Skip to main content
Springer logoLink to Springer
. 2016 Aug 11;76(8):451. doi: 10.1140/epjc/s10052-016-4286-3

Measurement of the double-differential inclusive jet cross section in proton–proton collisions at s=13TeV

V Khachatryan 1, A M Sirunyan 1, A Tumasyan 1, W Adam 2, E Asilar 2, T Bergauer 2, J Brandstetter 2, E Brondolin 2, M Dragicevic 2, J Erö 2, M Flechl 2, M Friedl 2, R Frühwirth 2, V M Ghete 2, C Hartl 2, N Hörmann 2, J Hrubec 2, M Jeitler 2, A König 2, I Krätschmer 2, D Liko 2, T Matsushita 2, I Mikulec 2, D Rabady 2, N Rad 2, B Rahbaran 2, H Rohringer 2, J Schieck 2, J Strauss 2, W Treberer-Treberspurg 2, W Waltenberger 2, C-E Wulz 2, V Mossolov 3, N Shumeiko 3, J Suarez Gonzalez 3, S Alderweireldt 4, E A De Wolf 4, X Janssen 4, A Knutsson 4, J Lauwers 4, M Van De Klundert 4, H Van Haevermaet 4, P Van Mechelen 4, N Van Remortel 4, A Van Spilbeeck 4, S Abu Zeid 5, F Blekman 5, J D’Hondt 5, N Daci 5, I De Bruyn 5, K Deroover 5, N Heracleous 5, S Lowette 5, S Moortgat 5, L Moreels 5, A Olbrechts 5, Q Python 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, I Van Parijs 5, H Brun 6, C Caillol 6, B Clerbaux 6, G De Lentdecker 6, H Delannoy 6, G Fasanella 6, L Favart 6, R Goldouzian 6, A Grebenyuk 6, G Karapostoli 6, T Lenzi 6, A Léonard 6, J Luetic 6, T Maerschalk 6, A Marinov 6, A Randle-Conde 6, T Seva 6, C Vander Velde 6, P Vanlaer 6, R Yonamine 6, F Zenoni 6, F Zhang 6, A Cimmino 7, T Cornelis 7, D Dobur 7, A Fagot 7, G Garcia 7, M Gul 7, J Mccartin 7, D Poyraz 7, S Salva 7, R Schöfbeck 7, M Tytgat 7, W Van Driessche 7, E Yazgan 7, N Zaganidis 7, C Beluffi 8, O Bondu 8, S Brochet 8, G Bruno 8, A Caudron 8, L Ceard 8, S De Visscher 8, C Delaere 8, M Delcourt 8, L Forthomme 8, B Francois 8, A Giammanco 8, A Jafari 8, P Jez 8, M Komm 8, V Lemaitre 8, A Magitteri 8, A Mertens 8, M Musich 8, C Nuttens 8, K Piotrzkowski 8, L Quertenmont 8, M Selvaggi 8, M Vidal Marono 8, S Wertz 8, N Beliy 9, W L Aldá Júnior 10, F L Alves 10, G A Alves 10, L Brito 10, M Hamer 10, C Hensel 10, A Moraes 10, M E Pol 10, P Rebello Teles 10, E Belchior Batista Das Chagas 11, W Carvalho 11, J Chinellato 11, A Custódio 11, E M Da Costa 11, G G Da Silveira 11, D De Jesus Damiao 11, C De Oliveira Martins 11, S Fonseca De Souza 11, L M Huertas Guativa 11, H Malbouisson 11, D Matos Figueiredo 11, C Mora Herrera 11, L Mundim 11, H Nogima 11, W L Prado Da Silva 11, A Santoro 11, A Sznajder 11, E J Tonelli Manganote 11, A Vilela Pereira 11, S Ahuja 12, C A Bernardes 12, S Dogra 12, T R Fernandez Perez Tomei 12, E M Gregores 12, P G Mercadante 12, C S Moon 12, S F Novaes 12, Sandra S Padula 12, D Romero Abad 12, J C Ruiz Vargas 12, A Aleksandrov 13, R Hadjiiska 13, P Iaydjiev 13, M Rodozov 13, S Stoykova 13, G Sultanov 13, M Vutova 13, A Dimitrov 14, I Glushkov 14, L Litov 14, B Pavlov 14, P Petkov 14, W Fang 15, M Ahmad 16, J G Bian 16, G M Chen 16, H S Chen 16, M Chen 16, Y Chen 16, T Cheng 16, R Du 16, C H Jiang 16, D Leggat 16, Z Liu 16, F Romeo 16, S M Shaheen 16, A Spiezia 16, J Tao 16, C Wang 16, Z Wang 16, H Zhang 16, J Zhao 16, C Asawatangtrakuldee 17, Y Ban 17, Q Li 17, S Liu 17, Y Mao 17, S J Qian 17, D Wang 17, Z Xu 17, C Avila 18, A Cabrera 18, L F Chaparro Sierra 18, C Florez 18, J P Gomez 18, C F González Hernández 18, J D Ruiz Alvarez 18, J C Sanabria 18, N Godinovic 19, D Lelas 19, I Puljak 19, P M Ribeiro Cipriano 19, Z Antunovic 20, M Kovac 20, V Brigljevic 21, D Ferencek 21, K Kadija 21, S Micanovic 21, L Sudic 21, A Attikis 22, G Mavromanolakis 22, J Mousa 22, C Nicolaou 22, F Ptochos 22, P A Razis 22, H Rykaczewski 22, M Finger 23, M Finger Jr 23, E Carrera Jarrin 24, S Elgammal 25, A Mohamed 25, Y Mohammed 25, E Salama 25, B Calpas 26, M Kadastik 26, M Murumaa 26, L Perrini 26, M Raidal 26, A Tiko 26, C Veelken 26, P Eerola 27, J Pekkanen 27, M Voutilainen 27, J Härkönen 28, V Karimäki 28, R Kinnunen 28, T Lampén 28, K Lassila-Perini 28, S Lehti 28, T Lindén 28, P Luukka 28, T Peltola 28, J Tuominiemi 28, E Tuovinen 28, L Wendland 28, J Talvitie 29, T Tuuva 29, M Besancon 30, F Couderc 30, M Dejardin 30, D Denegri 30, B Fabbro 30, J L Faure 30, C Favaro 30, F Ferri 30, S Ganjour 30, S Ghosh 30, A Givernaud 30, P Gras 30, G Hamel de Monchenault 30, P Jarry 30, I Kucher 30, E Locci 30, M Machet 30, J Malcles 30, J Rander 30, A Rosowsky 30, M Titov 30, A Zghiche 30, A Abdulsalam 31, I Antropov 31, S Baffioni 31, F Beaudette 31, P Busson 31, L Cadamuro 31, E Chapon 31, C Charlot 31, O Davignon 31, R Granier de Cassagnac 31, M Jo 31, S Lisniak 31, P Miné 31, I N Naranjo 31, M Nguyen 31, C Ochando 31, G Ortona 31, P Paganini 31, P Pigard 31, S Regnard 31, R Salerno 31, Y Sirois 31, T Strebler 31, Y Yilmaz 31, A Zabi 31, J-L Agram 32, J Andrea 32, A Aubin 32, D Bloch 32, J-M Brom 32, M Buttignol 32, E C Chabert 32, N Chanon 32, C Collard 32, E Conte 32, X Coubez 32, J-C Fontaine 32, D Gelé 32, U Goerlach 32, A-C Le Bihan 32, J A Merlin 32, K Skovpen 32, P Van Hove 32, S Gadrat 33, S Beauceron 34, C Bernet 34, G Boudoul 34, E Bouvier 34, C A Carrillo Montoya 34, R Chierici 34, D Contardo 34, B Courbon 34, P Depasse 34, H El Mamouni 34, J Fan 34, J Fay 34, S Gascon 34, M Gouzevitch 34, G Grenier 34, B Ille 34, F Lagarde 34, I B Laktineh 34, M Lethuillier 34, L Mirabito 34, A L Pequegnot 34, S Perries 34, A Popov 34, D Sabes 34, V Sordini 34, M Vander Donckt 34, P Verdier 34, S Viret 34, A Khvedelidze 35, D Lomidze 36, C Autermann 37, S Beranek 37, L Feld 37, A Heister 37, M K Kiesel 37, K Klein 37, M Lipinski 37, A Ostapchuk 37, M Preuten 37, F Raupach 37, S Schael 37, C Schomakers 37, J F Schulte 37, J Schulz 37, T Verlage 37, H Weber 37, V Zhukov 37, M Brodski 38, E Dietz-Laursonn 38, D Duchardt 38, M Endres 38, M Erdmann 38, S Erdweg 38, T Esch 38, R Fischer 38, A Güth 38, T Hebbeker 38, C Heidemann 38, K Hoepfner 38, S Knutzen 38, M Merschmeyer 38, A Meyer 38, P Millet 38, S Mukherjee 38, M Olschewski 38, K Padeken 38, P Papacz 38, T Pook 38, M Radziej 38, H Reithler 38, M Rieger 38, F Scheuch 38, L Sonnenschein 38, D Teyssier 38, S Thüer 38, V Cherepanov 39, Y Erdogan 39, G Flügge 39, F Hoehle 39, B Kargoll 39, T Kress 39, A Künsken 39, J Lingemann 39, A Nehrkorn 39, A Nowack 39, I M Nugent 39, C Pistone 39, O Pooth 39, A Stahl 39, M Aldaya Martin 40, I Asin 40, K Beernaert 40, O Behnke 40, U Behrens 40, A A Bin Anuar 40, K Borras 40, A Campbell 40, P Connor 40, C Contreras-Campana 40, F Costanza 40, C Diez Pardos 40, G Dolinska 40, G Eckerlin 40, D Eckstein 40, E Gallo 40, J Garay Garcia 40, A Geiser 40, A Gizhko 40, J M Grados Luyando 40, P Gunnellini 40, A Harb 40, J Hauk 40, M Hempel 40, H Jung 40, A Kalogeropoulos 40, O Karacheban 40, M Kasemann 40, J Keaveney 40, J Kieseler 40, C Kleinwort 40, I Korol 40, W Lange 40, A Lelek 40, J Leonard 40, K Lipka 40, A Lobanov 40, W Lohmann 40, R Mankel 40, I-A Melzer-Pellmann 40, A B Meyer 40, G Mittag 40, J Mnich 40, A Mussgiller 40, E Ntomari 40, D Pitzl 40, R Placakyte 40, A Raspereza 40, B Roland 40, M Ö Sahin 40, P Saxena 40, T Schoerner-Sadenius 40, C Seitz 40, S Spannagel 40, N Stefaniuk 40, K D Trippkewitz 40, G P Van Onsem 40, R Walsh 40, C Wissing 40, V Blobel 41, M Centis Vignali 41, A R Draeger 41, T Dreyer 41, E Garutti 41, K Goebel 41, D Gonzalez 41, J Haller 41, M Hoffmann 41, R S Höing 41, A Junkes 41, R Klanner 41, R Kogler 41, N Kovalchuk 41, T Lapsien 41, T Lenz 41, I Marchesini 41, D Marconi 41, M Meyer 41, M Niedziela 41, D Nowatschin 41, J Ott 41, F Pantaleo 41, T Peiffer 41, A Perieanu 41, J Poehlsen 41, C Sander 41, C Scharf 41, P Schleper 41, E Schlieckau 41, A Schmidt 41, S Schumann 41, J Schwandt 41, H Stadie 41, G Steinbrück 41, F M Stober 41, M Stöver 41, H Tholen 41, D Troendle 41, E Usai 41, L Vanelderen 41, A Vanhoefer 41, B Vormwald 41, C Barth 42, C Baus 42, J Berger 42, E Butz 42, T Chwalek 42, F Colombo 42, W De Boer 42, A Dierlamm 42, S Fink 42, R Friese 42, M Giffels 42, A Gilbert 42, D Haitz 42, F Hartmann 42, S M Heindl 42, U Husemann 42, I Katkov 42, A Kornmayer 42, P Lobelle Pardo 42, B Maier 42, H Mildner 42, M U Mozer 42, T Müller 42, Th Müller 42, M Plagge 42, G Quast 42, K Rabbertz 42, S Röcker 42, F Roscher 42, M Schröder 42, G Sieber 42, H J Simonis 42, R Ulrich 42, J Wagner-Kuhr 42, S Wayand 42, M Weber 42, T Weiler 42, S Williamson 42, C Wöhrmann 42, R Wolf 42, G Anagnostou 43, G Daskalakis 43, T Geralis 43, V A Giakoumopoulou 43, A Kyriakis 43, D Loukas 43, I Topsis-Giotis 43, A Agapitos 44, S Kesisoglou 44, A Panagiotou 44, N Saoulidou 44, E Tziaferi 44, I Evangelou 45, G Flouris 45, C Foudas 45, P Kokkas 45, N Loukas 45, N Manthos 45, I Papadopoulos 45, E Paradas 45, N Filipovic 46, G Bencze 47, C Hajdu 47, P Hidas 47, D Horvath 47, F Sikler 47, V Veszpremi 47, G Vesztergombi 47, A J Zsigmond 47, N Beni 48, S Czellar 48, J Karancsi 48, J Molnar 48, Z Szillasi 48, M Bartók 49, A Makovec 49, P Raics 49, Z L Trocsanyi 49, B Ujvari 49, S Bahinipati 50, S Choudhury 50, P Mal 50, K Mandal 50, A Nayak 50, D K Sahoo 50, N Sahoo 50, S K Swain 50, S Bansal 51, S B Beri 51, V Bhatnagar 51, R Chawla 51, R Gupta 51, U Bhawandeep 51, A K Kalsi 51, A Kaur 51, M Kaur 51, R Kumar 51, A Mehta 51, M Mittal 51, J B Singh 51, G Walia 51, Ashok Kumar 52, A Bhardwaj 52, B C Choudhary 52, R B Garg 52, S Keshri 52, A Kumar 52, S Malhotra 52, M Naimuddin 52, N Nishu 52, K Ranjan 52, R Sharma 52, V Sharma 52, R Bhattacharya 53, S Bhattacharya 53, K Chatterjee 53, S Dey 53, S Dutt 53, S Dutta 53, S Ghosh 53, N Majumdar 53, A Modak 53, K Mondal 53, S Mukhopadhyay 53, S Nandan 53, A Purohit 53, A Roy 53, D Roy 53, S Roy Chowdhury 53, S Sarkar 53, M Sharan 53, S Thakur 53, P K Behera 54, R Chudasama 55, D Dutta 55, V Jha 55, V Kumar 55, A K Mohanty 55, P K Netrakanti 55, L M Pant 55, P Shukla 55, A Topkar 55, S Bhowmik 56, R K Dewanjee 56, S Ganguly 56, S Kumar 56, M Maity 56, B Parida 56, T Sarkar 56, T Aziz 57, S Dugad 57, G Kole 57, B Mahakud 57, S Mitra 57, G B Mohanty 57, N Sur 57, B Sutar 57, S Banerjee 58, M Guchait 58, Sa Jain 58, G Majumder 58, K Mazumdar 58, N Wickramage 58, S Chauhan 59, S Dube 59, A Kapoor 59, K Kothekar 59, A Rane 59, S Sharma 59, H Bakhshiansohi 60, H Behnamian 60, S Chenarani 60, E Eskandari Tadavani 60, S M Etesami 60, A Fahim 60, M Khakzad 60, M Mohammadi Najafabadi 60, M Naseri 60, S Paktinat Mehdiabadi 60, F Rezaei Hosseinabadi 60, B Safarzadeh 60, M Zeinali 60, M Felcini 61, M Grunewald 61, M Abbrescia 62, C Calabria 62, C Caputo 62, A Colaleo 62, D Creanza 62, L Cristella 62, N De Filippis 62, M De Palma 62, L Fiore 62, G Iaselli 62, G Maggi 62, M Maggi 62, G Miniello 62, S My 62, S Nuzzo 62, A Pompili 62, G Pugliese 62, R Radogna 62, A Ranieri 62, G Selvaggi 62, L Silvestris 62, R Venditti 62, G Abbiendi 63, C Battilana 63, D Bonacorsi 63, S Braibant-Giacomelli 63, L Brigliadori 63, R Campanini 63, P Capiluppi 63, A Castro 63, F R Cavallo 63, S S Chhibra 63, G Codispoti 63, M Cuffiani 63, G M Dallavalle 63, F Fabbri 63, A Fanfani 63, D Fasanella 63, P Giacomelli 63, C Grandi 63, L Guiducci 63, S Marcellini 63, G Masetti 63, A Montanari 63, F L Navarria 63, A Perrotta 63, A M Rossi 63, T Rovelli 63, G P Siroli 63, N Tosi 63, S Albergo 64, M Chiorboli 64, S Costa 64, A Di Mattia 64, F Giordano 64, R Potenza 64, A Tricomi 64, C Tuve 64, G Barbagli 65, V Ciulli 65, C Civinini 65, R D’Alessandro 65, E Focardi 65, V Gori 65, P Lenzi 65, M Meschini 65, S Paoletti 65, G Sguazzoni 65, L Viliani 65, L Benussi 66, S Bianco 66, F Fabbri 66, D Piccolo 66, F Primavera 66, V Calvelli 67, F Ferro 67, M Lo Vetere 67, M R Monge 67, E Robutti 67, S Tosi 67, L Brianza 68, M E Dinardo 68, S Fiorendi 68, S Gennai 68, A Ghezzi 68, P Govoni 68, S Malvezzi 68, R A Manzoni 68, B Marzocchi 68, D Menasce 68, L Moroni 68, M Paganoni 68, D Pedrini 68, S Pigazzini 68, S Ragazzi 68, T Tabarelli de Fatis 68, S Buontempo 69, N Cavallo 69, G De Nardo 69, S Di Guida 69, M Esposito 69, F Fabozzi 69, A O M Iorio 69, G Lanza 69, L Lista 69, S Meola 69, M Merola 69, P Paolucci 69, C Sciacca 69, F Thyssen 69, P Azzi 70, N Bacchetta 70, M Bellato 70, L Benato 70, D Bisello 70, A Boletti 70, R Carlin 70, A Carvalho Antunes De Oliveira 70, P Checchia 70, M Dall’Osso 70, P De Castro Manzano 70, T Dorigo 70, U Gasparini 70, S Lacaprara 70, M Margoni 70, A T Meneguzzo 70, F Montecassiano 70, M Passaseo 70, J Pazzini 70, N Pozzobon 70, P Ronchese 70, F Simonetto 70, E Torassa 70, S Ventura 70, M Zanetti 70, P Zotto 70, A Zucchetta 70, A Braghieri 71, A Magnani 71, P Montagna 71, S P Ratti 71, V Re 71, C Riccardi 71, P Salvini 71, I Vai 71, P Vitulo 71, L Alunni Solestizi 72, G M Bilei 72, D Ciangottini 72, L Fanò 72, P Lariccia 72, R Leonardi 72, G Mantovani 72, M Menichelli 72, A Saha 72, A Santocchia 72, K Androsov 73, P Azzurri 73, G Bagliesi 73, J Bernardini 73, T Boccali 73, R Castaldi 73, M A Ciocci 73, R Dell’Orso 73, S Donato 73, G Fedi 73, A Giassi 73, M T Grippo 73, F Ligabue 73, T Lomtadze 73, L Martini 73, A Messineo 73, F Palla 73, A Rizzi 73, A Savoy-Navarro 73, P Spagnolo 73, R Tenchini 73, G Tonelli 73, A Venturi 73, P G Verdini 73, L Barone 74, F Cavallari 74, M Cipriani 74, G D’imperio 74, D Del Re 74, M Diemoz 74, S Gelli 74, C Jorda 74, E Longo 74, F Margaroli 74, P Meridiani 74, G Organtini 74, R Paramatti 74, F Preiato 74, S Rahatlou 74, C Rovelli 74, F Santanastasio 74, N Amapane 75, R Arcidiacono 75, S Argiro 75, M Arneodo 75, N Bartosik 75, R Bellan 75, C Biino 75, N Cartiglia 75, M Costa 75, R Covarelli 75, A Degano 75, N Demaria 75, L Finco 75, B Kiani 75, C Mariotti 75, S Maselli 75, E Migliore 75, V Monaco 75, E Monteil 75, M M Obertino 75, L Pacher 75, N Pastrone 75, M Pelliccioni 75, G L Pinna Angioni 75, F Ravera 75, A Romero 75, M Ruspa 75, R Sacchi 75, K Shchelina 75, V Sola 75, A Solano 75, A Staiano 75, P Traczyk 75, S Belforte 76, M Casarsa 76, F Cossutti 76, G Della Ricca 76, C La Licata 76, A Schizzi 76, A Zanetti 76, D H Kim 77, G N Kim 77, M S Kim 77, S Lee 77, S W Lee 77, Y D Oh 77, S Sekmen 77, D C Son 77, Y C Yang 77, H Kim 78, A Lee 78, J A Brochero Cifuentes 79, T J Kim 79, S Cho 80, S Choi 80, Y Go 80, D Gyun 80, S Ha 80, B Hong 80, Y Jo 80, Y Kim 80, B Lee 80, K Lee 80, K S Lee 80, S Lee 80, J Lim 80, S K Park 80, Y Roh 80, J Almond 81, J Kim 81, S B Oh 81, S h Seo 81, U K Yang 81, H D Yoo 81, G B Yu 81, M Choi 82, H Kim 82, H Kim 82, J H Kim 82, J S H Lee 82, I C Park 82, G Ryu 82, M S Ryu 82, Y Choi 83, J Goh 83, D Kim 83, E Kwon 83, J Lee 83, I Yu 83, V Dudenas 84, A Juodagalvis 84, J Vaitkus 84, I Ahmed 85, Z A Ibrahim 85, J R Komaragiri 85, M A B Md Ali 85, F Mohamad Idris 85, W A T Wan Abdullah 85, M N Yusli 85, Z Zolkapli 85, H Castilla-Valdez 86, E De La Cruz-Burelo 86, I Heredia-De La Cruz 86, A Hernandez-Almada 86, R Lopez-Fernandez 86, J Mejia Guisao 86, A Sanchez-Hernandez 86, S Carrillo Moreno 87, C Oropeza Barrera 87, F Vazquez Valencia 87, S Carpinteyro 88, I Pedraza 88, H A Salazar Ibarguen 88, C Uribe Estrada 88, A Morelos Pineda 89, D Krofcheck 90, P H Butler 91, A Ahmad 92, M Ahmad 92, Q Hassan 92, H R Hoorani 92, W A Khan 92, M A Shah 92, M Shoaib 92, M Waqas 92, H Bialkowska 93, M Bluj 93, B Boimska 93, T Frueboes 93, M Górski 93, M Kazana 93, K Nawrocki 93, K Romanowska-Rybinska 93, M Szleper 93, P Zalewski 93, K Bunkowski 94, A Byszuk 94, K Doroba 94, A Kalinowski 94, M Konecki 94, J Krolikowski 94, M Misiura 94, M Olszewski 94, M Walczak 94, P Bargassa 95, C Beirão Da Cruz E Silva 95, A Di Francesco 95, P Faccioli 95, P G Ferreira Parracho 95, M Gallinaro 95, J Hollar 95, N Leonardo 95, L Lloret Iglesias 95, M V Nemallapudi 95, J Rodrigues Antunes 95, J Seixas 95, O Toldaiev 95, D Vadruccio 95, J Varela 95, P Vischia 95, S Afanasiev 96, P Bunin 96, M Gavrilenko 96, I Golutvin 96, I Gorbunov 96, A Kamenev 96, V Karjavin 96, A Lanev 96, A Malakhov 96, V Matveev 96, P Moisenz 96, V Palichik 96, V Perelygin 96, S Shmatov 96, S Shulha 96, N Skatchkov 96, V Smirnov 96, N Voytishin 96, A Zarubin 96, L Chtchipounov 97, V Golovtsov 97, Y Ivanov 97, V Kim 97, E Kuznetsova 97, V Murzin 97, V Oreshkin 97, V Sulimov 97, A Vorobyev 97, Yu Andreev 98, A Dermenev 98, S Gninenko 98, N Golubev 98, A Karneyeu 98, M Kirsanov 98, N Krasnikov 98, A Pashenkov 98, D Tlisov 98, A Toropin 98, V Epshteyn 99, V Gavrilov 99, N Lychkovskaya 99, V Popov 99, l Pozdnyakov 99, G Safronov 99, A Spiridonov 99, M Toms 99, E Vlasov 99, A Zhokin 99, M Chadeeva 100, M Danilov 100, O Markin 100, V Andreev 101, M Azarkin 101, I Dremin 101, M Kirakosyan 101, A Leonidov 101, S V Rusakov 101, A Terkulov 101, A Baskakov 102, A Belyaev 102, E Boos 102, M Dubinin 102, L Dudko 102, A Ershov 102, A Gribushin 102, V Klyukhin 102, O Kodolova 102, I Lokhtin 102, I Miagkov 102, S Obraztsov 102, S Petrushanko 102, V Savrin 102, A Snigirev 102, I Azhgirey 103, I Bayshev 103, S Bitioukov 103, D Elumakhov 103, V Kachanov 103, A Kalinin 103, D Konstantinov 103, V Krychkine 103, V Petrov 103, R Ryutin 103, A Sobol 103, S Troshin 103, N Tyurin 103, A Uzunian 103, A Volkov 103, P Adzic 104, P Cirkovic 104, D Devetak 104, J Milosevic 104, V Rekovic 104, J Alcaraz Maestre 105, E Calvo 105, M Cerrada 105, M Chamizo Llatas 105, N Colino 105, B De La Cruz 105, A Delgado Peris 105, A Escalante Del Valle 105, C Fernandez Bedoya 105, J P Fernández Ramos 105, J Flix 105, M C Fouz 105, P Garcia-Abia 105, O Gonzalez Lopez 105, S Goy Lopez 105, J M Hernandez 105, M I Josa 105, E Navarro De Martino 105, A Pérez-Calero Yzquierdo 105, J Puerta Pelayo 105, A Quintario Olmeda 105, I Redondo 105, L Romero 105, M S Soares 105, J F de Trocóniz 106, M Missiroli 106, D Moran 106, J Cuevas 107, J Fernandez Menendez 107, I Gonzalez Caballero 107, J R González Fernández 107, E Palencia Cortezon 107, S Sanchez Cruz 107, J M Vizan Garcia 107, I J Cabrillo 108, A Calderon 108, J R Castiñeiras De Saa 108, E Curras 108, M Fernandez 108, J Garcia-Ferrero 108, G Gomez 108, A Lopez Virto 108, J Marco 108, C Martinez Rivero 108, F Matorras 108, J Piedra Gomez 108, T Rodrigo 108, A Ruiz-Jimeno 108, L Scodellaro 108, N Trevisani 108, I Vila 108, R Vilar Cortabitarte 108, D Abbaneo 109, E Auffray 109, G Auzinger 109, M Bachtis 109, P Baillon 109, A H Ball 109, D Barney 109, P Bloch 109, A Bocci 109, A Bonato 109, C Botta 109, T Camporesi 109, R Castello 109, M Cepeda 109, G Cerminara 109, M D’Alfonso 109, D d’Enterria 109, A Dabrowski 109, V Daponte 109, A David 109, M De Gruttola 109, F De Guio 109, A De Roeck 109, E Di Marco 109, M Dobson 109, M Dordevic 109, B Dorney 109, T du Pree 109, D Duggan 109, M Dünser 109, N Dupont 109, A Elliott-Peisert 109, S Fartoukh 109, G Franzoni 109, J Fulcher 109, W Funk 109, D Gigi 109, K Gill 109, M Girone 109, F Glege 109, D Gulhan 109, S Gundacker 109, M Guthoff 109, J Hammer 109, P Harris 109, J Hegeman 109, V Innocente 109, P Janot 109, H Kirschenmann 109, V Knünz 109, M J Kortelainen 109, K Kousouris 109, M Krammer 109, P Lecoq 109, C Lourenço 109, M T Lucchini 109, L Malgeri 109, M Mannelli 109, A Martelli 109, F Meijers 109, S Mersi 109, E Meschi 109, F Moortgat 109, S Morovic 109, M Mulders 109, H Neugebauer 109, S Orfanelli 109, L Orsini 109, L Pape 109, E Perez 109, M Peruzzi 109, A Petrilli 109, G Petrucciani 109, A Pfeiffer 109, M Pierini 109, A Racz 109, T Reis 109, G Rolandi 109, M Rovere 109, M Ruan 109, H Sakulin 109, J B Sauvan 109, C Schäfer 109, C Schwick 109, M Seidel 109, A Sharma 109, P Silva 109, M Simon 109, P Sphicas 109, J Steggemann 109, M Stoye 109, Y Takahashi 109, M Tosi 109, D Treille 109, A Triossi 109, A Tsirou 109, V Veckalns 109, G I Veres 109, N Wardle 109, A Zagozdzinska 109, W D Zeuner 109, W Bertl 110, K Deiters 110, W Erdmann 110, R Horisberger 110, Q Ingram 110, H C Kaestli 110, D Kotlinski 110, U Langenegger 110, T Rohe 110, F Bachmair 111, L Bäni 111, L Bianchini 111, B Casal 111, G Dissertori 111, M Dittmar 111, M Donegà 111, P Eller 111, C Grab 111, C Heidegger 111, D Hits 111, J Hoss 111, G Kasieczka 111, P Lecomte 111, W Lustermann 111, B Mangano 111, M Marionneau 111, P Martinez Ruiz del Arbol 111, M Masciovecchio 111, M T Meinhard 111, D Meister 111, F Micheli 111, P Musella 111, F Nessi-Tedaldi 111, F Pandolfi 111, J Pata 111, F Pauss 111, G Perrin 111, L Perrozzi 111, M Quittnat 111, M Rossini 111, M Schönenberger 111, A Starodumov 111, M Takahashi 111, V R Tavolaro 111, K Theofilatos 111, R Wallny 111, T K Aarrestad 112, C Amsler 112, L Caminada 112, M F Canelli 112, V Chiochia 112, A De Cosa 112, C Galloni 112, A Hinzmann 112, T Hreus 112, B Kilminster 112, C Lange 112, J Ngadiuba 112, D Pinna 112, G Rauco 112, P Robmann 112, D Salerno 112, Y Yang 112, V Candelise 113, T H Doan 113, Sh Jain 113, R Khurana 113, M Konyushikhin 113, C M Kuo 113, W Lin 113, Y J Lu 113, A Pozdnyakov 113, S S Yu 113, Arun Kumar 114, P Chang 114, Y H Chang 114, Y W Chang 114, Y Chao 114, K F Chen 114, P H Chen 114, C Dietz 114, F Fiori 114, W-S Hou 114, Y Hsiung 114, Y F Liu 114, R-S Lu 114, M Miñano Moya 114, E Paganis 114, A Psallidas 114, J F Tsai 114, Y M Tzeng 114, B Asavapibhop 115, G Singh 115, N Srimanobhas 115, N Suwonjandee 115, A Adiguzel 116, S Cerci 116, S Damarseckin 116, Z S Demiroglu 116, C Dozen 116, I Dumanoglu 116, S Girgis 116, G Gokbulut 116, Y Guler 116, E Gurpinar 116, I Hos 116, E E Kangal 116, G Onengut 116, K Ozdemir 116, D Sunar Cerci 116, B Tali 116, H Topakli 116, S Turkcapar 116, C Zorbilmez 116, B Bilin 117, S Bilmis 117, B Isildak 117, G Karapinar 117, M Yalvac 117, M Zeyrek 117, E Gülmez 118, M Kaya 118, O Kaya 118, E A Yetkin 118, T Yetkin 118, A Cakir 119, K Cankocak 119, S Sen 119, B Grynyov 120, L Levchuk 121, P Sorokin 121, R Aggleton 122, F Ball 122, L Beck 122, J J Brooke 122, D Burns 122, E Clement 122, D Cussans 122, H Flacher 122, J Goldstein 122, M Grimes 122, G P Heath 122, H F Heath 122, J Jacob 122, L Kreczko 122, C Lucas 122, D M Newbold 122, S Paramesvaran 122, A Poll 122, T Sakuma 122, S Seif El Nasr-Storey 122, D Smith 122, V J Smith 122, K W Bell 123, A Belyaev 123, C Brew 123, R M Brown 123, L Calligaris 123, D Cieri 123, D J A Cockerill 123, J A Coughlan 123, K Harder 123, S Harper 123, E Olaiya 123, D Petyt 123, C H Shepherd-Themistocleous 123, A Thea 123, I R Tomalin 123, T Williams 123, M Baber 124, R Bainbridge 124, O Buchmuller 124, A Bundock 124, D Burton 124, S Casasso 124, M Citron 124, D Colling 124, L Corpe 124, P Dauncey 124, G Davies 124, A De Wit 124, M Della Negra 124, P Dunne 124, A Elwood 124, D Futyan 124, Y Haddad 124, G Hall 124, G Iles 124, R Lane 124, C Laner 124, R Lucas 124, L Lyons 124, A-M Magnan 124, S Malik 124, L Mastrolorenzo 124, J Nash 124, A Nikitenko 124, J Pela 124, B Penning 124, M Pesaresi 124, D M Raymond 124, A Richards 124, A Rose 124, C Seez 124, A Tapper 124, K Uchida 124, M Vazquez Acosta 124, T Virdee 124, S C Zenz 124, J E Cole 125, P R Hobson 125, A Khan 125, P Kyberd 125, D Leslie 125, I D Reid 125, P Symonds 125, L Teodorescu 125, M Turner 125, A Borzou 126, K Call 126, J Dittmann 126, K Hatakeyama 126, H Liu 126, N Pastika 126, O Charaf 127, S I Cooper 127, C Henderson 127, P Rumerio 127, D Arcaro 128, A Avetisyan 128, T Bose 128, D Gastler 128, D Rankin 128, C Richardson 128, J Rohlf 128, L Sulak 128, D Zou 128, G Benelli 129, E Berry 129, D Cutts 129, A Ferapontov 129, A Garabedian 129, J Hakala 129, U Heintz 129, O Jesus 129, E Laird 129, G Landsberg 129, Z Mao 129, M Narain 129, S Piperov 129, S Sagir 129, E Spencer 129, R Syarif 129, R Breedon 130, G Breto 130, D Burns 130, M Calderon De La Barca Sanchez 130, S Chauhan 130, M Chertok 130, J Conway 130, R Conway 130, P T Cox 130, R Erbacher 130, C Flores 130, G Funk 130, M Gardner 130, W Ko 130, R Lander 130, C Mclean 130, M Mulhearn 130, D Pellett 130, J Pilot 130, F Ricci-Tam 130, S Shalhout 130, J Smith 130, M Squires 130, D Stolp 130, M Tripathi 130, S Wilbur 130, R Yohay 130, R Cousins 131, P Everaerts 131, A Florent 131, J Hauser 131, M Ignatenko 131, D Saltzberg 131, E Takasugi 131, V Valuev 131, M Weber 131, K Burt 132, R Clare 132, J Ellison 132, J W Gary 132, G Hanson 132, J Heilman 132, P Jandir 132, E Kennedy 132, F Lacroix 132, O R Long 132, M Malberti 132, M Olmedo Negrete 132, M I Paneva 132, A Shrinivas 132, H Wei 132, S Wimpenny 132, B R Yates 132, J G Branson 133, G B Cerati 133, S Cittolin 133, M Derdzinski 133, R Gerosa 133, A Holzner 133, D Klein 133, J Letts 133, I Macneill 133, D Olivito 133, S Padhi 133, M Pieri 133, M Sani 133, V Sharma 133, S Simon 133, M Tadel 133, A Vartak 133, S Wasserbaech 133, C Welke 133, J Wood 133, F Würthwein 133, A Yagil 133, G Zevi Della Porta 133, R Bhandari 134, J Bradmiller-Feld 134, C Campagnari 134, A Dishaw 134, V Dutta 134, K Flowers 134, M Franco Sevilla 134, P Geffert 134, C George 134, F Golf 134, L Gouskos 134, J Gran 134, R Heller 134, J Incandela 134, N Mccoll 134, S D Mullin 134, A Ovcharova 134, J Richman 134, D Stuart 134, I Suarez 134, C West 134, J Yoo 134, D Anderson 135, A Apresyan 135, J Bendavid 135, A Bornheim 135, J Bunn 135, Y Chen 135, J Duarte 135, A Mott 135, H B Newman 135, C Pena 135, M Spiropulu 135, J R Vlimant 135, S Xie 135, R Y Zhu 135, M B Andrews 136, V Azzolini 136, A Calamba 136, B Carlson 136, T Ferguson 136, M Paulini 136, J Russ 136, M Sun 136, H Vogel 136, I Vorobiev 136, J P Cumalat 137, W T Ford 137, F Jensen 137, A Johnson 137, M Krohn 137, T Mulholland 137, K Stenson 137, S R Wagner 137, J Alexander 138, J Chaves 138, J Chu 138, S Dittmer 138, N Mirman 138, G Nicolas Kaufman 138, J R Patterson 138, A Rinkevicius 138, A Ryd 138, L Skinnari 138, W Sun 138, S M Tan 138, Z Tao 138, J Thom 138, J Tucker 138, P Wittich 138, D Winn 139, S Abdullin 140, M Albrow 140, G Apollinari 140, S Banerjee 140, L A T Bauerdick 140, A Beretvas 140, J Berryhill 140, P C Bhat 140, G Bolla 140, K Burkett 140, J N Butler 140, H W K Cheung 140, F Chlebana 140, S Cihangir 140, M Cremonesi 140, V D Elvira 140, I Fisk 140, J Freeman 140, E Gottschalk 140, L Gray 140, D Green 140, S Grünendahl 140, O Gutsche 140, D Hare 140, R M Harris 140, S Hasegawa 140, J Hirschauer 140, Z Hu 140, B Jayatilaka 140, S Jindariani 140, M Johnson 140, U Joshi 140, B Klima 140, B Kreis 140, S Lammel 140, J Linacre 140, D Lincoln 140, R Lipton 140, T Liu 140, R Lopes De Sá 140, J Lykken 140, K Maeshima 140, N Magini 140, J M Marraffino 140, S Maruyama 140, D Mason 140, P McBride 140, P Merkel 140, S Mrenna 140, S Nahn 140, C Newman-Holmes 140, V O’Dell 140, K Pedro 140, O Prokofyev 140, G Rakness 140, L Ristori 140, E Sexton-Kennedy 140, A Soha 140, W J Spalding 140, L Spiegel 140, S Stoynev 140, N Strobbe 140, L Taylor 140, S Tkaczyk 140, N V Tran 140, L Uplegger 140, E W Vaandering 140, C Vernieri 140, M Verzocchi 140, R Vidal 140, M Wang 140, H A Weber 140, A Whitbeck 140, D Acosta 141, P Avery 141, P Bortignon 141, D Bourilkov 141, A Brinkerhoff 141, A Carnes 141, M Carver 141, D Curry 141, S Das 141, R D Field 141, I K Furic 141, J Konigsberg 141, A Korytov 141, P Ma 141, K Matchev 141, H Mei 141, P Milenovic 141, G Mitselmakher 141, D Rank 141, L Shchutska 141, D Sperka 141, L Thomas 141, J Wang 141, S Wang 141, J Yelton 141, S Linn 142, P Markowitz 142, G Martinez 142, J L Rodriguez 142, A Ackert 143, J R Adams 143, T Adams 143, A Askew 143, S Bein 143, B Diamond 143, S Hagopian 143, V Hagopian 143, K F Johnson 143, A Khatiwada 143, H Prosper 143, A Santra 143, M Weinberg 143, M M Baarmand 144, V Bhopatkar 144, S Colafranceschi 144, M Hohlmann 144, D Noonan 144, T Roy 144, F Yumiceva 144, M R Adams 145, L Apanasevich 145, D Berry 145, R R Betts 145, I Bucinskaite 145, R Cavanaugh 145, O Evdokimov 145, L Gauthier 145, C E Gerber 145, D J Hofman 145, P Kurt 145, C O’Brien 145, l D Sandoval Gonzalez 145, P Turner 145, N Varelas 145, Z Wu 145, M Zakaria 145, J Zhang 145, B Bilki 146, W Clarida 146, K Dilsiz 146, S Durgut 146, R P Gandrajula 146, M Haytmyradov 146, V Khristenko 146, J-P Merlo 146, H Mermerkaya 146, A Mestvirishvili 146, A Moeller 146, J Nachtman 146, H Ogul 146, Y Onel 146, F Ozok 146, A Penzo 146, C Snyder 146, E Tiras 146, J Wetzel 146, K Yi 146, I Anderson 147, B Blumenfeld 147, A Cocoros 147, N Eminizer 147, D Fehling 147, L Feng 147, A V Gritsan 147, P Maksimovic 147, M Osherson 147, J Roskes 147, U Sarica 147, M Swartz 147, M Xiao 147, Y Xin 147, C You 147, A Al-bataineh 148, P Baringer 148, A Bean 148, J Bowen 148, C Bruner 148, J Castle 148, R P Kenny III 148, A Kropivnitskaya 148, D Majumder 148, W Mcbrayer 148, M Murray 148, S Sanders 148, R Stringer 148, J D Tapia Takaki 148, Q Wang 148, A Ivanov 149, K Kaadze 149, S Khalil 149, M Makouski 149, Y Maravin 149, A Mohammadi 149, L K Saini 149, N Skhirtladze 149, S Toda 149, D Lange 150, F Rebassoo 150, D Wright 150, C Anelli 151, A Baden 151, O Baron 151, A Belloni 151, B Calvert 151, S C Eno 151, C Ferraioli 151, J A Gomez 151, N J Hadley 151, S Jabeen 151, R G Kellogg 151, T Kolberg 151, J Kunkle 151, Y Lu 151, A C Mignerey 151, Y H Shin 151, A Skuja 151, M B Tonjes 151, S C Tonwar 151, A Apyan 152, R Barbieri 152, A Baty 152, R Bi 152, K Bierwagen 152, S Brandt 152, W Busza 152, I A Cali 152, Z Demiragli 152, L Di Matteo 152, G Gomez Ceballos 152, M Goncharov 152, D Hsu 152, Y Iiyama 152, G M Innocenti 152, M Klute 152, D Kovalskyi 152, K Krajczar 152, Y S Lai 152, Y-J Lee 152, A Levin 152, P D Luckey 152, A C Marini 152, C Mcginn 152, C Mironov 152, S Narayanan 152, X Niu 152, C Paus 152, C Roland 152, G Roland 152, J Salfeld-Nebgen 152, G S F Stephans 152, K Sumorok 152, K Tatar 152, M Varma 152, D Velicanu 152, J Veverka 152, J Wang 152, T W Wang 152, B Wyslouch 152, M Yang 152, V Zhukova 152, A C Benvenuti 153, R M Chatterjee 153, A Evans 153, A Finkel 153, A Gude 153, P Hansen 153, S Kalafut 153, S C Kao 153, Y Kubota 153, Z Lesko 153, J Mans 153, S Nourbakhsh 153, N Ruckstuhl 153, R Rusack 153, N Tambe 153, J Turkewitz 153, J G Acosta 154, S Oliveros 154, E Avdeeva 155, R Bartek 155, K Bloom 155, S Bose 155, D R Claes 155, A Dominguez 155, C Fangmeier 155, R Gonzalez Suarez 155, R Kamalieddin 155, D Knowlton 155, I Kravchenko 155, A Malta Rodrigues 155, F Meier 155, J Monroy 155, J E Siado 155, G R Snow 155, B Stieger 155, M Alyari 156, J Dolen 156, J George 156, A Godshalk 156, C Harrington 156, I Iashvili 156, J Kaisen 156, A Kharchilava 156, A Kumar 156, A Parker 156, S Rappoccio 156, B Roozbahani 156, G Alverson 157, E Barberis 157, D Baumgartel 157, M Chasco 157, A Hortiangtham 157, A Massironi 157, D M Morse 157, D Nash 157, T Orimoto 157, R Teixeira De Lima 157, D Trocino 157, R-J Wang 157, D Wood 157, S Bhattacharya 158, K A Hahn 158, A Kubik 158, J F Low 158, N Mucia 158, N Odell 158, B Pollack 158, M H Schmitt 158, K Sung 158, M Trovato 158, M Velasco 158, N Dev 159, M Hildreth 159, K Hurtado Anampa 159, C Jessop 159, D J Karmgard 159, N Kellams 159, K Lannon 159, N Marinelli 159, F Meng 159, C Mueller 159, Y Musienko 159, M Planer 159, A Reinsvold 159, R Ruchti 159, G Smith 159, S Taroni 159, N Valls 159, M Wayne 159, M Wolf 159, A Woodard 159, J Alimena 160, L Antonelli 160, J Brinson 160, B Bylsma 160, L S Durkin 160, S Flowers 160, B Francis 160, A Hart 160, C Hill 160, R Hughes 160, W Ji 160, B Liu 160, W Luo 160, D Puigh 160, B L Winer 160, H W Wulsin 160, S Cooperstein 161, O Driga 161, P Elmer 161, J Hardenbrook 161, P Hebda 161, J Luo 161, D Marlow 161, T Medvedeva 161, M Mooney 161, J Olsen 161, C Palmer 161, P Piroué 161, D Stickland 161, C Tully 161, A Zuranski 161, S Malik 162, A Barker 163, V E Barnes 163, D Benedetti 163, S Folgueras 163, L Gutay 163, M K Jha 163, M Jones 163, A W Jung 163, K Jung 163, D H Miller 163, N Neumeister 163, B C Radburn-Smith 163, X Shi 163, J Sun 163, A Svyatkovskiy 163, F Wang 163, W Xie 163, L Xu 163, N Parashar 164, J Stupak 164, A Adair 165, B Akgun 165, Z Chen 165, K M Ecklund 165, F J M Geurts 165, M Guilbaud 165, W Li 165, B Michlin 165, M Northup 165, B P Padley 165, R Redjimi 165, J Roberts 165, J Rorie 165, Z Tu 165, J Zabel 165, B Betchart 166, A Bodek 166, P de Barbaro 166, R Demina 166, Y t Duh 166, T Ferbel 166, M Galanti 166, A Garcia-Bellido 166, J Han 166, O Hindrichs 166, A Khukhunaishvili 166, K H Lo 166, P Tan 166, M Verzetti 166, J P Chou 167, E Contreras-Campana 167, Y Gershtein 167, T A Gómez Espinosa 167, E Halkiadakis 167, M Heindl 167, D Hidas 167, E Hughes 167, S Kaplan 167, R Kunnawalkam Elayavalli 167, S Kyriacou 167, A Lath 167, K Nash 167, H Saka 167, S Salur 167, S Schnetzer 167, D Sheffield 167, S Somalwar 167, R Stone 167, S Thomas 167, P Thomassen 167, M Walker 167, M Foerster 168, J Heideman 168, G Riley 168, K Rose 168, S Spanier 168, K Thapa 168, O Bouhali 169, A Castaneda Hernandez 168, A Celik 169, M Dalchenko 169, M De Mattia 169, A Delgado 169, S Dildick 169, R Eusebi 169, J Gilmore 169, T Huang 169, E Juska 169, T Kamon 169, V Krutelyov 169, R Mueller 169, Y Pakhotin 169, R Patel 169, A Perloff 169, L Perniè 169, D Rathjens 169, A Rose 169, A Safonov 169, A Tatarinov 169, K A Ulmer 169, N Akchurin 170, C Cowden 170, J Damgov 170, C Dragoiu 170, P R Dudero 170, J Faulkner 170, S Kunori 170, K Lamichhane 170, S W Lee 170, T Libeiro 170, S Undleeb 170, I Volobouev 170, Z Wang 170, A G Delannoy 171, S Greene 171, A Gurrola 171, R Janjam 171, W Johns 171, C Maguire 171, A Melo 171, H Ni 171, P Sheldon 171, S Tuo 171, J Velkovska 171, Q Xu 171, M W Arenton 172, P Barria 172, B Cox 172, J Goodell 172, R Hirosky 172, A Ledovskoy 172, H Li 172, C Neu 172, T Sinthuprasith 172, X Sun 172, Y Wang 172, E Wolfe 172, F Xia 172, C Clarke 173, R Harr 173, P E Karchin 173, P Lamichhane 173, J Sturdy 173, D A Belknap 174, S Dasu 174, L Dodd 174, S Duric 174, B Gomber 174, M Grothe 174, M Herndon 174, A Hervé 174, P Klabbers 174, A Lanaro 174, A Levine 174, K Long 174, R Loveless 174, I Ojalvo 174, T Perry 174, G A Pierro 174, G Polese 174, T Ruggles 174, A Savin 174, A Sharma 174, N Smith 174, W H Smith 174, D Taylor 174, P Verwilligen 174, N Woods 174, [Authorinst]The CMS Collaboration 175,
PMCID: PMC5331863  PMID: 28303083

Abstract

A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity |y| is presented. The analysis is based on proton–proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13TeV. The data samples correspond to integrated luminosities of 71 and 44pb-1 for |y|<3 and 3.2<|y|<4.7, respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2TeV and jet rapidity up to |y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at s=13TeV as at smaller centre-of-mass energies.

Introduction

Quantum chromodynamics (QCD) is the fundamental theory describing strong interactions among partons, i.e.quarks and gluons. Inclusive jet production (p+pjet+X) is a key process to test predictions of perturbative QCD (pQCD) over a wide region in phase space. To compare with measurements, the parton-level calculations must be complemented with corrections for nonperturbative (NP) effects that involve the modeling of hadronisation (HAD) and multiparton interactions (MPI). Previous measurements at the CERN LHC have been carried out by the ATLAS and CMS Collaborations at centre-of-mass energies s=2.76TeV [1, 2], 7TeV  [37], and at lower s by experiments at other hadron colliders [812]. The measurements at 2.76 and 7TeV centre-of-mass energies were found to be in agreement with calculations at next-to-leading order (NLO) in the strong coupling constant αS over a wide range of jet transverse momentum pT and rapidity y. With the latest data from the LHC Run 2, these tests of pQCD are extended to cover the new energy regime of s=13TeV.

In this paper, a measurement of the double-differential inclusive jet cross section is presented as a function of the jet pT and absolute jet rapidity |y|. The jets are clustered with the anti-kt jet algorithm [13] as implemented in the FastJet library [14]. Two jet sizes R are used: the larger value R=0.7 corresponds to the standard jet size chosen in most QCD jet analyses made by the CMS Collaboration because it favourably compares to fixed-order predictions [15]. A second, smaller value of R emphasizes different aspects of perturbative and nonperturbative QCD and permits complementary tests to be performed [1618]. Moreover, the choice of R=0.4 as a new CMS default jet size that replaces the previous one of 0.5 in LHC Run 1 analyses will allow direct comparisons between jet measurements made by ATLAS and CMS.

The proton–proton collision data were recorded by the CMS experiment at a centre-of-mass energy of 13TeV in 2015. The data samples correspond to integrated luminosities of 71 and 44pb-1 for ranges in rapidity of |y|<3 and 3.2<|y|<4.7, respectively. The smaller amount of data for the forward rapidity range is explained by more difficult operating conditions at the very start of data taking, which reduced the event sample certified for physics analyses. The results are compared to fixed-order predictions at NLO precision, complemented with electroweak and nonperturbative corrections, and to predictions of various Monte Carlo (MC) event generators that combine leading-order (LO) or NLO pQCD with the modeling of parton showers (PS), HAD, and MPI.

The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors to the region 3.0<|y|<5.2. Muons are measured in gas-ionisation detectors embedded in the steel flux-return yoke outside the solenoid. In the region |η|<1.74, the HCAL cells have widths of 0.087 in η and 0.087 radians in azimuth (ϕ). In the η-ϕ plane, and for |η|<1.48, the HCAL cells map onto 5×5 ECAL crystals arrays to form calorimeter towers projecting radially outwards from close to the nominal interaction point. At larger values of |η|, the size in rapidity of the towers increases and the matching ECAL arrays contain fewer crystals. Within each tower, the energy deposits in ECAL and HCAL cells are summed to define the calorimeter tower energies, subsequently used to provide the energies and directions of hadronic jets. The particle-flow (PF) event algorithm [19, 20] reconstructs and identifies each individual particle with an optimised combination of information from the various elements of the CMS detector. The energy of photons is directly obtained from the ECAL measurement. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The momentum of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momenta measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding ECAL and HCAL energy. When combining information from the entire detector, the jet energy resolution typically amounts to 15 % at 10GeV, 8 % at 100GeV, and 4 % at 1TeV, to be compared to about 40, 12, and 5 % obtained when the ECAL and HCAL alone are used. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [21].

Event selection and jet reconstruction

The measurement is based on data samples collected with single-jet high-level triggers (HLT) [22]. Eight single-jet HLT paths are considered, seeded by Level 1 triggers based on calorimetric information. They require, in the full rapidity coverage of the CMS detector, at least one jet in each event with pT>60, 80, 140, 200, 260, 300, 400, or 450GeV. All triggers, except the one with the highest threshold, are prescaled. The relative efficiency of each trigger is estimated using lower-pT-threshold triggers, and found to exceed 99 % in the pT regions shown in Table 1. The absolute trigger efficiency is measured using a tag and probe method [23] based on events selected with a single-jet trigger threshold of 40GeV, a back-to-back dijet system, and a probe jet matched to a HLT trigger object. This trigger has an efficiency greater than 99 % for selecting an event with a jet of pT>80GeV.

Table 1.

Trigger regions defined as ranges of the leading jet pT in each event for all single-jet triggers used in the inclusive jet cross section measurement

HLT path pT range (GeV)
PFJet_60 114–133
PFJet_80 133–220
PFJet_140 220–300
PFJet_200 300–430
PFJet_260 430–507
PFJet_300 507–638
PFJet_400 638–737
PFJet_450 >737

The main physics objects in this analysis are PF jets, reconstructed by clustering the Lorentz vectors of the PF candidates with the anti-kt (AK) clustering algorithm for the two jet sizes R=0.7 and 0.4 that will be referred to as AK7 and AK4, respectively. In order to reduce the contribution to the reconstructed jets from additional proton–proton interactions within the same or neighbouring bunch crossings (pileup), the technique of charged hadron subtraction [24] is used. Pileup produces unwanted calorimetric energy depositions and additional tracks. The charged hadron subtraction reduces these effects by removing charged particles that originate from pileup vertices. The average number of pileup interactions observed in these data is 19. During data collection the LHC operated with a 50 ns bunch spacing.

Reconstructed jets require small energy corrections to account for residual nonuniformities and nonlinearities in the detector response. Jet energy scale (JES) [23] corrections are obtained using simulated events, generated with pythia8.204 [25] with tune CUETM1 [26] and processed through the CMS detector simulation, and in situ measurements with dijet, photon+jet, and Z+jet events. An offset correction is applied to account for the extra energy clustered into jets due to the contribution of neutral particles produced by additional pileup interactions within the same or neighbouring bunch crossings.

The JES correction, applied as a multiplicative factor to the jet four-momentum vector, depends on the jet η and pT values. The typical correction is about 10 % for a central jet with a pT of 100GeV, and decreases with increasing pT.

Events are required to have at least one primary vertex (PV). If more than one primary vertex is present, the vertex with the highest sum of the squared pT of the associated tracks is selected. This selected vertex is required to be reconstructed from at least five charged-particle tracks and must satisfy a set of quality requirements, including |zPV|<24cm and ρPV<2cm, where zPV and ρPV are the longitudinal and transverse distances of the primary vertex from the nominal interaction point in the CMS detector. Jets with pT>114GeV are grouped in seven different |y| bins. Additional selection criteria are applied to each event to remove spurious jet-like signatures originating from isolated noise patterns in certain HCAL regions. To suppress noise patterns, tight identification criteria are applied [27]: each jet should contain at least two particles, one of which is a charged hadron, and the jet energy fraction carried by neutral hadrons and photons should be less than 90 %. These criteria have an efficiency greater than 99 % for genuine jets.

Measurement of the double-differential inclusive jet cross section

The double-differential inclusive jet cross section is defined as

d2σdpTdy=1ϵLNjΔpTΔy, 1

where L is the integrated luminosity, Nj is the number of jets in a bin of a width ΔpT in transverse momentum and Δy in rapidity, and ϵ is the product of the trigger and jet selection efficiencies, which is greater than 99 %. The phase space in rapidity is subdivided into six bins from y=0 to |y|=3 with |Δy|=0.5, and one bin from |y|=3.2 to 4.7, the forward rapidity region. The bin width in pT is chosen in such a way that bin-to-bin migrations due to detector resolution are less than 50 %. In each bin, the statistical uncertainty is derived through the formula (4-3f)/(2-f)Njets, where f corresponds to the fraction of events which contribute with exactly one jet in the bin [6]. This procedure corrects for possible multiple entries per event. The fraction f is typically larger than 95 % in the entire phase-space considered, thus the correction is small.

The double-differential inclusive jet cross section is corrected for the detector resolution and unfolded to the stable particle level [28]. In this way, a direct comparison of this measurement to results from other experiments and to QCD predictions is possible. Particles are considered stable if their mean path length cτ is greater than 10 mm.

The unfolding procedure is based on the iterative d’Agostini method [29], as implemented in the RooUnfold software package [30], using a response matrix that maps the predicted distribution onto the measured one. The response matrix is derived from a simulation, that uses the theoretically predicted spectrum as input and introduces smearing effects by taking into account the jet pT resolution. The predicted spectrum is evaluated from fixed-order calculations based on the NLOJet++ v4.1.13 program [31, 32] within the framework of the fastNLO v2.3.1 package [33], using the CT14 [34] parton distribution functions (PDF). More details are presented in Sect. 5.1. The jet pT resolution is evaluated with the CMS detector simulation based on Geant4  [35] using a QCD simulation from pythia8 with tune CUETM1, after correcting for the residual differences between data and simulation [23]. The unfolded distributions differ from the distributions at detector level by 5–20 %. The unfolding procedure can turn statistical fluctuations of the measured spectra into correlated patterns among the neighbouring bins. It has been verified that such effects are always within the statistical uncertainties of the unfolded distributions, which are larger than those of the detector-level distributions. The iterative unfolding procedure is regularized by limiting the number of iterations to four in each rapidity bin.

The main systematic uncertainties for the jet cross section measurements arise from the JES calibration and from the uncertainty in the integrated luminosity. The JES uncertainty, evaluated separately for AK7 and AK4 jets, is 1–3 % in the central region (|y|<2) and increases to 7–8 % in the forward rapidity region (3.2<|y|<4.7) [23]. The JES uncertainty also includes the uncertainty carried by the charged hadron subtraction. The resulting uncertainties in the double-differential inclusive jet cross section range between 8 % at central rapidities and low pT to 65 % at forward rapidities and the highest pT. The uncertainty in the integrated luminosity (2.7 % [36]) propagates directly to the cross section.

The unfolding procedure is affected by uncertainties in the jet energy resolution (JER) parametrisation. Alternative response matrices are used to unfold the measured spectra. They are built by varying the JER parameters within their uncertainties [23]. The JER uncertainty introduces a 1–2 % uncertainty in the measured cross section. The model dependence of the theoretical pT spectrum also affects the response matrix and thus the unfolding, but this uncertainty has negligible effects on the cross section measurement. The model dependence is checked using various PDF sets to calculate the theoretical pT spectrum.

Finally, an uncertainty of 1 % is assigned to the cross section to account for residual effects of small inefficiencies from jet identification [15]. The total experimental systematic uncertainty of the measured cross section is obtained by summing in quadrature the individual contributions from JES, luminosity, JER, and jet identification uncertainties.

Theoretical predictions

Predictions from fixed-order calculations in pQCD

The theoretical predictions for the jet cross section are calculated at NLO accuracy in pQCD and are evaluated by using NLOJet++ within the framework of fastNLO. The cross sections are calculated at NLO for single inclusive jet production. The renormalisation and the factorisation scales (μr and μf) are chosen to be equal to the jet pT. Five quarks are assumed to be massless in the calculation, which is performed using four different PDF sets with NLO accuracy: CT14 [34], HERAPDF1.5 [37], MMHT2014 [38], and NNPDF3.0 [39], with the default values of the strong coupling αS(MZ)=0.1180, 0.1176, 0.1200, and 0.1180, respectively.

The theoretical uncertainties are evaluated as the quadratic sum of the scale, PDF, αS, and NP uncertainties. The scale uncertainty is calculated by varying μr and μf in the following six combinations: (μr/pT, μf/pT) = (1/2,1/2), (1/2,1), (1,1/2), (1,2), (2,1) and (2,2). The (asymmetric) scale uncertainty is determined through the maximal upwards and downwards deviations with respect to cross sections obtained with the default setting. The PDF and αS uncertainties are calculated according to the prescription of CT14 at the 90 % confidence level and scaled down to a 68.3 % confidence level.

The impact of NP effects, i.e. MPI and HAD effects, is evaluated by using samples obtained from different MC event generators with a simulation of PS and MPI contributions. The following MC event generators are used to estimate the NP corrections: LO pythia8 with tune CUETM1, LO herwig++ 2.7.0 [40] with tunes UE-EE-5C [41] and CUETS1 [26], and NLO powheg  [4244]. The matrix element calculation performed with powheg is interfaced to pythia8 with three different tunes (CUETS1-CTEQ6L1, CUETS1-HERAPDF, and CUETM1) for the simulation of the underlying-event (UE) contributions. The cross section ratios between a nominal event generation interfaced to the simulation of UE contributions, and a sample without HAD and MPI effects are taken as correction separately in each considered rapidity range. In a compact formulation, the NP correction factors can be defined as

CNP=dσPS+HAD+MPI/dpTdσPS/dpT, 2

where σPS+HAD+MPI is the cross section obtained with an MC sample simulating the contribution of PS, HAD, and MPI, while σPS includes only PS effects. Corrections obtained with various NLO and LO event generators are evaluated separately for the AK7 and AK4 jets. The average of the results from the NLO and LO event generators defines the central value of the NP corrections, which are fitted to a power-law function in jet pT. The uncertainty in the NP corrections are evaluated by fitting the upper and lower values of the predictions of the different generators. The combinations of PDF sets, matrix element calculations, and UE tunes used to evaluate the NP corrections are validated on UE, minimum bias and jet variables, and they are able to reproduce a wide set of observables [26]. The NP corrections are shown in Figs. 1 and 2, respectively, for AK7 and AK4 jets in a central (0.5<|y|<1.0) and a forward rapidity bin (2.5<|y|<3.0).

Fig. 1.

Fig. 1

Fits to the nonperturbative corrections obtained for inclusive AK7 jet cross sections as a function of jet pT for two rapidity bins: 0.5<|y|<1.0 (left) and 2.5<|y|<3.0 (right). The dotted lines represent the uncertainty bands, which are evaluated by fitting the envelopes of the predictions of the different generators used

Fig. 2.

Fig. 2

Fits to the nonperturbative corrections obtained for inclusive AK4 jet cross sections as a function of jet pT for two rapidity bins: 0.5<|y|<1.0 (left) and 2.5<|y|<3.0 (right). The dotted lines represent the uncertainty bands, which are evaluated by fitting the envelopes of the predictions of the different generators used

The NP corrections for the AK7 jets are 15 % (13 %) for pT  114GeV in the region 0.5<|y|<1.0 (2.5<|y|<3.0) and decrease rapidly for increasing pT, flattening at values of 1 for pT200–300GeV, depending on the considered rapidity range. Because of the smaller cone size, AK4 jets are less affected by the MPI and HAD effects. In particular, the additional energy produced by MPI shrinks for decreasing radii R, while the out-of-cone losses due to HAD effects increase for smaller radii R. These two effects are responsible for NP corrections that fall below 1 for AK4 jets with pT>200GeV at central rapidity. The NP corrections for AK4 jets are very close to unity in the phase space considered. For both cone sizes, the uncertainty assigned to the NP corrections is of the order of 1–2 %.

Electroweak effects, which arise from the virtual exchanges of massive gauge W and Z bosons, become sizable at high jet pT and central rapidity. Corrections to electroweak effects are shown in Fig. 3 for both AK7 and AK4 jets [45]. They range between 0.96 and 1.05, depending on the jet pT and rapidity, and are less than 3 % for pT<1TeV and very similar between the two cone sizes. For jet measurements performed at a centre-of-mass energy of 7TeV  [46], electroweak corrections of 10–15 % are observed for jet pT>1TeV in the |y|<1.0 range, decreasing below 2 % for lower pT, independent of the jet rapidity. Electroweak corrections are applied to the NLOJet++ predictions in a similar manner to the NP contributions.

Fig. 3.

Fig. 3

Electroweak correction factors for the seven rapidity bins for the AK7 (left) and AK4 (right) jets as a function of jet pT

Predictions from fixed-order calculations matched to parton shower simulations

The predictions from different MC event generators are compared to data. The herwig++ and the pythia8 event generators are considered. Both of them are based on an LO 22 matrix element calculation. The pythia8 event generator simulates parton showers ordered in pT and uses the Lund string model [47] for HAD, while herwig++ generates parton showers through angular-ordered emissions and uses a cluster fragmentation model [48] for HAD. The contribution of MPI is simulated in both pythia8 and herwig++ . In particular, pythia8 applies a model [49] where MPI are interleaved with parton showering, while herwig++ models the overlap between the colliding protons through a Fourier transform of the electromagnetic form factor, which plays the role of an effective inverse proton radius. Depending on the amount of proton overlap, the contribution of generated MPI varies in the simulation. The MPI parameters of both generators are tuned to measurements in proton–proton collisions at the LHC [26], while the HAD parameters are determined from fits to LEP data. For pythia8, the CUETM1 tune, which is based on NNPDF2.3LO [50, 51], is considered, while herwig++ uses the CUETS1 tune [26], based on the CTEQ6L1 PDF set [52].

Predictions based on NLO pQCD are also considered using the powheg package matched to pythia8 parton showers and including a simulation of MPI. The powheg sample uses the CT10nlo PDF set [53]. Various tunes in pythia8 are used for the UE simulation, which differ in the choice of the PDF set and the HAD parameters: the CUETM1, and tunes CUETS1-CTEQL1 and CUETS1-HERAPDF, which use the CTEQ6L1 and the HERAPDF1.5LO [54] PDF sets, respectively. The HAD parameters for the CUETM1 tune are taken from the Monash tune [55], while the 4C tune provides these in both CUETS1 tunes. All these combinations of powheg matrix element and UE-simulation tunes reproduce with very high precision the UE and jet observables at various collision energies [26].

Comparison of theoretical predictions and data

Figures 4 and 5 show the double-differential inclusive jet cross section measurements, presented as a function of pT for seven |y| ranges, after unfolding for detector effects, using the anti-kt algorithm with R=0.7 and 0.4, respectively. The measurements are compared to the NLOJet++ predictions based on the CT14 PDF set, corrected for NP and electroweak effects (left), and to the predictions from powheg + pythia8 with tune CUETM1 (right). The data are consistent with the predictions over a wide range of jet pT from 114GeV up to 2TeV.

Fig. 4.

Fig. 4

Double-differential inclusive jet cross section as function of jet pT. On the left, data (points) and predictions from NLOJet++ based on the CT14 PDF set corrected for the NP and electroweak effects (line) are shown. On the right, data (points) and predictions from powheg (PH) + pythia8 (P8) with tune CUETM1 (line) are shown. Jets are clustered with the anti-kt algorithm (R=0.7)

Fig. 5.

Fig. 5

Double-differential inclusive jet cross section as function of jet pT. On the left, data (points) and predictions from NLOJet++ based on the CT14 PDF set corrected for the NP and electroweak effects (line) are shown. On the right, data (points) and predictions from powheg (PH) + pythia8 (P8) with tune CUETM1 (line) are shown. Jets are clustered with the anti-kt algorithm (R=0.4)

The ratios of data over the NLOJet++ predictions using the CT14 PDF set are shown in Fig. 6 for the AK7 jets. The error bars on the points correspond to the statistical uncertainties, and the shaded bands correspond to the total experimental systematic uncertainties. For comparison, predictions employing three alternative PDF sets are also shown. Figure 7 shows the results for the AK4 jets. Overall, a good agreement within the uncertainties is observed between the data and predictions in the entire kinematic range studied, for both jet cone sizes. However, for R=0.4, the cross sections are systematically overestimated by about 5–10 %, while a better description is provided for jets reconstructed with R=0.7. The relatively poor agreement for R=0.4 is due to PS and soft-gluon resummation contributions, which are missing in fixed-order calculations, and that are more relevant for smaller jet cone sizes because of out-of-cone effects.

Fig. 6.

Fig. 6

Ratio of measured values to theoretical prediction from NLOJet++ using the CT14 PDF set and corrected for the NP and electroweak effects. Predictions employing three other PDF sets are also shown for comparison. Jets are clustered with the anti-kt algorithm with a distance parameter of 0.7. The error bars correspond to the statistical uncertainties of the data and the shaded bands to the total experimental systematic uncertainties

Fig. 7.

Fig. 7

Ratio of measured values to theoretical prediction from NLOJet++ using the CT14 PDF set and corrected for the NP and electroweak effects. Predictions employing three other PDF sets are also shown for comparison. Jets are clustered with the anti-kt algorithm with a distance parameter of 0.4. The error bars correspond to the statistical uncertainties of the data and the shaded bands to the total experimental systematic uncertainties

The ratios of data over predictions from powheg + pythia8 with tune CUETM1 are shown in Figs. 8 and 9 for the AK7(AK4) jets. The error bars on the points correspond to the statistical uncertainties and the shaded bands to the total experimental systematic uncertainties. For comparison, four other MC predictions are also shown. There is an overall good level of agreement within the uncertainties between data and predictions from powheg + pythia8 with various tunes for both cone sizes, in the entire kinematic range studied. The agreement of data with pythia8 and herwig++ is poor in absolute scale. The herwig++ event generator shows good agreement with the data in shape for all rapidity bins, while pythia8 agrees well in shape with the data for only |y|<1.5.

Fig. 8.

Fig. 8

Ratio of measured values to predictions from powheg (PH) + pythia8 (P8) with tune CUETM1. Predictions employing four other MC generators are also shown for comparison, where PH, P8, and Hpp stands for powheg, pythia8, and herwig++ (HPP), respectively. Jets are clustered with the anti-kt algorithm with a distance parameter of 0.7. The error bars correspond to the statistical uncertainties of the data and the shaded bands to the total experimental systematic uncertainties

Fig. 9.

Fig. 9

Ratio of measured values to predictions from powheg (PH) + pythia8 (P8) with tune CUETM1. Predictions employing four other MC generators are also shown for comparison, where PH, P8, and Hpp stands for powheg, pythia8, and herwig++ (HPP), respectively. Jets are clustered with the anti-kt algorithm with a distance parameter of 0.4. The error bars correspond to the statistical uncertainties of the data and the shaded bands to the total experimental systematic uncertainties

Summary

A measurement of the double-differential cross section as a function of jet pT and absolute rapidity |y| is presented for two jet sizes R=0.4 and 0.7 using data from proton–proton collisions at s=13TeV collected with the CMS detector. Data samples corresponding to integrated luminosities of 71 and 44pb-1 are used for absolute rapidities |y|<3 and for the forward region 3.2<|y|<4.7, respectively.

As expected for LO predictions, the MC event generators pythia8 and herwig++ exhibit significant discrepancies in absolute scale with respect to data, which are somewhat more pronounced for the case of herwig++ . In contrast, the shape of the inclusive jet pT distribution is well described by herwig++ in all rapidity bins. Predictions from pythia8 start deviating from the observed shape as |y| increases.

In the comparison between data and predictions at NLO in perturbative QCD including corrections for nonperturbative and electroweak effects, it is observed that jet cross sections for the larger jet size of R=0.7 are accurately described, while for R=0.4 theory overestimates the cross section by 5–10 % almost globally. In contrast, NLO predictions matched to parton showers as performed with powheg + pythia8 for two different tunes, perform equally well for both jet sizes. This result is consistent with the previous measurement performed at s=7TeV [15], where it was observed that powheg + pythia8 correctly describes the R dependence of the inclusive jet cross section, while fixed-order predictions at NLO were insufficient in that respect.

This measurement is a first indication that jet physics is as well understood at s=13TeV as at smaller centre-of-mass energies in the phase space accessible with the new data.

Acknowledgments

We would like to thank A. Huss for providing us with the electroweak correction factors. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Mobility Plus programme of the Ministry of Science and Higher Education (Poland); the OPUS programme of the National Science Center (Poland); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

  • 1.ATLAS Collaboration, Measurement of the inclusive jet cross-section in pp collisions at s=2.76TeV and comparison to the inclusive jet cross-section at s=7TeV using the ATLAS detector. Eur. Phys. J. C 73, 2509 (2013). doi:10.1140/epjc/s10052-013-2509-4. arXiv:1304.4739 [DOI] [PMC free article] [PubMed]
  • 2.CMS Collaboration, Measurement of the inclusive jet cross section in pp collisions at s=2.76TeV (2015). arXiv:1512.06212. Accepted by Eur. Phys. J. C
  • 3.ATLAS Collaboration, Measurement of inclusive jet and dijet cross sections in proton–proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. Eur. Phys. J. C 71, 1512 (2011). doi:10.1140/epjc/s10052-010-1512-2. arXiv:1009.5908
  • 4.CMS Collaboration, Measurement of the inclusive jet cross section in pp collisions at s=7TeV. Phys. Rev. Lett. 107, 132001 (2011). doi:10.1103/PhysRevLett.20107.132001. arXiv:1106.0208 [DOI] [PubMed]
  • 5.ATLAS Collaboration, Measurement of inclusive jet and dijet production in pp collisions at s=7TeV using the ATLAS detector. Phys. Rev. D 86, 014022 (2012). doi:10.1103/PhysRevD.86.014022. arXiv:1112.6297
  • 6.CMS Collaboration, Measurements of differential jet cross sections in proton–proton collisions at s=7TeV with the CMS detector. Phys. Rev. D 87, 112002 (2013). doi:10.1103/PhysRevD.87.112002. arXiv:1212.6660
  • 7.ATLAS Collaboration, Measurement of the inclusive jet cross-section in proton–proton collisions at s=7TeV using 4.5fb-1 of data with the ATLAS detector. JHEP 02, 153 (2015). doi:10.1007/JHEP02(2015)153. arXiv:1410.8857. [Erratum: doi:10.1007/JHEP09(2015)141]
  • 8.UA2 Collaboration, Observation of very large transverse momentum jets at the CERN pp¯ collider. Phys. Lett. B 118, 203 (1982). doi:10.1016/0370-2693(82)90629-3
  • 9.UA1 Collaboration, Hadronic jet production at the CERN proton–antiproton collider. Phys. Lett. B 132, 214 (1983). doi:10.1016/0370-2693(83)90254-X
  • 10.CDF Collaboration, Measurement of the inclusive jet cross section using the kT algorithm in pp¯ collisions at s=1.96Tev with the CDF II detector. Phys. Rev. D 75, 092006 (2007). doi:10.1103/PhysRevD.75.092006. arXiv:hep-ex/0701051 [Erratum: doi:10.1103/PhysRevD.75.119901]
  • 11.D0 Collaboration, Measurement of the inclusive jet cross section in pp¯ collisions at s=1.96TeV. Phys. Rev. Lett. 101, 062001 (2008). doi:10.1103/PhysRevLett.101.062001. arXiv:0802.2400 [DOI] [PubMed]
  • 12.CDF Collaboration, Measurement of the inclusive jet cross section at the Fermilab Tevatron pp¯ collider using a cone-based jet algorithm. Phys. Rev. D 78, 052006 (2008). doi:10.1103/PhysRevD.78.052006. arXiv:0807.2204. [Erratum: doi:10.1103/PhysRevD.79.119902]
  • 13.Cacciari M, Salam GP, Soyez G. The anti-kt jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 14.Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 15.CMS Collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-kT algorithm with radius parameters R=0.5 and 0.7 in pp collisions at s=7TeV. Phys. Rev. D 90, 072006 (2014). doi:10.1103/PhysRevD.90.072006. arXiv:1406.0324
  • 16.Dasgupta M, Magnea L, Salam GP. Non-perturbative QCD effects in jets at hadron colliders. JHEP. 2008;02:055. doi: 10.1088/1126-6708/2008/02/055. [DOI] [Google Scholar]
  • 17.Dasgupta M, Dreyer F, Salam GP, Soyez G. Small-radius jets to all orders in QCD. JHEP. 2015;04:039. doi: 10.1007/JHEP04(2015)039. [DOI] [Google Scholar]
  • 18.M. Dasgupta, F.A. Dreyer, G.P. Salam, G. Soyez, Inclusive jet spectrum for small-radius jets (2016). arXiv:1602.01110
  • 19.CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and ETmiss. CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)
  • 20.CMS Collaboration, Commissioning of the particle-flow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV. CMS Physics Analysis Summary CMS-PAS-PFT-10-002 (2010)
  • 21.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004
  • 22.CMS Collaboration, The CMS high level trigger. Eur. Phys. J. C 46, 605 (2006). doi:10.1140/epjc/s2006-02495-8. arXiv:hep-ex/0512077
  • 23.CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002. arXiv:1107.4277
  • 24.CMS Collaboration, Jet energy corrections and uncertainties. Detector performance plots for 2012. CMS Detector Performance Report CMS-DP-2012-012 (2012)
  • 25.Sjöstrand T, et al. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015;191:159. doi: 10.1016/j.cpc.2015.01.024. [DOI] [Google Scholar]
  • 26.CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2016). doi:10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815 [DOI] [PMC free article] [PubMed]
  • 27.CMS Collaboration, Jet performance in pp collisions at s=7TeV. CMS Physics Analysis Summary CMS-PAS-JME-10-003 (2010)
  • 28.C. Buttar et al., Standard model handles and candles working group: tools and jets summary report (2008). arXiv:0803.0678
  • 29.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A. 1995;362:487. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 30.T. Adye, Unfolding algorithms and tests using RooUnfold, in PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, ed. by H. Prosper, L. Lyons, p. 313. Geneva, Switzerland (2011). doi:10.5170/CERN-2011-006.313. arXiv:1105.1160
  • 31.Nagy Z. Three-jet cross sections in hadron–hadron collisions at next-to-leading order. Phys. Rev. Lett. 2002;88:122003. doi: 10.1103/PhysRevLett.88.122003. [DOI] [PubMed] [Google Scholar]
  • 32.Nagy Z. Next-to-leading order calculation of three-jet observables in hadron–hadron collisions. Phys. Rev. D. 2003;68:094002. doi: 10.1103/PhysRevD.68.094002. [DOI] [Google Scholar]
  • 33.D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project (2012). arXiv:1208.3641
  • 34.S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics (2016). arXiv:1506.07443
  • 35.GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8
  • 36.CMS Collaboration, CMS luminosity measurement for the 2015 data taking period. CMS Physics Analysis Summary CMS-PAS-LUM-15-001 (2015)
  • 37.ZEUS and H1 Collaborations, Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA. JHEP 01, 109 (2010). doi:10.1007/JHEP01(2010)109. arXiv:0911.0884
  • 38.Harland-Lang LA, Martin AD, Motylinski P, Thorne RS. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75:204. doi: 10.1140/epjc/s10052-015-3397-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.NNPDF Collaboration, Parton distributions for the LHC run II. JHEP 04, 040 (2015). doi:10.1007/JHEP04(2015)040. arXiv:1410.8849
  • 40.J. Bellm et al., Herwig++ 2.7 release note (2013). arXiv:1310.6877
  • 41.Seymour MH, Siódmok A. Constraining MPI models using σeff and recent Tevatron and LHC underlying event data. JHEP. 2013;10:113. doi: 10.1007/JHEP10(2013)113. [DOI] [Google Scholar]
  • 42.Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [Google Scholar]
  • 43.Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 44.Alioli S, et al. Jet pair production in POWHEG. JHEP. 2011;04:081. doi: 10.1007/JHEP04(2011)081. [DOI] [Google Scholar]
  • 45.Dittmaier S, Huss A, Speckner C. Weak radiative corrections to dijet production at hadron colliders. JHEP. 2012;11:095. doi: 10.1007/JHEP11(2012)095. [DOI] [Google Scholar]
  • 46.CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at s=7TeV. Eur. Phys. J. C 75, 288 (2015). doi:10.1140/epjc/s10052-015-3499-1. arXiv:1410.6765 [DOI] [PMC free article] [PubMed]
  • 47.Andersson B. The Lund model. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 1997;7:1. [Google Scholar]
  • 48.Webber BR. A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B. 1984;238:492. doi: 10.1016/0550-3213(84)90333-X. [DOI] [Google Scholar]
  • 49.Corke R, Sjöstrand T. Interleaved parton showers and tuning prospects. JHEP. 2011;03:032. doi: 10.1007/JHEP03(2011)032. [DOI] [Google Scholar]
  • 50.NNPDF Collaboration, Parton distributions with QED corrections. Nucl. Phys. B 877, 290 (2013). doi:10.1016/j.nuclphysb.2013.10.010. arXiv:1308.0598
  • 51.NNPDF Collaboration, Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO. Nucl. Phys. B 855, 153 (2012). doi:10.1016/j.nuclphysb.2011.09.024. arXiv:1107.2652
  • 52.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 53.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 54.A.M. Cooper-Sarkar, HERAPDF1.5LO PDF set with experimental uncertainties, in Proceedings, 22nd International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2014), vol. DIS2014, p. 032 (2014)
  • 55.P.Z. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. C 74, 3024 (2014). doi:10.1140/epjc/s10052-014-3024-y. arXiv:1404.5630

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES