Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jan;87(1):269–273. doi: 10.1073/pnas.87.1.269

Specific high molecular weight mRNAs induced by associative learning in Hermissenda.

T J Nelson 1, D L Alkon 1
PMCID: PMC53244  PMID: 2296586

Abstract

Associative conditioning of Hermissenda crassicornis has been demonstrated to result in long-term changes in the potassium currents IA and ICa2(+)-K+ in photoreceptor neurons in the eye and to increase mRNA levels in the eye 2- to 3-fold. mRNA isolated from Hermissenda trained with paired light and rotation stimuli was labeled with [3H]acetic anhydride, while mRNA from naive animals or from animals subjected to random light and rotation stimuli was labeled with [14C]acetic anhydride. The labeled RNA was combined and separated by agarose gel electrophoresis. The overall size distribution of labeled mRNA was shifted to longer chain lengths in the paired group. In addition, the 3H/14C ratios were markedly increased for 21 distinct size bands, indicating increased mRNA of specific chain lengths in the paired group. Increases in the same size bands were also observed with mRNA labeled in vivo with 32Pi. This indicates that associative learning in Hermissenda results in a specific induction of a distinct set of at least 21 mRNAs, rather than in a generalized increase in synthesis of all mRNA, thus resembling in some respects a differentiation-like response.

Full text

PDF
269

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGRANOFF B. W., KLINGER P. D. PUROMYCIN EFFECT ON MEMORY FIXATION IN THE GOLDFISH. Science. 1964 Nov 13;146(3646):952–953. doi: 10.1126/science.146.3646.952. [DOI] [PubMed] [Google Scholar]
  2. Alkon D. L. Associative training of Hermissenda. J Gen Physiol. 1974 Jul;64(1):70–84. doi: 10.1085/jgp.64.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alkon D. L. Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science. 1984 Nov 30;226(4678):1037–1045. doi: 10.1126/science.6093258. [DOI] [PubMed] [Google Scholar]
  4. Davis H. P., Squire L. R. Protein synthesis and memory: a review. Psychol Bull. 1984 Nov;96(3):518–559. [PubMed] [Google Scholar]
  5. Davis L., Banker G. A., Steward O. Selective dendritic transport of RNA in hippocampal neurons in culture. Nature. 1987 Dec 3;330(6147):477–479. doi: 10.1038/330477a0. [DOI] [PubMed] [Google Scholar]
  6. FLEXNER J. B., FLEXNER L. B., STELLAR E., DE LA HABA G., ROBERTS R. B. Inhibition of protein synthesis in brain and learning and memory following puromycin. J Neurochem. 1962 Nov-Dec;9:595–605. doi: 10.1111/j.1471-4159.1962.tb04216.x. [DOI] [PubMed] [Google Scholar]
  7. FLEXNER J. B., FLEXNER L. B., STELLAR E. Memory in mice as affected by intracerebral puromycin. Science. 1963 Jul 5;141(3575):57–59. doi: 10.1126/science.141.3575.57. [DOI] [PubMed] [Google Scholar]
  8. HYDEN H., EGYHAZI E. CHANGES IN RNA CONTENT AND BASE COMPOSITION IN CORTICAL NEURONS OF RATS IN A LEARNING EXPERIMENT INVOLVING TRANSFER OF HANDEDNESS. Proc Natl Acad Sci U S A. 1964 Oct;52:1030–1035. doi: 10.1073/pnas.52.4.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lederhendler I. I., Gart S., Alkon D. L. Classical conditioning of Hermissenda: origin of a new response. J Neurosci. 1986 May;6(5):1325–1331. doi: 10.1523/JNEUROSCI.06-05-01325.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Milner R. J., Sutcliffe J. G. Gene expression in rat brain. Nucleic Acids Res. 1983 Aug 25;11(16):5497–5520. doi: 10.1093/nar/11.16.5497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mizumori S. J., Rosenzweig M. R., Bennett E. L. Long-term working memory in the rat: effects of hippocampally applied anisomycin. Behav Neurosci. 1985 Apr;99(2):220–232. doi: 10.1037//0735-7044.99.2.220. [DOI] [PubMed] [Google Scholar]
  12. Mizumori S. J., Rosenzweig M. R., Bennett E. L. Long-term working memory in the rat: effects of hippocampally applied anisomycin. Behav Neurosci. 1985 Apr;99(2):220–232. doi: 10.1037//0735-7044.99.2.220. [DOI] [PubMed] [Google Scholar]
  13. Nelson T. J., Alkon D. L. Prolonged RNA changes in the Hermissenda eye induced by classical conditioning. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7800–7804. doi: 10.1073/pnas.85.20.7800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohi S. Effects of actinomycin D on brain RNA synthesis and discrimination learning in the goldfish (Carassius auratus). Physiol Behav. 1977 Aug;19(2):261–264. doi: 10.1016/0031-9384(77)90336-5. [DOI] [PubMed] [Google Scholar]
  15. Rainbow T. C. Role of RNA and protein synthesis in memory formation. Neurochem Res. 1979 Jun;4(3):297–312. doi: 10.1007/BF00963800. [DOI] [PubMed] [Google Scholar]
  16. Shashoua V. E. RNA changes in goldfish brain during learning. Nature. 1968 Jan 20;217(5125):238–240. doi: 10.1038/217238a0. [DOI] [PubMed] [Google Scholar]
  17. Shashoua V. E. RNA metabolism in goldfish brain during acquisition of new behavioral patterns. Proc Natl Acad Sci U S A. 1970 Jan;65(1):160–167. doi: 10.1073/pnas.65.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shashoua V. E. RNA metabolism in the brain. Int Rev Neurobiol. 1974;16(0):183–231. doi: 10.1016/s0074-7742(08)60197-x. [DOI] [PubMed] [Google Scholar]
  19. Stensaas L. J., Stensaas S. S., Trujillo-Cenóz O. Some morphological aspects of the visual system of Hermissenda crassicornis (Mollusca: Nudibranchia). J Ultrastruct Res. 1969 Jun;27(5):510–532. doi: 10.1016/s0022-5320(69)80047-x. [DOI] [PubMed] [Google Scholar]
  20. Zemp J. W., Wilson J. E., Schlesinger K., Boggan W. O., Glassman E. Brain function and macromolecules. I. Incorporation of uridine into RNA of mouse brain during short-term training experience. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1423–1431. doi: 10.1073/pnas.55.6.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES