Abstract
There are two alternatives concerning the origin of life: the origin may be heterotrophic or autotrophic. The central problem within the theory of an autotrophic origin is the first process of carbon fixation. I here propose the hypothesis that this process is an autocatalytic cycle that can be retrodictively constructed from the extant reductive citric acid cycle by replacing thioesters by thioacids and by assuming that the required reducing power is obtained from the oxidative formation of pyrite (FeS2). This archaic cycle is strictly chemoautotrophic: photoautotrophy is not required. The cycle is catalytic for pyrite formation and autocatalytic for its own multiplication. It is a consequence of this hypothesis that the postulated cycle cannot exist as a single isolated cycle but must be a member of a network of concatenated homologous cycles, from which all anabolic pathways appear to have sprung.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971 Oct;58(10):465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
- Evans M. C., Buchanan B. B., Arnon D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc Natl Acad Sci U S A. 1966 Apr;55(4):928–934. doi: 10.1073/pnas.55.4.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartman H. Speculations on the origin and evolution of metabolism. J Mol Evol. 1975 Mar 24;4(4):359–370. doi: 10.1007/BF01732537. [DOI] [PubMed] [Google Scholar]
- Jannasch H. W., Mottl M. J. Geomicrobiology of deep-sea hydrothermal vents. Science. 1985 Aug 23;229(4715):717–725. doi: 10.1126/science.229.4715.717. [DOI] [PubMed] [Google Scholar]
- Jensen R. A. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976;30:409–425. doi: 10.1146/annurev.mi.30.100176.002205. [DOI] [PubMed] [Google Scholar]
- Quayle J. R., Ferenci T. Evolutionary aspects of autotrophy. Microbiol Rev. 1978 Jun;42(2):251–273. doi: 10.1128/mr.42.2.251-273.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White R. H. A novel biosynthesis of medium chain length alpha-ketodicarboxylic acids in methanogenic archaebacteria. Arch Biochem Biophys. 1989 May 1;270(2):691–697. doi: 10.1016/0003-9861(89)90552-3. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R. On the evolution of the genetic code. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1546–1552. doi: 10.1073/pnas.54.6.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wächtershäuser G. Before enzymes and templates: theory of surface metabolism. Microbiol Rev. 1988 Dec;52(4):452–484. doi: 10.1128/mr.52.4.452-484.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ycas M. On earlier states of the biochemical system. J Theor Biol. 1974 Mar;44(1):145–160. doi: 10.1016/s0022-5193(74)80035-4. [DOI] [PubMed] [Google Scholar]