LETTER
Carbapenemase-producing Klebsiella pneumoniae (CPKp) are increasingly reported worldwide and represent a major health threat (1). Carbapenemases frequently encountered in CPKp belong to Ambler's class A (KPC enzymes), class B (NDM, VIM, and IMP enzymes), and class D (OXA-48-like enzymes) (1). GES-1, is an extended-spectrum beta lactamase (ESBL) initially described in 2000 in a K. pneumoniae isolate from French Guiana (2). Hitherto, 31 variants have been identified (http://bldb.eu/BLDB.php?prot=A#GES), including several with carbapenem-hydrolyzing activity (GES-2, -4, -5, -6, -14, -14, -15, -16 -18, -20, and -24), which is due to a replacement of glycine at position 170 by an asparagine or a serine (3–5). GES carbapenemases have rarely been reported in Enterobacteriaceae (GES-5 and GES-6) (3, 6).
Here, we report the first description of a GES-5-producing K. pneumoniae isolate in France. This isolate was recovered from a man previously hospitalized in Bangkok, Thailand, for an acute ischemic cerebrovascular stroke. The patient was transferred to the hospital of Le Havre, France, where a rectal swab upon admission revealed K. pneumoniae isolate MON with reduced susceptibility to carbapenems (MICs of imipenem, meropenem, and ertapenem were 0.25, 0.38, and 0.5 μg/ml, respectively). This isolate was also resistant to penicillins, all cephalosporins, cephamycins, aztreonam, fluoroquinolones, aminoglycosides (gentamicin, netilmicin, and tobramycin), sulfamethoxazole-trimethoprim, chloramphenicol, and tetracycline. This isolate remained susceptible to amikacin (MIC of 1 μg/μl) and colistin (MIC of 0.5 μg/μl). The biochemical test Carba NP revealed a carbapenemase activity in K. pneumoniae MON (7). This carbapenem-hydrolyzing activity was confirmed by several other confirmatory assays, such as by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (8), by the commercially available β Carba test (Bio-Rad, Marnes-la-Coquette, France) (9), and by the recently described carbapenem inactivation method (CIM) (10). However, PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae (blaNDM, blaIMP, blaVIM, blaKPC, blaOXA-48), as previously described (11).
Whole-genome sequencing using Illumina's technology was performed (paired-end reads of 150 bp) as previously described (12). A total of 2,352,841 reads were mapped, allowing us to build 206 contigs with an average length of 26,670 bp (from 500 to 509,094 bp), representing 5,493,972 bp (mean coverage, 64-fold). The ResFinder Web server (13) revealed three β-lactamases (SHV-11, SHV-12, and GES-5) and eight aminoglycoside-modifying enzymes (AMEs), as well as genes involved in resistance to phenicols, trimethoprim, sulfonamides, and erythromycin (Table 1). High-level resistance to fluoroquinolones resulted from mutations in chromosomally encoded gyrase (S83F and D87Y in the GyrA subunit) and topoisomerase IV (S79I in the ParC subunit). In addition, a frameshift in the ompK35 gene leading to a stop codon at position 32 (K32Stop) and two insertions in OmpK36 (TS at position 183 and FSGNGE at position 264) likely result in inactive porins, thus resulting in decreased susceptibility to carbapenems, as previously shown (14). Multilocus sequence typing (MLST; https://cge.cbs.dtu.dk/services/MLST/) analysis using the Pasteur Institute's MLST scheme (15) revealed that this isolate belonged to sequence type 42 (ST42; 2-6-1-3-8-1-15), an ST type described in South Asia (16). This ST does not belong to an epidemic clone but seems to have played a role in the genesis of ST258 (17, 18).
TABLE 1.
Resistome of K. pneumoniae MON
| Antibiotic family | Resistance gene | % identity | Accession no. | Enzyme |
In silico-deduced resistancec | Observed resistance | |
|---|---|---|---|---|---|---|---|
| Name | Function | ||||||
| β-Lactams | blaGES-5 | 100.0 | AF462395 | GES-5 | Carbapenemase | All β-lactams except AZT | All beta-lactams |
| blaSHV-12 | 100.0 | DQ236171 | SHV-12 | ESBL | All β-lactams except carbapenems and cephamycins | ||
| blaSHV-11 | 100.0 | X98101 | SHV-1 | Penicillinase | AMX, TIC | ||
| Aminoglycosides | aadA1 | 100.0 | JN815078 | ANT(3″)-Ia | Adenyltransferase | STR, SPE | All tested aminoglycosides except amikacin |
| strA | 100.0 | M96392 | Phosphotransferase | STR | |||
| strB | 100.0 | M96392 | Phosphotransferase | STR | |||
| aadA2 | 100.0 | JQ364967 | ANT(3″)-Ia | Adenyltransferase | STR, SPE | ||
| aph(3′)-Ia | 100.0 | V00359 | APH(3′)-Ia | Phosphotransferase | KAN, NEO | ||
| aacA34 | 100.0 | AY553333 | AAC(6′)-I | Acetyltransferase | KAN, TOB, NET, AMI | ||
| aac(3)-IId | 99.9 | EU022314 | AAC(3′)-IIb | Acetyltransferase | GEN, TOB, NET | ||
| aac(6′)-II | 99.6 | Z54241 | Acetyltransferase | GEN, TOB, NET | |||
| Quinolones | gyrA | 98a | NZ_CDMU01000001 | GyrA | Gyrase | CIP, LVX, NA | Fluoroquinolones |
| parC | 99a | NZ_CDMU01000001 | ParC | Topoisomerase | CIP, LVX, NA | ||
| Macrolides, lincosamides, and streptogramins | mph(A) | 100.0 | D16251 | MphA | Phosphotransferase | ERY | Macrolidesb |
| Phenicols | catA1-like | 99.9 | V00622 | CatA1-like | Acetyltransferase | CHL | Chloramphenicol |
| Sulfonamides | sul1 | 100.0 | CP002151 | Sul1 | Efflux | SUL | Sulfonamide |
| Cyclins | tet(A) | 99.9 | AJ517790 | TetA | Efflux | TET | Tetracycline |
| Trimethoprim | dfrA12 | 100 | AB571791 | DfrA12 | Dihydrofolate reductase | TRI | Trimethoprim |
Percent identity to a quinolone-susceptible strain, i.e., Klebsiella pneumoniae ATCC 43816.
Intrinsic resistance.
AMX, amoxicillin; AZT, aztreonam; CHL, chloramphenicol; CIP, ciprofloxacin; ERY, erythromycin; GEN, gentamicin; KAN, kanamycin; LVX, levofloxacin; NA, nalidixic acid; NEO, neomycin; NET, netilmicin; STR, streptomycin; SPE, spectinomycin; SUL, sulfonamide; TET, tetracycline; TIC, ticarcillin; TOB, tobramycin; TRI, trimethoprim.
Mating-out assays performed as previously described (6) yielded transconjugants possessing both blaSHV-12 and blaGES-5 genes or possessing only blaSHV-12 genes, but none possessed only the blaGES-5 gene, suggesting that plasmid pMON-GES-5 may be mobilized but not self-transferable. The conjugation frequency for the pMON-SHV-12 plasmid was 1.9 × 10−4 transconjugants per donor cell, and the presence of the blaGES-5 gene was found in 42% (21/50) of the transconjugants. Plasmid extraction, performed as previously described (19), revealed the presence of two plasmids of ca. 120 kb (carrying the blaSHV-12 gene) and 70 kb (carrying the blaGES-5 gene) in size, determined as described previously (20). Close genetic context analysis revealed that blaGES-5 was carried by a class 1 integron in the first position. Promoter analysis revealed two promoters, PcH1 (TGGACA-N17 -TAAACT) and P2 (TTGTTA-N14 -TACAGT) upstream of the blaGES-5 gene. The latter is likely inactive due to a shorter spacer (n = 14).
This report constitutes the first identification of a GES-5-producing Enterobacteriaceae isolate in France (21). This report highlights the usefulness of biochemical tests for the identification of minor carbapenemases (Carba NP test, MALDI-TOF techniques, CIM, or BYG test), as the commercially available tests fail to detect them (22).
ACKNOWLEDGMENTS
This work was funded by a grant from the Ministère de l'Education Nationale et de la Recherche (EA7361), Université Paris-Sud. R.A.B., L.D., and T.N. are members of the Laboratory of Excellence LERMIT, supported by a grant from ANR (ANR-10-LABX-33).
REFERENCES
- 1.Cantón R, Akóva M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen Ø, Seifert H, Woodford N, Nordmann P, European Network on Carbapenemases. 2012. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413–431. doi: 10.1111/j.1469-0691.2012.03821.x. [DOI] [PubMed] [Google Scholar]
- 2.Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. 2000. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum beta-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 44:622–632. doi: 10.1128/AAC.44.3.622-632.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Naas T, Dortet L, Iorga BI. 2016. Structural and functional aspects of class A carbapenemases. Curr Drug Targets 17:1006–1028. doi: 10.2174/1389450117666160310144501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Bebrone C, Bogaerts P, Delbrück H, Bennink S, Kupper MB, Rezende de Castro R, Glupczynski Y, Hoffmann KM. 2013. GES-18, a new carbapenem-hydrolyzing GES-type β-lactamase from Pseudomonas aeruginosa that contains Ile80 and Ser170 residues. Antimicrob Agents Chemother 57:396–401. doi: 10.1128/AAC.01784-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Hong JS, Yoon E-J, Lee H, Jeong SH, Lee K. 2016. Clonal dissemination of Pseudomonas aeruginosa ST235 carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in Korea. Antimicrob Agents Chemother 60:7216–7223. doi: 10.1128/AAC.01601-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Cuzon G, Bogaerts P, Bauraing C, Huang T-D, Bonnin RA, Glupczynski Y, Naas T. 2016. Spread of plasmids carrying multiple GES variants. Antimicrob Agents Chemother 60:5040–5043. doi: 10.1128/AAC.00360-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. 2015. Evaluation of the RAPIDEC® CARBA NP, the Rapid CARB Screen® and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 70:3014–3022. doi: 10.1093/jac/dkv213. [DOI] [PubMed] [Google Scholar]
- 8.Lasserre C, De Saint Martin L, Cuzon G, Bogaerts P, Lamar E, Glupczynski Y, Naas T, Tandé D. 2015. Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization–time of flight mass spectrometry in less than 30 minutes. J Clin Microbiol 53:2163–2171. doi: 10.1128/JCM.03467-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Noël A, Huang T-D, Berhin C, Hoebeke M, Bouchahrouf W, Yunus S, Bogaerts P, Glupczynski Y. 7 December 2016. Comparative evaluation of four phenotypic tests for the detection of carbapenemase-producing Gram-negative bacteria. J Clin Microbiol doi: 10.1128/JCM.01853-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.van der Zwaluw K, de Haan A, Pluister GN, Bootsma HJ, de Neeling AJ, Schouls LM. 2015. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the Carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One 10:e0123690. doi: 10.1371/journal.pone.0123690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Poirel L, Dortet L, Bernabeu S, Nordmann P. 2011. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother 55:5403–5407. doi: 10.1128/AAC.00585-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Bonnin RA, Girlich D, Imanci D, Dortet L, Naas T. 2015. Draft genome sequence of the Serratia rubidaea CIP 103234T reference strain, a human-opportunistic pathogen. Genome Announc 3:e01340-15. doi: 10.1128/genomeA.01340-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi: 10.1093/jac/dks261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Tsai Y-K, Fung C-P, Lin J-C, Chen J-H, Chang F-Y, Chen T-L, Siu LK. 2011. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother 55:1485–1493. doi: 10.1128/AAC.01275-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182. doi: 10.1128/JCM.43.8.4178-4182.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Yamamoto T, Takano T, Fusegawa T, Shibuya T, Hung W-C, Higuchi W, Iwao Y, Khokhlova O, Reva I. 2013. Electron microscopic structures, serum resistance, and plasmid restructuring of New Delhi metallo-β-lactamase-1 (NDM-1)-producing ST42 Klebsiella pneumoniae emerging in Japan. J Infect Chemother 19:118–127. doi: 10.1007/s10156-012-0470-z. [DOI] [PubMed] [Google Scholar]
- 17.Deleo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, Chavda KD, Jacobs MR, Mathema B, Olsen RJ, Bonomo RA, Musser JM, Kreiswirth BN. 2014. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci U S A 111:4988–4993. doi: 10.1073/pnas.1321364111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Chen L, Mathema B, Pitout JDD, DeLeo FR, Kreiswirth BN. 2014. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. mBio 5:e01355-14. doi: 10.1128/mBio.01355-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kieser T. 1984. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 12:19–36. doi: 10.1016/0147-619X(84)90063-5. [DOI] [PubMed] [Google Scholar]
- 20.Bonnin RA, Nordmann P, Potron A, Lecuyer H, Zahar J-R, Poirel L. 2011. Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 55:349–354. doi: 10.1128/AAC.00773-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Poirel L, Bonnin RA, Nordmann P. 2012. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect Genet Evol 12:883–893. doi: 10.1016/j.meegid.2012.02.008. [DOI] [PubMed] [Google Scholar]
- 22.Dortet L, Fusaro M, Naas T. 2016. Improvement of the Xpert Carba-R kit for the detection of carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 60:3832–3837. doi: 10.1128/AAC.00517-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
