Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jan;87(2):633–637. doi: 10.1073/pnas.87.2.633

Chemical synthesis of the thymidylate synthase gene.

S Climie 1, D V Santi 1
PMCID: PMC53319  PMID: 2153960

Abstract

A 978-base-pair gene that encodes thymidylate synthase (TS; 5,10-methylenetetrahydrofolate:dUMP C-methyltransferase, EC 2.1.1.45) from Lactobacillus casei has been synthesized and inserted into Escherichia coli expression vectors. The DNA sequence contains 35 unique restriction sites that are located an average of 28 base pairs apart throughout the entire length of the gene. A ribosome binding site was included 9 base pairs upstream from the translation start site and codon usage was adjusted to ensure efficient translation in E. coli. The TS gene is flanked by unique EcoRI and HindIII restriction sites that render the gene portable to any of several E. coli expression vectors. Catalytically active TS encoded by the synthetic gene is expressed in large amounts (10-20% of the soluble protein) and is indistinguishable from that isolated from L. casei. The utility of the synthetic gene for mutagenesis is demonstrated by a single experiment in which His-199 was replaced with 14 different amino acids. Analysis of the mutants by genetic complementation indicates that TS can tolerate a number of amino acid substitutions at that position and shows that His-199 is not strictly required for catalytic activity.

Full text

PDF
633

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An G., Bendiak D. S., Mamelak L. A., Friesen J. D. Organization and nucleotide sequence of a new ribosomal operon in Escherichia coli containing the genes for ribosomal protein S2 and elongation factor Ts. Nucleic Acids Res. 1981 Aug 25;9(16):4163–4172. doi: 10.1093/nar/9.16.4163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. An G., Friesen J. D. The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene. 1980 Dec;12(1-2):33–39. doi: 10.1016/0378-1119(80)90013-x. [DOI] [PubMed] [Google Scholar]
  3. Bashford D., Chothia C., Lesk A. M. Determinants of a protein fold. Unique features of the globin amino acid sequences. J Mol Biol. 1987 Jul 5;196(1):199–216. doi: 10.1016/0022-2836(87)90521-3. [DOI] [PubMed] [Google Scholar]
  4. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cipollo K. L., Dunlap R. B. Essential arginyl residues in thymidylate synthetase from amethopterin-resistant Lactobacillus casei. Biochemistry. 1979 Dec 11;18(25):5537–5541. doi: 10.1021/bi00592a002. [DOI] [PubMed] [Google Scholar]
  6. Fürste J. P., Pansegrau W., Frank R., Blöcker H., Scholz P., Bagdasarian M., Lanka E. Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene. 1986;48(1):119–131. doi: 10.1016/0378-1119(86)90358-6. [DOI] [PubMed] [Google Scholar]
  7. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hardy L. W., Finer-Moore J. S., Montfort W. R., Jones M. O., Santi D. V., Stroud R. M. Atomic structure of thymidylate synthase: target for rational drug design. Science. 1987 Jan 23;235(4787):448–455. doi: 10.1126/science.3099389. [DOI] [PubMed] [Google Scholar]
  9. LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Leary R. P., Kisliuk R. L. Crystalline thymidylate synthetase from dichloromethotrexate resistant Lactobacillus casei. Prep Biochem. 1971 Jan;1(1):47–54. doi: 10.1080/00327487108081929. [DOI] [PubMed] [Google Scholar]
  12. Lewis C. A., Jr, Munroe W. A., Dunlap R. B. Effects of polyoxyanions on sulfhydryl group modification of thymidylate synthetase. Biochemistry. 1978 Dec 12;17(25):5382–5387. doi: 10.1021/bi00618a010. [DOI] [PubMed] [Google Scholar]
  13. Maley G. F., Bellisario R. L., Guarino D. U., Maley F. The primary structure of Lactobacillus casei thymidylate synthetase. I. The isolation of cyanogen bromide peptides 1 through 5 and the complete amino acid sequence of CNBr 1, 2, 3, and 5. J Biol Chem. 1979 Feb 25;254(4):1288–1295. [PubMed] [Google Scholar]
  14. Maley G. F., Bellisario R. L., Guarino D. U., Maley F. The primary structure of Lactobacillus casei thymidylate synthetase. III. The use of 2-(2-nitrophenylsulfenyl)-3-methyl-3-bromoindolenine and limited tryptic peptides to establish the complete amino acid sequence of the enzyme. J Biol Chem. 1979 Feb 25;254(4):1301–1304. [PubMed] [Google Scholar]
  15. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  17. Pinter K., Davisson V. J., Santi D. V. Cloning, sequencing, and expression of the Lactobacillus casei thymidylate synthase gene. DNA. 1988 May;7(4):235–241. doi: 10.1089/dna.1988.7.235. [DOI] [PubMed] [Google Scholar]
  18. Pogolotti A. L., Jr, Weill C., Santi D. V. Thymidylate synthetase catalyzed exchange of tritiumfrom [5-3H]-2'-deoxyuridylate for protons of water. Biochemistry. 1979 Jun 26;18(13):2794–2798. doi: 10.1021/bi00580a016. [DOI] [PubMed] [Google Scholar]
  19. Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981 Sep 1;116(1):53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
  20. Rosson D., Otwell H. B., Dunlap R. B. Essential tyrosyl residues in Lactobacillus casei thymidylate synthetase. Biochem Biophys Res Commun. 1980 Nov 28;97(2):500–505. doi: 10.1016/0006-291x(80)90291-0. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Santi D. V., McHenry C. S., Sommer H. Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry. 1974 Jan 29;13(3):471–481. doi: 10.1021/bi00700a012. [DOI] [PubMed] [Google Scholar]
  23. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tabor S., Richardson C. C. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4767–4771. doi: 10.1073/pnas.84.14.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wells J. A., Vasser M., Powers D. B. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene. 1985;34(2-3):315–323. doi: 10.1016/0378-1119(85)90140-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES