Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jan;87(1):399–403. doi: 10.1073/pnas.87.1.399

Unusual molecular characteristics of a repeat sequence island within a Giemsa-positive band on the mouse X chromosome.

J Nasir 1, E M Fisher 1, N Brockdorff 1, C M Disteche 1, M F Lyon 1, S D Brown 1
PMCID: PMC53271  PMID: 2296595

Abstract

The mouse genome contains 50 copies of a long complex repeat unit localized as a repeat sequence island to the A3 Giemsa-positive (dark) band on the mouse X chromosome. The repeat units are not tandemly arranged but are juxtaposed and inserted by unrelated sequences of high repetition. The repeat sequence island possesses two notable features that have been suggested as diagnostic features of mammalian Giemsa-positive bands. First, the repeat sequence island encompasses a 1-megabase region devoid of CpG islands; second, it features a high concentration of L1 long interspersed repeat sequences.

Full text

PDF
399

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bickmore W. A., Sumner A. T. Mammalian chromosome banding--an expression of genome organization. Trends Genet. 1989 May;5(5):144–148. doi: 10.1016/0168-9525(89)90055-3. [DOI] [PubMed] [Google Scholar]
  2. Bird A. P. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. doi: 10.1038/321209a0. [DOI] [PubMed] [Google Scholar]
  3. Brockdorff N., Amar L. C., Brown S. D. Pulse-field linkage of the P3, G6pd and Cf-8 genes on the mouse X chromosome: demonstration of synteny at the physical level. Nucleic Acids Res. 1989 Feb 25;17(4):1315–1326. doi: 10.1093/nar/17.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brockdorff N., Cross G. S., Cavanna J. S., Fisher E. M., Lyon M. F., Davies K. E., Brown S. D. The mapping of a cDNA from the human X-linked Duchenne muscular dystrophy gene to the mouse X chromosome. Nature. 1987 Jul 9;328(6126):166–168. doi: 10.1038/328166a0. [DOI] [PubMed] [Google Scholar]
  5. Brockdorff N., Fisher E. M., Cavanna J. S., Lyon M. F., Brown S. D. Construction of a detailed molecular map of the mouse X chromosome by microcloning and interspecific crosses. EMBO J. 1987 Nov;6(11):3291–3297. doi: 10.1002/j.1460-2075.1987.tb02648.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown S. D., Piechaczyk M. Insertion sequences and tandem repetitions as sources of variation in a dispersed repeat family. J Mol Biol. 1983 Apr 5;165(2):249–256. doi: 10.1016/s0022-2836(83)80256-3. [DOI] [PubMed] [Google Scholar]
  7. Burmeister M., Monaco A. P., Gillard E. F., van Ommen G. J., Affara N. A., Ferguson-Smith M. A., Kunkel L. M., Lehrach H. A 10-megabase physical map of human Xp21, including the Duchenne muscular dystrophy gene. Genomics. 1988 Apr;2(3):189–202. doi: 10.1016/0888-7543(88)90002-x. [DOI] [PubMed] [Google Scholar]
  8. D'Eustachio P., Bothwell A. L., Takaro T. K., Baltimore D., Ruddle F. H. Chromosomal location of structural genes encoding murine immunoglobulin lambda light chains. Genetics of murine lambda light chains. J Exp Med. 1981 Apr 1;153(4):793–800. doi: 10.1084/jem.153.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis M. M., Calame K., Early P. W., Livant D. L., Joho R., Weissman I. L., Hood L. An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature. 1980 Feb 21;283(5749):733–739. doi: 10.1038/283733a0. [DOI] [PubMed] [Google Scholar]
  10. Disteche C. M., McConnell G. K., Grant S. G., Stephenson D. A., Chapman V. M., Gandy S., Adler D. A. Comparison of the physical and recombination maps of the mouse X chromosome. Genomics. 1989 Aug;5(2):177–184. doi: 10.1016/0888-7543(89)90044-x. [DOI] [PubMed] [Google Scholar]
  11. Disteche C. M., Tantravahi U., Gandy S., Eisenhard M., Adler D., Kunkel L. M. Isolation and characterization of two repetitive DNA fragments located near the centromere of the mouse X chromosome. Cytogenet Cell Genet. 1985;39(4):262–268. doi: 10.1159/000132155. [DOI] [PubMed] [Google Scholar]
  12. Fanning T. G. Characterization of a highly repetitive family of DNA sequences in the mouse. Nucleic Acids Res. 1982 Aug 25;10(16):5003–5013. doi: 10.1093/nar/10.16.5003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  14. Fisher E. M., Cavanna J. S., Brown S. D. Microdissection and microcloning of the mouse X chromosome. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5846–5849. doi: 10.1073/pnas.82.17.5846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
  16. Goldman M. A., Holmquist G. P., Gray M. C., Caston L. A., Nag A. Replication timing of genes and middle repetitive sequences. Science. 1984 May 18;224(4650):686–692. doi: 10.1126/science.6719109. [DOI] [PubMed] [Google Scholar]
  17. Herrmann B. G., Barlow D. P., Lehrach H. A large inverted duplication allows homologous recombination between chromosomes heterozygous for the proximal t complex inversion. Cell. 1987 Mar 13;48(5):813–825. doi: 10.1016/0092-8674(87)90078-x. [DOI] [PubMed] [Google Scholar]
  18. Holmquist G. P. Role of replication time in the control of tissue-specific gene expression. Am J Hum Genet. 1987 Feb;40(2):151–173. [PMC free article] [PubMed] [Google Scholar]
  19. Holmquist G., Gray M., Porter T., Jordan J. Characterization of Giemsa dark- and light-band DNA. Cell. 1982 Nov;31(1):121–129. doi: 10.1016/0092-8674(82)90411-1. [DOI] [PubMed] [Google Scholar]
  20. Korenberg J. R., Rykowski M. C. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell. 1988 May 6;53(3):391–400. doi: 10.1016/0092-8674(88)90159-6. [DOI] [PubMed] [Google Scholar]
  21. Lichtman J. W., Taghert P. H. Developmental neurobiology. Trophic factor theory matures. 1987 Mar 26-Apr 1Nature. 326(6111):336–336. doi: 10.1038/326336a0. [DOI] [PubMed] [Google Scholar]
  22. Lyon M. F., Zenthon J., Burtenshaw M. D., Evans E. P. Localization of the Hprt locus by in situ hybridization and distribution of loci on the mouse X-chromosome. Cytogenet Cell Genet. 1987;44(2-3):163–166. doi: 10.1159/000132364. [DOI] [PubMed] [Google Scholar]
  23. Lyon M. F., Zenthon J., Evans E. P., Burtenshaw M. D., Wareham K. A., Williams E. D. Lack of inactivation of a mouse X-linked gene physically separated from the inactivation centre. J Embryol Exp Morphol. 1986 Sep;97:75–85. [PubMed] [Google Scholar]
  24. Moyzis R. K., Torney D. C., Meyne J., Buckingham J. M., Wu J. R., Burks C., Sirotkin K. M., Goad W. B. The distribution of interspersed repetitive DNA sequences in the human genome. Genomics. 1989 Apr;4(3):273–289. doi: 10.1016/0888-7543(89)90331-5. [DOI] [PubMed] [Google Scholar]
  25. Rackwitz H. R., Zehetner G., Frischauf A. M., Lehrach H. Rapid restriction mapping of DNA cloned in lambda phage vectors. Gene. 1984 Oct;30(1-3):195–200. doi: 10.1016/0378-1119(84)90120-3. [DOI] [PubMed] [Google Scholar]
  26. Voliva C. F., Jahn C. L., Comer M. B., Hutchison C. A., 3rd, Edgell M. H. The L1Md long interspersed repeat family in the mouse: almost all examples are truncated at one end. Nucleic Acids Res. 1983 Dec 20;11(24):8847–8859. doi: 10.1093/nar/11.24.8847. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES