentum and energy corrections, which are applied to muons and electrons in both data and simulation. It has been shown [18] that the primary cause of the bias in the reconstructed muon momentum is the misalignment of the tracking system. To remove this bias, a muon momentum correction extracted as a function of the muon charge, θ, and ϕ [39] is applied for both data and MC events. The overall muon momentum corrections for muons with pT>20 GeV are measured with a precision of better than 0.04 %.

For central electrons, an ECAL energy scale correction is applied. The overall energy scale for electrons with 7<pT<70 GeV is measured with a precision better than 0.3 % [19]. To match the electron energy resolutions in data, additional smearing is applied to the energy of central electrons in the MC simulation. For forward electrons, the predicted energy of the forward electron is calculated using Z boson mass, the energy of the central electron, and the angular positions (η and ϕ) of central and forward electrons. The residual energy correction for forward electrons as a function of ET is determined from the average of the difference between the reconstructed energy and the predicted energy. The corrections are applied in data and simulation as a function of the electron ET and range between -18 and +12%. The energy resolution of the forward electron in the MC simulation is also tuned to match the data.

Backgrounds

The main sources of background at low dilepton mass are Z/γττ events and QCD dijet events. At high mass, the main background comes from tt¯ events. The diboson (WW, WZ, ZZ) and inclusive W background contributions are small. The background contributions are estimated versus M and |y| for forward and backward events separately. Different techniques are used for estimating background contributions in the muon and electron channels.

The dijet background for both muon and electron channels is estimated with data using control samples. The muon channel uses same-sign dimuon events, which mostly originate from dijets. The number of same-sign events after the final event selection is used to estimate the number of opposite-sign dimuons that originate from dijets. The contribution from the diboson process is subtracted in the same-sign events using MC simulation.

For the electron channel, a fitting method is used to estimate the dijet background. The kinematic distributions of the ee events in M and |y| are fitted with a sum of signal and background templates to determine the dijet component. A signal template is extracted from the Z/γee MC sample. A background template is obtained by applying a reverse isolation requirement on the central electron in data. The signal and non-QCD background contributions, which are small, are subtracted from this nonisolated electron sample using simulation.

In the muon channel, events selected with an eμ lepton pair are used to determine the backgrounds from Z/γττ, tt¯, W+jets, tW, and t¯W processes. The overall rate for μμ background events from these sources is proportional to the number of observed eμ events. Here the MC simulation is used only to calculate the ratio of μμ events to eμ events. The background rate extracted with this method is in agreement with MC simulations. Therefore, in the electron analysis these backgrounds are modelled using MC simulations. The cross sections are normalized to next-to-next-to-leading-order fewz predictions [40]. Also, the diboson backgrounds are estimated using MC simulation for both the muon and electron channels.

The invariant mass distributions for μμ and ee events in two |y| ranges are shown in Fig. 1, which also includes the MC predictions for both the signal and estimated background contributions. The MC predictions are normalized using the cross section for each process and the integrated luminosity.

Fig. 1.

Fig. 1

The invariant mass distributions for μμ (top), ee (middle) events with |y|<2.4, and ee (bottom) events with 2.4<|y|<5. Only statistical uncertainties are shown. The stacked histograms represent the sum of the background contributions and the signal

Measurement of AFB

The events are assigned to “forward” or “backward” regions as described in Sect. 1. AFB is measured using the selected dilepton events as a function of dilepton mass in five regions of absolute rapidity: 0–1, 1–1.25, 1.25–1.5, 1.5–2.4, and 2.4–5. The most forward region has 7 mass bins, from 40 to 320GeV, while the others have 14 mass bins, which extend up to 2TeV. The shape of the cosθCS distribution changes with the dilepton mass. The top panels of Fig. 2 show the reconstructed cosθCS distributions for μμ events, with |y|<2.4. The bottom panels show the reconstructed cosθCS for ee events, with |y|<2.4. The distributions are shown for two representative mass bins. The distributions for dilepton events at low mass (50<M<60 GeV) are shown in the left panels, and at high mass (133<M<150 GeV) in the right panels. The MC predictions are normalized to the integrated luminosity of the data.

Fig. 2.

Fig. 2

The cosθCS distributions for μμ (ee) events are presented in the top (bottom) panels. Only statistical uncertainties are shown. The stacked histograms represent the sum of the background contribution and the signal. The plots on the left (right) panels correspond to events with dilepton invariant mass 50<M<60 GeV (133<M<150 GeV)

The measured AFB value is corrected for detector resolution, acceptance, efficiency, and the effect of final-state QED radiation (FSR) using a two-dimensional iterative unfolding method based on Bayes’ theorem [41, 42]. The AFB quantity is unfolded to account for event migration between mass bins and between positive and negative cosθCS region. Since the ambiguity of the quark direction is more significant at low |y|, the dilution of AFB is larger in the low |y| region.

Systematic uncertainties

The largest experimental uncertainties originate from the background estimation, the electron energy correction, the muon momentum correction, and the unfolding procedure. The dominant contribution to the background uncertainty is the statistical uncertainty in the background data control sample. The theoretical uncertainty of the cross section in the MC background samples also contributes to the systematic uncertainty in the estimation of the background.

After energy corrections to central electrons are applied, we find that there is a 0.4 % offset in the position of the Z peak between data and simulation in the barrel and a 0.5 % offset in the endcaps. This difference is assigned as the systematic uncertainty in the central electron energy calibration.

In order to estimate the uncertainty in the energy calibration of forward electrons, the parametrized function of the correction factor is scaled up and down by its statistical uncertainty. The difference in AFB before and after changing the correction factor is assigned as a systematic uncertainty.

The systematic uncertainty in the muon momentum correction is estimated with a similar approach. The muon momentum correction is scaled up and down by its statistical uncertainty and the difference in AFB resulting from the change of the muon momentum correction is assigned as systematic uncertainty. We find that the contributions of the uncertainties in the efficiency scale factors (trigger, identification, and isolation) and in the pileup reweighting factors to the uncertainty in AFB are small.

For forward HF electrons, the uncertainties in the electron η correction and in the global normalization factor contribute to the systematic uncertainty in AFB. In addition, the energy calibration varies approximately 5 % between +η and -η. To account for this asymmetric effect in the energy calibration, the AFB distribution is measured using one forward electron in +η or -η, separately, along with one central electron and half of the difference in AFB is assigned as a systematic uncertainty. The systematic uncertainty varies from 0.005 to 0.03 as a function of dielectron invariant mass.

The systematic uncertainty in the unfolding procedure is estimated using a closure test in simulation. Any residual shown in the closure test of the unfolding procedure is assigned as the systematic uncertainty.

The theoretical uncertainties which affect the detector acceptance originate from the uncertainties in PDFs (CT10 [27, 43] and NNPDF 2.0 [44]) and from uncertainties in the FSR modeling [45].

The systematic uncertainty in AFB depends on the mass of the dilepton pair. Table 1 gives the maximum value of this uncertainty from each source, for different regions of |y|.

Table 1.

The maximum value of the systematic uncertainty in AFB as a function of M from each source for different regions of |y|

Muon channel
Systematic uncertainty |y| bins
0–1 1–1.25 1.25–1.5 1.5–2.4
Background 0.062 0.080 0.209 0.051
Momentum correction 0.006 0.015 0.020 0.022
Unfolding 0.001 0.003 0.004 0.003
Pileup reweighting 0.002 0.004 0.003 0.004
Efficiency scale factors <0.001 0.002 0.003 0.005
PDFs 0.001 0.004 0.008 0.047
FSR <0.001 0.001 0.001 0.002
Electron channel
Systematic uncertainty |y| bins
0–1 1–1.25 1.25–1.5 1.5–2.4 2.4–5
Background 0.064 0.015 0.008 0.004 0.033
Energy correction 0.011 0.015 0.012 0.012 0.123
Unfolding 0.005 0.007 0.006 0.004 0.001
Pileup reweighting 0.003 0.002 0.002 0.001 0.007
Efficiency scale factors <0.001 <0.001 <0.001 <0.001 0.008
Forward η scale factor 0.002
Forward η asymmetry 0.029
Global normalization factor 0.060
PDFs 0.002 0.004 0.005 0.008 0.014
FSR <0.001 0.001 0.001 0.001 0.002

Results

A comparison of the unfolded, background-subtracted AFB(M) distributions for μμ and ee events in the four central rapidity regions is shown in Fig. 3. The statistical and systematic uncertainties are added in quadrature. The measured AFB(M) distributions agree for μμ and ee events in all rapidity regions.

Fig. 3.

Fig. 3

The unfolded AFB distributions for muons (open squares) and electrons (solid circles) for the four central rapidity regions. The statistical (thick vertical bar) and statistical plus systematics (thin vertical bar) uncertainties are presented. The solid circles are shifted slightly to compare the result better. The lower panel in each plot shows the difference of the unfolded AFB in muons and electrons divided by the total uncertainty (stat. syst.)

The unfolded AFB(M) measurements for μμ and ee events, within |y|<2.4, are combined under the assumption that the uncertainties in the muon and electron channels are uncorrelated. Any effect of the correlation between the μμ and ee systematic uncertainties in the pileup correction, FSR modeling, and the normalization of MC simulations in the background estimation is found to have a negligible effect on the combination.

Figure 4 shows the combined results for the four central rapidity regions up to 2.4. The combined result is compared with the powheg (NLO) prediction with CT10 PDFs. The effective weak mixing angle, sin2θlepteff = 0.2312, is used for the powheg prediction. For all rapidity regions, the combined AFB(M) values are in a good agreement with the powheg prediction. The uncertainty in the theoretical prediction (powheg) originates from the statistical uncertainty in the MC sample, the uncertainties in the PDFs, and the variations of factorization and renormalization scales (simultaneous variation between values 2M, M, and M / 2, with M corresponding to the middle of the invariant mass bin). Table 2 summarizes the combined AFB quantity for each rapidity region.

Fig. 4.

Fig. 4

The combined (μ+μ- and e+e- ) unfolded AFB distributions in the four central rapidity regions. The statistical (thick vertical bar) and statistical plus systematics (thin vertical bar) uncertainties are presented. The measurements are compared with the prediction of powheg. The total uncertainties (considering the statistical, PDF, and scale uncertainties) in the powheg prediction are shown as shaded bands. The lower panel in each plot shows the difference of AFB in data and prediction divided by the total uncertainty of data and prediction

Table 2.

The combined (ee and μμ) AFB measurements, with statistical and systematic uncertainties for the four rapidity regions with |y|<2.4. The AFB quantity for ee events is also shown for 2.4<|y|<5

M (GeV ) AFB (data) Stat. err Syst. err Tot. err M (GeV ) AFB (data) Stat. err Syst. err Tot. err
|y|<1 1<|y|<1.25
40–50 -0.0167 0.0049 0.0045 0.0067 40–50 -0.0225 0.0108 0.0092 0.0142
50–60 -0.0355 0.0042 0.0031 0.0052 50–60 -0.0825 0.0092 0.0060 0.0110
60–76 -0.0415 0.0033 0.0031 0.0045 60–76 -0.0999 0.0071 0.0044 0.0084
76–86 -0.0221 0.0022 0.0019 0.0029 76–86 -0.0468 0.0048 0.0042 0.0064
86–96 0.0065 0.0004 0.0003 0.0005 86–96 0.0157 0.0009 0.0005 0.0011
96–106 0.0320 0.0020 0.0016 0.0025 96–106 0.0747 0.0046 0.0042 0.0063
106–120 0.0524 0.0037 0.0024 0.0045 106–120 0.1448 0.0085 0.0029 0.0089
120–133 0.0652 0.0065 0.0035 0.0074 120–133 0.1663 0.0152 0.0083 0.0174
133–150 0.0905 0.0081 0.0070 0.0108 133–150 0.2191 0.0185 0.0064 0.0195
150–171 0.1020 0.0104 0.0075 0.0128 150–171 0.2469 0.0243 0.0123 0.0272
171–200 0.1251 0.0129 0.0145 0.0194 171–200 0.2401 0.0272 0.0143 0.0308
200–320 0.1423 0.0112 0.0099 0.0149 200–320 0.3245 0.0257 0.0115 0.0282
320–500 0.1541 0.0268 0.0195 0.0331 320–500 0.4697 0.0609 0.0302 0.0680
500–2000 0.3437 0.0554 0.0514 0.0756 500–2000 0.4954 0.1145 0.0400 0.1213
1.25<|y|<1.5 1.5<|y|<2.4
40–50 -0.0261 0.0114 0.0087 0.0144 40–50 -0.0747 0.0073 0.0049 0.0088
50–60 -0.1122 0.0098 0.0078 0.0125 50–60 -0.1645 0.0070 0.0053 0.0088
60–76 -0.1293 0.0077 0.0039 0.0086 60–76 -0.2365 0.0059 0.0052 0.0079
76–86 -0.0700 0.0052 0.0040 0.0065 76–86 -0.1071 0.0041 0.0057 0.0070
86–96 0.0249 0.0010 0.0007 0.0013 86–96 0.0379 0.0008 0.0009 0.0013
96–106 0.1012 0.0051 0.0044 0.0067 96–106 0.1546 0.0041 0.0057 0.0070
106–120 0.1655 0.0095 0.0045 0.0105 106–120 0.2647 0.0078 0.0047 0.0091
120–133 0.2485 0.0169 0.0080 0.0187 120–133 0.3630 0.0141 0.0068 0.0156
133–150 0.2576 0.0210 0.0197 0.0287 133–150 0.4334 0.0179 0.0129 0.0221
150–171 0.2903 0.0259 0.0103 0.0279 150–171 0.4713 0.0230 0.0083 0.0245
171–200 0.3209 0.0315 0.0112 0.0335 171–200 0.4906 0.0276 0.0095 0.0292
200–320 0.3752 0.0286 0.0114 0.0308 200–320 0.5042 0.0244 0.0092 0.0261
320–500 0.4372 0.0655 0.0287 0.0715 320–500 0.5248 0.0610 0.0131 0.0624
500–2000 0.4071 0.1556 0.0824 0.1761 500–2000 0.6878 0.1862 0.0413 0.1907
2.4<|y|<5 (ee only)
40–76 −0.3104 0.0912 0.1378 0.1652
76–86 -0.2174 0.0214 0.0210 0.0300
86–96 0.0635 0.0060 0.0146 0.0158
96–106 0.2834 0.0183 0.0439 0.0475
106–120 0.4412 0.0567 0.0696 0.0898
120–150 0.5972 0.0851 0.0476 0.0975
150–320 0.8412 0.1567 0.0851 0.1783

The unfolded AFB distribution for the forward rapidity region (2.4<|y|<5) is shown in Fig. 5. The forward rapidity region extends the scope of the measurement beyond that of the previous CMS result at s=7 TeV. Because AFB in the forward rapidity region is diluted less, the measured AFB quantity is closer to the parton-level asymmetry after the unfolding process, than it is in the central rapidity bins. The unfolded AFB (Me+e-) for 2.4<|y|<5 agrees with the powheg predictions.

Fig. 5.

Fig. 5

The unfolded AFB distribution for the forward rapidity region (2.4<|y|<5) using one central electron (|η|<2.4) and one HF electron (3<|η|<5). The inner thick vertical bars correspond to the statistical uncertainty and the outer thin vertical bars to the total uncertainties. The measurements are compared with the prediction of powheg. The total uncertainties (considering the statistical, PDF, and scale uncertainties) in the powheg prediction are shown as shaded bands. The lower panel shows the difference of AFB in data and prediction divided by the total uncertainty of data and prediction

Summary

We report a measurement of the forward–backward asymmetry of oppositely charged μμ and ee pairs produced via a Z/γ boson exchange at s=8 TeV with a data sample corresponding to an integrated luminosity of 19.7fb-1. The AFB measurement is performed as a function of the dilepton invariant mass between 40GeV and 2TeV for μμ and ee events in 4 dilepton rapidity bins up to |y|=2.4. For ee events with 2.4<|y|<5, the AFB measurement is performed for dielectron masses between 40 and 320GeV. The large data sample collected at 8TeV extends the measurement of AFB in the high mass region compared to previous results. The final AFB values are corrected for detector resolution, acceptance, and final state radiation effects. The measurements of AFB(M) are consistent with standard model predictions.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS program of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its second Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

  • 1.London D, Rosner JL. Extra gauge bosons in E6. Phys. Rev. D. 1986;34:1530. doi: 10.1103/PhysRevD.34.1530. [DOI] [PubMed] [Google Scholar]
  • 2.Rosner JL. Off-peak lepton asymmetries from new Z’s. Phys. Rev. D. 1987;35:2244. doi: 10.1103/PhysRevD.35.2244. [DOI] [PubMed] [Google Scholar]
  • 3.M. Cvetič, S. Godfrey, in Discovery and identification of extra gauge bosons, ed. T. Barklow, S. Dawson, H. Haber, J. Siegrist. Electroweak Symmetry Breaking and New Physics at the TeV Scale (World Scientific, Singapore, 1995), p. 383. arXiv:hep-ph/9504216. Advanced Series on Directions in High Energy Physics, Vol. 16. doi:10.1142/9789812830265_0007
  • 4.Rosner JL. Forward–backward asymmetries in hadronically produced lepton pairs. Phys. Rev. D. 1996;54:1078. doi: 10.1103/PhysRevD.54.1078. [DOI] [PubMed] [Google Scholar]
  • 5.A. Bodek, U. Baur, Implications of a 300–500 GeV/c2Z boson on pp¯ collider data at s=1.8 TeV. Eur. Phys. J. C 21, 607 (2001). doi:10.1007/s100520100778. arXiv:hep-ph/0102160
  • 6.CDF Collaboration, Limits on Quark–Lepton compositeness scales from dileptons produced in 1.8 TeV pp¯ collisions. Phys. Rev. Lett. 79, 2198 (1997). doi:10.1103/PhysRevLett.79.2198
  • 7.H. Davoudiasl, J.L. Hewett, T.G. Rizzo, Phenomenology of the Randall–Sundrum gauge hierarchy model. Phys. Rev. Lett. 84, 2080 (2000). doi:10.1103/PhysRevLett.84.2080. arXiv:hep-ph/9909255 [DOI] [PubMed]
  • 8.ATLAS Collaboration, Measurement of the forward–backward asymmetry of electron and muon pair-production in pp collisions at s = 7 TeV with the ATLAS detector. JHEP09, 049 (2015). doi:10.1007/JHEP09(2015)049. arXiv:hep-ex/1503.03709
  • 9.CMS Collaboration, Measurement of the weak mixing angle with the Drell–Yan process in proton–proton collisions at the LHC. Phys. Rev. D 84, 112002 (2011). doi:10.1103/PhysRevD.84.112002. arXiv:hep-ex/1110.2682
  • 10.D0 Collaboration, Measurement of the Forward-Backward Charge Asymmetry and Extraction of sin2θWeff in pp¯Z/γ+Xe+e-+X Events Produced at s=1.96 TeV. Phys. Rev. Lett. 101, 191801 (2008). doi:10.1103/PhysRevLett.101.191801. arXiv:hep-ex/0804.3220 [DOI] [PubMed]
  • 11.CDF Collaboration, Indirect measurement of sin2θW (or MW) using e+e- pairs in the Z-boson region with pp¯ collisions at a center-of-momentum energy of 1.96 TeV. Phys. Rev. D 88, 072002 (2013). doi:10.1103/PhysRevD.88.072002. arXiv:hep-ex/1307.0770
  • 12.CDF Collaboration, Indirect measurement of sin2θW (or MW) using μ+μ- pairs from γ/Z bosons produced in pp¯ collisions at a center-of-momentum energy of 1.96 TeV. Phys. Rev. D 89, 072005 (2014). doi:10.1103/PhysRevD.89.072005. arXiv:hep-ex/1402.2239
  • 13.J.C. Collins, D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions. Phys. Rev. D 16, 2219 (1977). doi:10.1103/PhysRevD.16.2219
  • 14.P. Fisher, U. Becker, J. Kirkby, Very high precision tests of the electroweak theory. Phys. Lett. B 356, 404 (1995). doi:10.1016/0370-2693(95)00714-V
  • 15.M. Dittmar, Neutral current interference in the TeV region: the experimental sensitivity at the CERN LHC. Phys. Rev. D 55, 161 (1997). doi:10.1103/PhysRevD.55.161. arXiv:hep-ex/9606002
  • 16.CMS Collaboration, Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at s=7. Phys. Lett. B 718, 752 (2013). doi:10.1016/j.physletb.2012.10.082 [DOI] [PMC free article] [PubMed]
  • 17.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004. arXiv:physics.ins-det/1206.4071
  • 18.CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at s=7 TeV. JINST 7, P10002 (2012). doi:10.1088/1748-0221/7/10/P10002. arXiv:physics.ins-det/1206.4071
  • 19.CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8. JINST 10, P06005 (2015). doi:10.1088/1748-0221/10/06/P06005. arXiv:physics.ins-det/1502.02701
  • 20.CMS HCAL Collaboration, Design, performance, and calibration of CMS forward calorimeter wedges. Eur. Phys. J. C 53, 139 (2008). doi:10.1140/epjc/s10052-007-0459-4
  • 21.CMS Collaboration, The TriDAS project: technical design report, Volume 1: the trigger system. CMS TDR CERN-LHCC-2000-038, 2000
  • 22.CMS Collaboration, The TriDAS project: technical design report, volume 2: data acquisition and high-level trigger. CMS TDR CERN-LHCC-2000-026, 2002
  • 23.Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [Google Scholar]
  • 24.Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 25.Alioli S, Nason P, Oleari C, Re E. NLO vector-boson production matched with shower in POWHEG. JHEP. 2008;07:060. doi: 10.1088/1126-6708/2008/07/060. [DOI] [Google Scholar]
  • 26.Alioli S, Nason P, Oleari C, Re E. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
  • 27.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 28.T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175
  • 29.CMS Collaboration, Study of the underlying event at forward rapidity in pp collisions at s= 0.9, 2.76, and 7 TeV. JHEP 04, 072 (2013). doi:10.1007/JHEP04(2013)072. arXiv:hep-ph/1302.2394
  • 30.Alwall J, et al. MadGraph 5: going beyond. JHEP. 2011;06:128. doi: 10.1007/JHEP06(2011)128. [DOI] [Google Scholar]
  • 31.Davidson N, et al. Universal interface of TAUOLA technical and physics documentation. Comput. Phys. Commun. 2012;183:821. doi: 10.1016/j.cpc.2011.12.009. [DOI] [Google Scholar]
  • 32.GEANT4 Collaboration, GEANT4–a simulation toolkit. Nucl. Instr. Methods A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8
  • 33.Allison J, et al. GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 2006;53:270. doi: 10.1109/TNS.2006.869826. [DOI] [Google Scholar]
  • 34.CMS Collaboration, Parameterized simulation of the CMS calorimeter using GFlash. In nuclear science symposium conference record (NSS/MIC), 2009 IEEE, p. 2074. Orlando, FL, 2009. doi:10.1109/NSSMIC.2009.5402114
  • 35.CMS Collaboration, Measurement of the rapidity and transverse momentum distributions of Z bosons in pp collisions at s = 7 TeV. Phys. Rev. D 85, 032002 (2013). doi:10.1103/PhysRevD.85.032002. arXiv:hep-ex/1110.4973
  • 36.CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and ETmiss. CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009
  • 37.CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010
  • 38.CMS Collaboration, Measurement of the inclusive W and Z production cross sections in pp collisions at s=7 TeV. JHEP 10, 132 (2011). doi:10.1007/JHEP10(2011)%20132. arXiv:hep-ex/1107.4789
  • 39.Bodek A, et al. Extracting muon momentum scale corrections for hadron collider experiments. Eur. Phys. J. C. 2012;72:10. [Google Scholar]
  • 40.Li Y, Petriello F. Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code. Phys. Rev. D. 2012;86:094034. doi: 10.1103/PhysRevD.86.094034. [DOI] [Google Scholar]
  • 41.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A. 1995;362:487. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 42.T. Adye, Unfolding algorithms and tests using RooUnfold. In: Proceedings of the PHYSTAT 2011 workshop on statistical issues related to discovery claims in search experiments and unfolding, p. 313 (2011). doi:10.5170/CERN-2011-006. arXiv:physics.data-an/1105.1160
  • 43.Nadolsky PM, et al. Implications of CTEQ global analysis for collider observables. Phys. Rev. D. 2008;78:013004. doi: 10.1103/PhysRevD.78.013004. [DOI] [Google Scholar]
  • 44.NNPDF Collaboration, A first unbiased global NLO determination of parton distributions and their uncertainties. Nucl. Phys. B 838, 136 (2010). doi:10.1016/j.nuclphysb.2010.05.008. arXiv:1002.4407
  • 45.CMS Collaboration, Measurements of inclusive W and Z cross sections in pp collisions at s=7 TeV. JHEP 01, 080 (2011). doi:10.1007/JHEP01(2011)%20080. arXiv:hep-ex/1012.2466

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES