Skip to main content
Springer logoLink to Springer
. 2016 Aug 22;76(8):469. doi: 10.1140/epjc/s10052-016-4293-4

Measurement of the differential cross section and charge asymmetry for inclusive ppW±+X production at s=8 TeV

V Khachatryan 1, A M Sirunyan 1, A Tumasyan 1, W Adam 2, E Asilar 2, T Bergauer 2, J Brandstetter 2, E Brondolin 2, M Dragicevic 2, J Erö 2, M Flechl 2, M Friedl 2, R Frühwirth 2, V M Ghete 2, C Hartl 2, N Hörmann 2, J Hrubec 2, M Jeitler 2, A König 2, M Krammer 2, I Krätschmer 2, D Liko 2, T Matsushita 2, I Mikulec 2, D Rabady 2, N Rad 2, B Rahbaran 2, H Rohringer 2, J Schieck 2, R Schöfbeck 2, J Strauss 2, W Treberer-Treberspurg 2, W Waltenberger 2, C-E Wulz 2, V Mossolov 3, N Shumeiko 3, J Suarez Gonzalez 3, S Alderweireldt 4, T Cornelis 4, E A De Wolf 4, X Janssen 4, A Knutsson 4, J Lauwers 4, S Luyckx 4, M Van De Klundert 4, H Van Haevermaet 4, P Van Mechelen 4, N Van Remortel 4, A Van Spilbeeck 4, S Abu Zeid 5, F Blekman 5, J D’Hondt 5, N Daci 5, I De Bruyn 5, K Deroover 5, N Heracleous 5, J Keaveney 5, S Lowette 5, S Moortgat 5, L Moreels 5, A Olbrechts 5, Q Python 5, D Strom 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, I Van Parijs 5, H Brun 6, C Caillol 6, B Clerbaux 6, G De Lentdecker 6, G Fasanella 6, L Favart 6, R Goldouzian 6, A Grebenyuk 6, G Karapostoli 6, T Lenzi 6, A Léonard 6, T Maerschalk 6, A Marinov 6, A Randle-conde 6, T Seva 6, C Vander Velde 6, P Vanlaer 6, R Yonamine 6, F Zenoni 6, F Zhang 6, L Benucci 7, A Cimmino 7, S Crucy 7, D Dobur 7, A Fagot 7, G Garcia 7, M Gul 7, J Mccartin 7, A A Ocampo Rios 7, D Poyraz 7, D Ryckbosch 7, S Salva 7, M Sigamani 7, M Tytgat 7, W Van Driessche 7, E Yazgan 7, N Zaganidis 7, S Basegmez 8, C Beluffi 8, O Bondu 8, S Brochet 8, G Bruno 8, A Caudron 8, L Ceard 8, S De Visscher 8, C Delaere 8, M Delcourt 8, D Favart 8, L Forthomme 8, A Giammanco 8, A Jafari 8, P Jez 8, M Komm 8, V Lemaitre 8, A Mertens 8, M Musich 8, C Nuttens 8, K Piotrzkowski 8, L Quertenmont 8, M Selvaggi 8, M Vidal Marono 8, N Beliy 9, G H Hammad 9, W L Aldá Júnior 10, F L Alves 10, G A Alves 10, L Brito 10, M Correa Martins Junior 10, M Hamer 10, C Hensel 10, A Moraes 10, M E Pol 10, P Rebello Teles 10, E Belchior Batista Das Chagas 11, W Carvalho 11, J Chinellato 11, A Custódio 11, E M Da Costa 11, D De Jesus Damiao 11, C De Oliveira Martins 11, S Fonseca De Souza 11, L M Huertas Guativa 11, H Malbouisson 11, D Matos Figueiredo 11, C Mora Herrera 11, L Mundim 11, H Nogima 11, W L Prado Da Silva 11, A Santoro 11, A Sznajder 11, E J Tonelli Manganote 11, A Vilela Pereira 11, S Ahuja 12, C A Bernardes 12, A De Souza Santos 12, S Dogra 12, T R Fernandez Perez Tomei 12, E M Gregores 12, P G Mercadante 12, C S Moon 12, S F Novaes 12, Sandra S Padula 12, D Romero Abad 12, J C Ruiz Vargas 12, A Aleksandrov 13, R Hadjiiska 13, P Iaydjiev 13, M Rodozov 13, S Stoykova 13, G Sultanov 13, M Vutova 13, A Dimitrov 14, I Glushkov 14, L Litov 14, B Pavlov 14, P Petkov 14, W Fang 15, M Ahmad 16, J G Bian 16, G M Chen 16, H S Chen 16, M Chen 16, T Cheng 16, R Du 16, C H Jiang 16, D Leggat 16, R Plestina 16, F Romeo 16, S M Shaheen 16, A Spiezia 16, J Tao 16, C Wang 16, Z Wang 16, H Zhang 16, C Asawatangtrakuldee 17, Y Ban 17, Q Li 17, S Liu 17, Y Mao 17, S J Qian 17, D Wang 17, Z Xu 17, C Avila 18, A Cabrera 18, L F Chaparro Sierra 18, C Florez 18, J P Gomez 18, B Gomez Moreno 18, J C Sanabria 18, N Godinovic 19, D Lelas 19, I Puljak 19, P M Ribeiro Cipriano 19, Z Antunovic 20, M Kovac 20, V Brigljevic 21, K Kadija 21, J Luetic 21, S Micanovic 21, L Sudic 21, A Attikis 22, G Mavromanolakis 22, J Mousa 22, C Nicolaou 22, F Ptochos 22, P A Razis 22, H Rykaczewski 22, M Finger 23, M Finger Jr 23, E Carrera Jarrin 24, A A Abdelalim 25, E El-khateeb 25, T Elkafrawy 25, M A Mahmoud 25, B Calpas 26, M Kadastik 26, M Murumaa 26, L Perrini 26, M Raidal 26, A Tiko 26, C Veelken 26, P Eerola 27, J Pekkanen 27, M Voutilainen 27, J Härkönen 28, V Karimäki 28, R Kinnunen 28, T Lampén 28, K Lassila-Perini 28, S Lehti 28, T Lindén 28, P Luukka 28, T Peltola 28, J Tuominiemi 28, E Tuovinen 28, L Wendland 28, J Talvitie 29, T Tuuva 29, M Besancon 30, F Couderc 30, M Dejardin 30, D Denegri 30, B Fabbro 30, J L Faure 30, C Favaro 30, F Ferri 30, S Ganjour 30, A Givernaud 30, P Gras 30, G Hamel de Monchenault 30, P Jarry 30, E Locci 30, M Machet 30, J Malcles 30, J Rander 30, A Rosowsky 30, M Titov 30, A Zghiche 30, A Abdulsalam 31, I Antropov 31, S Baffioni 31, F Beaudette 31, P Busson 31, L Cadamuro 31, E Chapon 31, C Charlot 31, O Davignon 31, R Granier de Cassagnac 31, M Jo 31, S Lisniak 31, P Miné 31, I N Naranjo 31, M Nguyen 31, C Ochando 31, G Ortona 31, P Paganini 31, P Pigard 31, S Regnard 31, R Salerno 31, Y Sirois 31, T Strebler 31, Y Yilmaz 31, A Zabi 31, J-L Agram 32, J Andrea 32, A Aubin 32, D Bloch 32, J-M Brom 32, M Buttignol 32, E C Chabert 32, N Chanon 32, C Collard 32, E Conte 32, X Coubez 32, J-C Fontaine 32, D Gelé 32, U Goerlach 32, C Goetzmann 32, A-C Le Bihan 32, J A Merlin 32, K Skovpen 32, P Van Hove 32, S Gadrat 33, S Beauceron 34, C Bernet 34, G Boudoul 34, E Bouvier 34, C A Carrillo Montoya 34, R Chierici 34, D Contardo 34, B Courbon 34, P Depasse 34, H El Mamouni 34, J Fan 34, J Fay 34, S Gascon 34, M Gouzevitch 34, B Ille 34, F Lagarde 34, I B Laktineh 34, M Lethuillier 34, L Mirabito 34, A L Pequegnot 34, S Perries 34, A Popov 34, J D Ruiz Alvarez 34, D Sabes 34, V Sordini 34, M Vander Donckt 34, P Verdier 34, S Viret 34, T Toriashvili 35, D Lomidze 36, C Autermann 37, S Beranek 37, L Feld 37, A Heister 37, M K Kiesel 37, K Klein 37, M Lipinski 37, A Ostapchuk 37, M Preuten 37, F Raupach 37, S Schael 37, J F Schulte 37, T Verlage 37, H Weber 37, V Zhukov 37, M Ata 38, M Brodski 38, E Dietz-Laursonn 38, D Duchardt 38, M Endres 38, M Erdmann 38, S Erdweg 38, T Esch 38, R Fischer 38, A Güth 38, T Hebbeker 38, C Heidemann 38, K Hoepfner 38, S Knutzen 38, M Merschmeyer 38, A Meyer 38, P Millet 38, S Mukherjee 38, M Olschewski 38, K Padeken 38, P Papacz 38, T Pook 38, M Radziej 38, H Reithler 38, M Rieger 38, F Scheuch 38, L Sonnenschein 38, D Teyssier 38, S Thüer 38, V Cherepanov 39, Y Erdogan 39, G Flügge 39, H Geenen 39, M Geisler 39, F Hoehle 39, B Kargoll 39, T Kress 39, A Künsken 39, J Lingemann 39, A Nehrkorn 39, A Nowack 39, I M Nugent 39, C Pistone 39, O Pooth 39, A Stahl 39, M Aldaya Martin 40, I Asin 40, K Beernaert 40, O Behnke 40, U Behrens 40, K Borras 40, A Burgmeier 40, A Campbell 40, C Contreras-Campana 40, F Costanza 40, C Diez Pardos 40, G Dolinska 40, S Dooling 40, G Eckerlin 40, D Eckstein 40, T Eichhorn 40, E Eren 40, E Gallo 40, J Garay Garcia 40, A Geiser 40, A Gizhko 40, P Gunnellini 40, J Hauk 40, M Hempel 40, H Jung 40, A Kalogeropoulos 40, O Karacheban 40, M Kasemann 40, P Katsas 40, J Kieseler 40, C Kleinwort 40, I Korol 40, W Lange 40, J Leonard 40, K Lipka 40, A Lobanov 40, W Lohmann 40, R Mankel 40, I-A Melzer-Pellmann 40, A B Meyer 40, G Mittag 40, J Mnich 40, A Mussgiller 40, A Nayak 40, E Ntomari 40, D Pitzl 40, R Placakyte 40, A Raspereza 40, B Roland 40, M Ö Sahin 40, P Saxena 40, T Schoerner-Sadenius 40, C Seitz 40, S Spannagel 40, N Stefaniuk 40, K D Trippkewitz 40, G P Van Onsem 40, R Walsh 40, C Wissing 40, V Blobel 41, M Centis Vignali 41, A R Draeger 41, T Dreyer 41, J Erfle 41, E Garutti 41, K Goebel 41, D Gonzalez 41, M Görner 41, J Haller 41, M Hoffmann 41, R S Höing 41, A Junkes 41, R Klanner 41, R Kogler 41, N Kovalchuk 41, T Lapsien 41, T Lenz 41, I Marchesini 41, D Marconi 41, M Meyer 41, M Niedziela 41, D Nowatschin 41, J Ott 41, F Pantaleo 41, T Peiffer 41, A Perieanu 41, N Pietsch 41, J Poehlsen 41, C Sander 41, C Scharf 41, P Schleper 41, E Schlieckau 41, A Schmidt 41, S Schumann 41, J Schwandt 41, H Stadie 41, G Steinbrück 41, F M Stober 41, H Tholen 41, D Troendle 41, E Usai 41, L Vanelderen 41, A Vanhoefer 41, B Vormwald 41, C Barth 42, C Baus 42, J Berger 42, C Böser 42, E Butz 42, T Chwalek 42, F Colombo 42, W De Boer 42, A Descroix 42, A Dierlamm 42, S Fink 42, F Frensch 42, R Friese 42, M Giffels 42, A Gilbert 42, D Haitz 42, F Hartmann 42, S M Heindl 42, U Husemann 42, I Katkov 42, A Kornmayer 42, P Lobelle Pardo 42, B Maier 42, H Mildner 42, M U Mozer 42, T Müller 42, Th Müller 42, M Plagge 42, G Quast 42, K Rabbertz 42, S Röcker 42, F Roscher 42, M Schröder 42, G Sieber 42, H J Simonis 42, R Ulrich 42, J Wagner-Kuhr 42, S Wayand 42, M Weber 42, T Weiler 42, S Williamson 42, C Wöhrmann 42, R Wolf 42, G Anagnostou 43, G Daskalakis 43, T Geralis 43, V A Giakoumopoulou 43, A Kyriakis 43, D Loukas 43, A Psallidas 43, I Topsis-Giotis 43, A Agapitos 44, S Kesisoglou 44, A Panagiotou 44, N Saoulidou 44, E Tziaferi 44, I Evangelou 45, G Flouris 45, C Foudas 45, P Kokkas 45, N Loukas 45, N Manthos 45, I Papadopoulos 45, E Paradas 45, J Strologas 45, N Filipovic 46, G Bencze 47, C Hajdu 47, P Hidas 47, D Horvath 47, F Sikler 47, V Veszpremi 47, G Vesztergombi 47, A J Zsigmond 47, N Beni 48, S Czellar 48, J Karancsi 48, J Molnar 48, Z Szillasi 48, M Bartók 49, A Makovec 49, P Raics 49, Z L Trocsanyi 49, B Ujvari 49, S Choudhury 50, P Mal 50, K Mandal 50, D K Sahoo 50, N Sahoo 50, S K Swain 50, S Bansal 51, S B Beri 51, V Bhatnagar 51, R Chawla 51, R Gupta 51, UBhawandeep 51, A K Kalsi 51, A Kaur 51, M Kaur 51, R Kumar 51, A Mehta 51, M Mittal 51, J B Singh 51, G Walia 51, Ashok Kumar 52, A Bhardwaj 52, B C Choudhary 52, R B Garg 52, S Keshri 52, A Kumar 52, S Malhotra 52, M Naimuddin 52, N Nishu 52, K Ranjan 52, R Sharma 52, V Sharma 52, R Bhattacharya 53, S Bhattacharya 53, K Chatterjee 53, S Dey 53, S Dutta 53, S Ghosh 53, N Majumdar 53, A Modak 53, K Mondal 53, S Mukhopadhyay 53, S Nandan 53, A Purohit 53, A Roy 53, D Roy 53, S Roy Chowdhury 53, S Sarkar 53, M Sharan 53, R Chudasama 54, D Dutta 54, V Jha 54, V Kumar 54, A K Mohanty 54, L M Pant 54, P Shukla 54, A Topkar 54, T Aziz 55, S Banerjee 55, S Bhowmik 55, R M Chatterjee 55, R K Dewanjee 55, S Dugad 55, S Ganguly 55, S Ghosh 55, M Guchait 55, A Gurtu 55, Sa Jain 55, G Kole 55, S Kumar 55, B Mahakud 55, M Maity 55, G Majumder 55, K Mazumdar 55, S Mitra 55, G B Mohanty 55, B Parida 55, T Sarkar 55, N Sur 55, B Sutar 55, N Wickramage 55, S Chauhan 56, S Dube 56, A Kapoor 56, K Kothekar 56, A Rane 56, S Sharma 56, H Bakhshiansohi 57, H Behnamian 57, S M Etesami 57, A Fahim 57, M Khakzad 57, M Mohammadi Najafabadi 57, M Naseri 57, S Paktinat Mehdiabadi 57, F Rezaei Hosseinabadi 57, B Safarzadeh 57, M Zeinali 57, M Felcini 58, M Grunewald 58, M Abbrescia 59, C Calabria 59, C Caputo 59, A Colaleo 59, D Creanza 59, L Cristella 59, N De Filippis 59, M De Palma 59, L Fiore 59, G Iaselli 59, G Maggi 59, M Maggi 59, G Miniello 59, S My 59, S Nuzzo 59, A Pompili 59, G Pugliese 59, R Radogna 59, A Ranieri 59, G Selvaggi 59, L Silvestris 59, R Venditti 59, G Abbiendi 60, C Battilana 60, D Bonacorsi 60, S Braibant-Giacomelli 60, L Brigliadori 60, R Campanini 60, P Capiluppi 60, A Castro 60, F R Cavallo 60, S S Chhibra 60, G Codispoti 60, M Cuffiani 60, G M Dallavalle 60, F Fabbri 60, A Fanfani 60, D Fasanella 60, P Giacomelli 60, C Grandi 60, L Guiducci 60, S Marcellini 60, G Masetti 60, A Montanari 60, F L Navarria 60, A Perrotta 60, A M Rossi 60, T Rovelli 60, G P Siroli 60, N Tosi 60, G Cappello 61, M Chiorboli 61, S Costa 61, A Di Mattia 61, F Giordano 61, R Potenza 61, A Tricomi 61, C Tuve 61, G Barbagli 62, V Ciulli 62, C Civinini 62, R D’Alessandro 62, E Focardi 62, V Gori 62, P Lenzi 62, M Meschini 62, S Paoletti 62, G Sguazzoni 62, L Viliani 62, L Benussi 63, S Bianco 63, F Fabbri 63, D Piccolo 63, F Primavera 63, V Calvelli 64, F Ferro 64, M Lo Vetere 64, M R Monge 64, E Robutti 64, S Tosi 64, L Brianza 65, M E Dinardo 65, S Fiorendi 65, S Gennai 65, R Gerosa 65, A Ghezzi 65, P Govoni 65, S Malvezzi 65, R A Manzoni 65, B Marzocchi 65, D Menasce 65, L Moroni 65, M Paganoni 65, D Pedrini 65, S Pigazzini 65, S Ragazzi 65, N Redaelli 65, T Tabarelli de Fatis 65, S Buontempo 66, N Cavallo 66, S Di Guida 66, M Esposito 66, F Fabozzi 66, A O M Iorio 66, G Lanza 66, L Lista 66, S Meola 66, M Merola 66, P Paolucci 66, C Sciacca 66, F Thyssen 66, P Azzi 67, N Bacchetta 67, L Benato 67, D Bisello 67, A Boletti 67, A Branca 67, R Carlin 67, P Checchia 67, M Dall’Osso 67, T Dorigo 67, U Dosselli 67, F Gasparini 67, U Gasparini 67, F Gonella 67, A Gozzelino 67, K Kanishchev 67, S Lacaprara 67, M Margoni 67, A T Meneguzzo 67, J Pazzini 67, N Pozzobon 67, P Ronchese 67, F Simonetto 67, E Torassa 67, M Tosi 67, M Zanetti 67, P Zotto 67, A Zucchetta 67, G Zumerle 67, A Braghieri 68, A Magnani 68, P Montagna 68, S P Ratti 68, V Re 68, C Riccardi 68, P Salvini 68, I Vai 68, P Vitulo 68, L Alunni Solestizi 69, G M Bilei 69, D Ciangottini 69, L Fanò 69, P Lariccia 69, R Leonardi 69, G Mantovani 69, M Menichelli 69, A Saha 69, A Santocchia 69, K Androsov 70, P Azzurri 70, G Bagliesi 70, J Bernardini 70, T Boccali 70, R Castaldi 70, M A Ciocci 70, R Dell’Orso 70, S Donato 70, G Fedi 70, L Foà 70, A Giassi 70, M T Grippo 70, F Ligabue 70, T Lomtadze 70, L Martini 70, A Messineo 70, F Palla 70, A Rizzi 70, A Savoy-Navarro 70, P Spagnolo 70, R Tenchini 70, G Tonelli 70, A Venturi 70, P G Verdini 70, L Barone 71, F Cavallari 71, G D’imperio 71, D Del Re 71, M Diemoz 71, S Gelli 71, C Jorda 71, E Longo 71, F Margaroli 71, P Meridiani 71, G Organtini 71, R Paramatti 71, F Preiato 71, S Rahatlou 71, C Rovelli 71, F Santanastasio 71, N Amapane 72, R Arcidiacono 72, S Argiro 72, M Arneodo 72, N Bartosik 72, R Bellan 72, C Biino 72, N Cartiglia 72, M Costa 72, R Covarelli 72, A Degano 72, N Demaria 72, L Finco 72, B Kiani 72, C Mariotti 72, S Maselli 72, E Migliore 72, V Monaco 72, E Monteil 72, M M Obertino 72, L Pacher 72, N Pastrone 72, M Pelliccioni 72, G L Pinna Angioni 72, F Ravera 72, A Romero 72, M Ruspa 72, R Sacchi 72, V Sola 72, A Solano 72, A Staiano 72, S Belforte 73, V Candelise 73, M Casarsa 73, F Cossutti 73, G Della Ricca 73, B Gobbo 73, C La Licata 73, A Schizzi 73, A Zanetti 73, S K Nam 74, D H Kim 75, G N Kim 75, M S Kim 75, D J Kong 75, S Lee 75, S W Lee 75, Y D Oh 75, A Sakharov 75, D C Son 75, J A Brochero Cifuentes 76, H Kim 76, T J Kim 76, S Song 77, S Cho 78, S Choi 78, Y Go 78, D Gyun 78, B Hong 78, Y Kim 78, B Lee 78, K Lee 78, K S Lee 78, S Lee 78, J Lim 78, S K Park 78, Y Roh 78, H D Yoo 79, M Choi 80, H Kim 80, H Kim 80, J H Kim 80, J S H Lee 80, I C Park 80, G Ryu 80, M S Ryu 80, Y Choi 81, J Goh 81, D Kim 81, E Kwon 81, J Lee 81, I Yu 81, V Dudenas 82, A Juodagalvis 82, J Vaitkus 82, I Ahmed 83, Z A Ibrahim 83, J R Komaragiri 83, M A B Md Ali 83, F Mohamad Idris 83, W A T Wan Abdullah 83, M N Yusli 83, Z Zolkapli 83, E Casimiro Linares 84, H Castilla-Valdez 84, E De La Cruz-Burelo 84, I Heredia-De La Cruz 84, A Hernandez-Almada 84, R Lopez-Fernandez 84, J Mejia Guisao 84, A Sanchez-Hernandez 84, S Carrillo Moreno 85, F Vazquez Valencia 85, I Pedraza 86, H A Salazar Ibarguen 86, C Uribe Estrada 86, A Morelos Pineda 87, D Krofcheck 88, P H Butler 89, A Ahmad 90, M Ahmad 90, Q Hassan 90, H R Hoorani 90, W A Khan 90, S Qazi 90, M Shoaib 90, M Waqas 90, H Bialkowska 91, M Bluj 91, B Boimska 91, T Frueboes 91, M Górski 91, M Kazana 91, K Nawrocki 91, K Romanowska-Rybinska 91, M Szleper 91, P Traczyk 91, P Zalewski 91, G Brona 92, K Bunkowski 92, A Byszuk 92, K Doroba 92, A Kalinowski 92, M Konecki 92, J Krolikowski 92, M Misiura 92, M Olszewski 92, M Walczak 92, P Bargassa 93, C Beirão Da Cruz E Silva 93, A Di Francesco 93, P Faccioli 93, P G Ferreira Parracho 93, M Gallinaro 93, J Hollar 93, N Leonardo 93, L Lloret Iglesias 93, M V Nemallapudi 93, F Nguyen 93, J Rodrigues Antunes 93, J Seixas 93, O Toldaiev 93, D Vadruccio 93, J Varela 93, P Vischia 93, I Golutvin 94, A Kamenev 94, V Karjavin 94, V Korenkov 94, G Kozlov 94, A Lanev 94, A Malakhov 94, V Matveev 94, V V Mitsyn 94, P Moisenz 94, V Palichik 94, V Perelygin 94, S Shmatov 94, S Shulha 94, N Skatchkov 94, V Smirnov 94, E Tikhonenko 94, N Voytishin 94, A Zarubin 94, V Golovtsov 95, Y Ivanov 95, V Kim 95, E Kuznetsova 95, P Levchenko 95, V Murzin 95, V Oreshkin 95, I Smirnov 95, V Sulimov 95, L Uvarov 95, S Vavilov 95, A Vorobyev 95, Yu Andreev 96, A Dermenev 96, S Gninenko 96, N Golubev 96, A Karneyeu 96, M Kirsanov 96, N Krasnikov 96, A Pashenkov 96, D Tlisov 96, A Toropin 96, V Epshteyn 97, V Gavrilov 97, N Lychkovskaya 97, V Popov 97, I Pozdnyakov 97, G Safronov 97, A Spiridonov 97, M Toms 97, E Vlasov 97, A Zhokin 97, M Chadeeva 98, R Chistov 98, M Danilov 98, O Markin 98, E Tarkovskii 98, V Andreev 99, M Azarkin 99, I Dremin 99, M Kirakosyan 99, A Leonidov 99, G Mesyats 99, S V Rusakov 99, A Baskakov 100, A Belyaev 100, E Boos 100, V Bunichev 100, M Dubinin 100, L Dudko 100, A Gribushin 100, V Klyukhin 100, O Kodolova 100, I Lokhtin 100, I Miagkov 100, S Obraztsov 100, S Petrushanko 100, V Savrin 100, A Snigirev 100, I Azhgirey 101, I Bayshev 101, S Bitioukov 101, V Kachanov 101, A Kalinin 101, D Konstantinov 101, V Krychkine 101, V Petrov 101, R Ryutin 101, A Sobol 101, L Tourtchanovitch 101, S Troshin 101, N Tyurin 101, A Uzunian 101, A Volkov 101, P Adzic 102, P Cirkovic 102, D Devetak 102, J Milosevic 102, V Rekovic 102, J Alcaraz Maestre 103, E Calvo 103, M Cerrada 103, M Chamizo Llatas 103, N Colino 103, B De La Cruz 103, A Delgado Peris 103, A Escalante Del Valle 103, C Fernandez Bedoya 103, J P Fernández Ramos 103, J Flix 103, M C Fouz 103, P Garcia-Abia 103, O Gonzalez Lopez 103, S Goy Lopez 103, J M Hernandez 103, M I Josa 103, E Navarro De Martino 103, A Pérez-Calero Yzquierdo 103, J Puerta Pelayo 103, A Quintario Olmeda 103, I Redondo 103, L Romero 103, M S Soares 103, J F de Trocóniz 104, M Missiroli 104, D Moran 104, J Cuevas 105, J Fernandez Menendez 105, S Folgueras 105, I Gonzalez Caballero 105, E Palencia Cortezon 105, J M Vizan Garcia 105, I J Cabrillo 106, A Calderon 106, J R Castiñeiras De Saa 106, E Curras 106, P De Castro Manzano 106, M Fernandez 106, J Garcia-Ferrero 106, G Gomez 106, A Lopez Virto 106, J Marco 106, R Marco 106, C Martinez Rivero 106, F Matorras 106, J Piedra Gomez 106, T Rodrigo 106, A Y Rodríguez-Marrero 106, A Ruiz-Jimeno 106, L Scodellaro 106, N Trevisani 106, I Vila 106, R Vilar Cortabitarte 106, D Abbaneo 107, E Auffray 107, G Auzinger 107, M Bachtis 107, P Baillon 107, A H Ball 107, D Barney 107, A Benaglia 107, L Benhabib 107, G M Berruti 107, P Bloch 107, A Bocci 107, A Bonato 107, C Botta 107, H Breuker 107, T Camporesi 107, R Castello 107, M Cepeda 107, G Cerminara 107, M D’Alfonso 107, D d’Enterria 107, A Dabrowski 107, V Daponte 107, A David 107, M De Gruttola 107, F De Guio 107, A De Roeck 107, E Di Marco 107, M Dobson 107, M Dordevic 107, B Dorney 107, T du Pree 107, D Duggan 107, M Dünser 107, N Dupont 107, A Elliott-Peisert 107, G Franzoni 107, J Fulcher 107, W Funk 107, D Gigi 107, K Gill 107, M Girone 107, F Glege 107, R Guida 107, S Gundacker 107, M Guthoff 107, J Hammer 107, P Harris 107, J Hegeman 107, V Innocente 107, P Janot 107, H Kirschenmann 107, V Knünz 107, M J Kortelainen 107, K Kousouris 107, P Lecoq 107, C Lourenço 107, M T Lucchini 107, N Magini 107, L Malgeri 107, M Mannelli 107, A Martelli 107, L Masetti 107, F Meijers 107, S Mersi 107, E Meschi 107, F Moortgat 107, S Morovic 107, M Mulders 107, H Neugebauer 107, S Orfanelli 107, L Orsini 107, L Pape 107, E Perez 107, M Peruzzi 107, A Petrilli 107, G Petrucciani 107, A Pfeiffer 107, M Pierini 107, D Piparo 107, A Racz 107, T Reis 107, G Rolandi 107, M Rovere 107, M Ruan 107, H Sakulin 107, J B Sauvan 107, C Schäfer 107, C Schwick 107, M Seidel 107, A Sharma 107, P Silva 107, M Simon 107, P Sphicas 107, J Steggemann 107, M Stoye 107, Y Takahashi 107, D Treille 107, A Triossi 107, A Tsirou 107, V Veckalns 107, G I Veres 107, N Wardle 107, H K Wöhri 107, A Zagozdzinska 107, W D Zeuner 107, W Bertl 108, K Deiters 108, W Erdmann 108, R Horisberger 108, Q Ingram 108, H C Kaestli 108, D Kotlinski 108, U Langenegger 108, T Rohe 108, F Bachmair 109, L Bäni 109, L Bianchini 109, B Casal 109, G Dissertori 109, M Dittmar 109, M Donegà 109, P Eller 109, C Grab 109, C Heidegger 109, D Hits 109, J Hoss 109, G Kasieczka 109, P Lecomte 109, W Lustermann 109, B Mangano 109, M Marionneau 109, P Martinez Ruiz del Arbol 109, M Masciovecchio 109, M T Meinhard 109, D Meister 109, F Micheli 109, P Musella 109, F Nessi-Tedaldi 109, F Pandolfi 109, J Pata 109, F Pauss 109, G Perrin 109, L Perrozzi 109, M Quittnat 109, M Rossini 109, M Schönenberger 109, A Starodumov 109, M Takahashi 109, V R Tavolaro 109, K Theofilatos 109, R Wallny 109, T K Aarrestad 110, C Amsler 110, L Caminada 110, M F Canelli 110, V Chiochia 110, A De Cosa 110, C Galloni 110, A Hinzmann 110, T Hreus 110, B Kilminster 110, C Lange 110, J Ngadiuba 110, D Pinna 110, G Rauco 110, P Robmann 110, D Salerno 110, Y Yang 110, K H Chen 111, T H Doan 111, Sh Jain 111, R Khurana 111, M Konyushikhin 111, C M Kuo 111, W Lin 111, Y J Lu 111, A Pozdnyakov 111, S S Yu 111, Arun Kumar 112, P Chang 112, Y H Chang 112, Y W Chang 112, Y Chao 112, K F Chen 112, P H Chen 112, C Dietz 112, F Fiori 112, U Grundler 112, W -S Hou 112, Y Hsiung 112, Y F Liu 112, R -S Lu 112, M Miñano Moya 112, E Petrakou 112, J f Tsai 112, Y M Tzeng 112, B Asavapibhop 113, K Kovitanggoon 113, G Singh 113, N Srimanobhas 113, N Suwonjandee 113, A Adiguzel 114, S Cerci 114, S Damarseckin 114, Z S Demiroglu 114, C Dozen 114, I Dumanoglu 114, S Girgis 114, G Gokbulut 114, Y Guler 114, E Gurpinar 114, I Hos 114, E E Kangal 114, A Kayis Topaksu 114, G Onengut 114, K Ozdemir 114, S Ozturk 114, B Tali 114, H Topakli 114, C Zorbilmez 114, B Bilin 115, S Bilmis 115, B Isildak 115, G Karapinar 115, M Yalvac 115, M Zeyrek 115, E Gülmez 116, M Kaya 116, O Kaya 116, E A Yetkin 116, T Yetkin 116, A Cakir 117, K Cankocak 117, S Sen 117, B Grynyov 118, L Levchuk 119, P Sorokin 119, R Aggleton 120, F Ball 120, L Beck 120, J J Brooke 120, D Burns 120, E Clement 120, D Cussans 120, H Flacher 120, J Goldstein 120, M Grimes 120, G P Heath 120, H F Heath 120, J Jacob 120, L Kreczko 120, C Lucas 120, Z Meng 120, D M Newbold 120, S Paramesvaran 120, A Poll 120, T Sakuma 120, S Seif El Nasr-storey 120, S Senkin 120, D Smith 120, V J Smith 120, K W Bell 121, A Belyaev 121, C Brew 121, R M Brown 121, L Calligaris 121, D Cieri 121, D J A Cockerill 121, J A Coughlan 121, K Harder 121, S Harper 121, E Olaiya 121, D Petyt 121, C H Shepherd-Themistocleous 121, A Thea 121, I R Tomalin 121, T Williams 121, S D Worm 121, M Baber 122, R Bainbridge 122, O Buchmuller 122, A Bundock 122, D Burton 122, S Casasso 122, M Citron 122, D Colling 122, L Corpe 122, P Dauncey 122, G Davies 122, A De Wit 122, M Della Negra 122, P Dunne 122, A Elwood 122, D Futyan 122, Y Haddad 122, G Hall 122, G Iles 122, R Lane 122, R Lucas 122, L Lyons 122, A -M Magnan 122, S Malik 122, L Mastrolorenzo 122, J Nash 122, A Nikitenko 122, J Pela 122, B Penning 122, M Pesaresi 122, D M Raymond 122, A Richards 122, A Rose 122, C Seez 122, A Tapper 122, K Uchida 122, M Vazquez Acosta 122, T Virdee 122, S C Zenz 122, J E Cole 123, P R Hobson 123, A Khan 123, P Kyberd 123, D Leslie 123, I D Reid 123, P Symonds 123, L Teodorescu 123, M Turner 123, A Borzou 124, K Call 124, J Dittmann 124, K Hatakeyama 124, H Liu 124, N Pastika 124, O Charaf 125, S I Cooper 125, C Henderson 125, P Rumerio 125, D Arcaro 126, A Avetisyan 126, T Bose 126, D Gastler 126, D Rankin 126, C Richardson 126, J Rohlf 126, L Sulak 126, D Zou 126, J Alimena 127, G Benelli 127, E Berry 127, D Cutts 127, A Ferapontov 127, A Garabedian 127, J Hakala 127, U Heintz 127, O Jesus 127, E Laird 127, G Landsberg 127, Z Mao 127, M Narain 127, S Piperov 127, S Sagir 127, R Syarif 127, R Breedon 128, G Breto 128, M Calderon De La Barca Sanchez 128, S Chauhan 128, M Chertok 128, J Conway 128, R Conway 128, P T Cox 128, R Erbacher 128, G Funk 128, M Gardner 128, W Ko 128, R Lander 128, C Mclean 128, M Mulhearn 128, D Pellett 128, J Pilot 128, F Ricci-Tam 128, S Shalhout 128, J Smith 128, M Squires 128, D Stolp 128, M Tripathi 128, S Wilbur 128, R Yohay 128, R Cousins 129, P Everaerts 129, A Florent 129, J Hauser 129, M Ignatenko 129, D Saltzberg 129, E Takasugi 129, V Valuev 129, M Weber 129, K Burt 130, R Clare 130, J Ellison 130, J W Gary 130, G Hanson 130, J Heilman 130, M Ivova PANEVA 130, P Jandir 130, E Kennedy 130, F Lacroix 130, O R Long 130, M Malberti 130, M Olmedo Negrete 130, A Shrinivas 130, H Wei 130, S Wimpenny 130, B R Yates 130, J G Branson 131, G B Cerati 131, S Cittolin 131, R T D’Agnolo 131, M Derdzinski 131, A Holzner 131, R Kelley 131, D Klein 131, J Letts 131, I Macneill 131, D Olivito 131, S Padhi 131, M Pieri 131, M Sani 131, V Sharma 131, S Simon 131, M Tadel 131, A Vartak 131, S Wasserbaech 131, C Welke 131, F Würthwein 131, A Yagil 131, G Zevi Della Porta 131, J Bradmiller-Feld 132, C Campagnari 132, A Dishaw 132, V Dutta 132, K Flowers 132, M Franco Sevilla 132, P Geffert 132, C George 132, F Golf 132, L Gouskos 132, J Gran 132, J Incandela 132, N Mccoll 132, S D Mullin 132, J Richman 132, D Stuart 132, I Suarez 132, C West 132, J Yoo 132, D Anderson 133, A Apresyan 133, J Bendavid 133, A Bornheim 133, J Bunn 133, Y Chen 133, J Duarte 133, A Mott 133, H B Newman 133, C Pena 133, M Spiropulu 133, J R Vlimant 133, S Xie 133, R Y Zhu 133, M B Andrews 134, V Azzolini 134, A Calamba 134, B Carlson 134, T Ferguson 134, M Paulini 134, J Russ 134, M Sun 134, H Vogel 134, I Vorobiev 134, J P Cumalat 135, W T Ford 135, A Gaz 135, F Jensen 135, A Johnson 135, M Krohn 135, T Mulholland 135, U Nauenberg 135, K Stenson 135, S R Wagner 135, J Alexander 136, A Chatterjee 136, J Chaves 136, J Chu 136, S Dittmer 136, N Eggert 136, N Mirman 136, G Nicolas Kaufman 136, J R Patterson 136, A Rinkevicius 136, A Ryd 136, L Skinnari 136, L Soffi 136, W Sun 136, S M Tan 136, W D Teo 136, J Thom 136, J Thompson 136, J Tucker 136, Y Weng 136, P Wittich 136, S Abdullin 137, M Albrow 137, G Apollinari 137, S Banerjee 137, L A T Bauerdick 137, A Beretvas 137, J Berryhill 137, P C Bhat 137, G Bolla 137, K Burkett 137, J N Butler 137, H W K Cheung 137, F Chlebana 137, S Cihangir 137, V D Elvira 137, I Fisk 137, J Freeman 137, E Gottschalk 137, L Gray 137, D Green 137, S Grünendahl 137, O Gutsche 137, J Hanlon 137, D Hare 137, R M Harris 137, S Hasegawa 137, J Hirschauer 137, Z Hu 137, B Jayatilaka 137, S Jindariani 137, M Johnson 137, U Joshi 137, B Klima 137, B Kreis 137, S Lammel 137, J Lewis 137, J Linacre 137, D Lincoln 137, R Lipton 137, T Liu 137, R Lopes De Sá 137, J Lykken 137, K Maeshima 137, J M Marraffino 137, S Maruyama 137, D Mason 137, P McBride 137, P Merkel 137, S Mrenna 137, S Nahn 137, C Newman-Holmes 137, V O’Dell 137, K Pedro 137, O Prokofyev 137, G Rakness 137, E Sexton-Kennedy 137, A Soha 137, W J Spalding 137, L Spiegel 137, S Stoynev 137, N Strobbe 137, L Taylor 137, S Tkaczyk 137, N V Tran 137, L Uplegger 137, E W Vaandering 137, C Vernieri 137, M Verzocchi 137, R Vidal 137, M Wang 137, H A Weber 137, A Whitbeck 137, D Acosta 138, P Avery 138, P Bortignon 138, D Bourilkov 138, A Brinkerhoff 138, A Carnes 138, M Carver 138, D Curry 138, S Das 138, R D Field 138, I K Furic 138, J Konigsberg 138, A Korytov 138, K Kotov 138, P Ma 138, K Matchev 138, H Mei 138, P Milenovic 138, G Mitselmakher 138, D Rank 138, R Rossin 138, L Shchutska 138, M Snowball 138, D Sperka 138, N Terentyev 138, L Thomas 138, J Wang 138, S Wang 138, J Yelton 138, S Linn 139, P Markowitz 139, G Martinez 139, J L Rodriguez 139, A Ackert 140, J R Adams 140, T Adams 140, A Askew 140, S Bein 140, J Bochenek 140, B Diamond 140, J Haas 140, S Hagopian 140, V Hagopian 140, K F Johnson 140, A Khatiwada 140, H Prosper 140, M Weinberg 140, M M Baarmand 141, V Bhopatkar 141, S Colafranceschi 141, M Hohlmann 141, H Kalakhety 141, D Noonan 141, T Roy 141, F Yumiceva 141, M R Adams 142, L Apanasevich 142, D Berry 142, R R Betts 142, I Bucinskaite 142, R Cavanaugh 142, O Evdokimov 142, L Gauthier 142, C E Gerber 142, D J Hofman 142, P Kurt 142, C O’Brien 142, I D Sandoval Gonzalez 142, P Turner 142, N Varelas 142, Z Wu 142, M Zakaria 142, J Zhang 142, B Bilki 143, W Clarida 143, K Dilsiz 143, S Durgut 143, R P Gandrajula 143, M Haytmyradov 143, V Khristenko 143, J -P Merlo 143, H Mermerkaya 143, A Mestvirishvili 143, A Moeller 143, J Nachtman 143, H Ogul 143, Y Onel 143, F Ozok 143, A Penzo 143, C Snyder 143, E Tiras 143, J Wetzel 143, K Yi 143, I Anderson 144, B A Barnett 144, B Blumenfeld 144, A Cocoros 144, N Eminizer 144, D Fehling 144, L Feng 144, A V Gritsan 144, P Maksimovic 144, M Osherson 144, J Roskes 144, U Sarica 144, M Swartz 144, M Xiao 144, Y Xin 144, C You 144, P Baringer 145, A Bean 145, C Bruner 145, J Castle 145, R P Kenny III 145, A Kropivnitskaya 145, D Majumder 145, M Malek 145, W Mcbrayer 145, M Murray 145, S Sanders 145, R Stringer 145, Q Wang 145, A Ivanov 146, K Kaadze 146, S Khalil 146, M Makouski 146, Y Maravin 146, A Mohammadi 146, L K Saini 146, N Skhirtladze 146, S Toda 146, D Lange 147, F Rebassoo 147, D Wright 147, C Anelli 148, A Baden 148, O Baron 148, A Belloni 148, B Calvert 148, S C Eno 148, C Ferraioli 148, J A Gomez 148, N J Hadley 148, S Jabeen 148, R G Kellogg 148, T Kolberg 148, J Kunkle 148, Y Lu 148, A C Mignerey 148, Y H Shin 148, A Skuja 148, M B Tonjes 148, S C Tonwar 148, A Apyan 149, R Barbieri 149, A Baty 149, R Bi 149, K Bierwagen 149, S Brandt 149, W Busza 149, I A Cali 149, Z Demiragli 149, L Di Matteo 149, G Gomez Ceballos 149, M Goncharov 149, D Gulhan 149, Y Iiyama 149, G M Innocenti 149, M Klute 149, D Kovalskyi 149, K Krajczar 149, Y S Lai 149, Y -J Lee 149, A Levin 149, P D Luckey 149, A C Marini 149, C Mcginn 149, C Mironov 149, S Narayanan 149, X Niu 149, C Paus 149, C Roland 149, G Roland 149, J Salfeld-Nebgen 149, G S F Stephans 149, K Sumorok 149, K Tatar 149, M Varma 149, D Velicanu 149, J Veverka 149, J Wang 149, T W Wang 149, B Wyslouch 149, M Yang 149, V Zhukova 149, A C Benvenuti 150, B Dahmes 150, A Evans 150, A Finkel 150, A Gude 150, P Hansen 150, S Kalafut 150, S C Kao 150, K Klapoetke 150, Y Kubota 150, Z Lesko 150, J Mans 150, S Nourbakhsh 150, N Ruckstuhl 150, R Rusack 150, N Tambe 150, J Turkewitz 150, J G Acosta 151, S Oliveros 151, E Avdeeva 152, R Bartek 152, K Bloom 152, S Bose 152, D R Claes 152, A Dominguez 152, C Fangmeier 152, R Gonzalez Suarez 152, R Kamalieddin 152, D Knowlton 152, I Kravchenko 152, F Meier 152, J Monroy 152, F Ratnikov 152, J E Siado 152, G R Snow 152, B Stieger 152, M Alyari 153, J Dolen 153, J George 153, A Godshalk 153, C Harrington 153, I Iashvili 153, J Kaisen 153, A Kharchilava 153, A Kumar 153, A Parker 153, S Rappoccio 153, B Roozbahani 153, G Alverson 154, E Barberis 154, D Baumgartel 154, M Chasco 154, A Hortiangtham 154, A Massironi 154, D M Morse 154, D Nash 154, T Orimoto 154, R Teixeira De Lima 154, D Trocino 154, R -J Wang 154, D Wood 154, J Zhang 154, S Bhattacharya 155, K A Hahn 155, A Kubik 155, J F Low 155, N Mucia 155, N Odell 155, B Pollack 155, M H Schmitt 155, K Sung 155, M Trovato 155, M Velasco 155, N Dev 156, M Hildreth 156, C Jessop 156, D J Karmgard 156, N Kellams 156, K Lannon 156, N Marinelli 156, F Meng 156, C Mueller 156, Y Musienko 156, M Planer 156, A Reinsvold 156, R Ruchti 156, N Rupprecht 156, G Smith 156, S Taroni 156, N Valls 156, M Wayne 156, M Wolf 156, A Woodard 156, L Antonelli 157, J Brinson 157, B Bylsma 157, L S Durkin 157, S Flowers 157, A Hart 157, C Hill 157, R Hughes 157, W Ji 157, T Y Ling 157, B Liu 157, W Luo 157, D Puigh 157, M Rodenburg 157, B L Winer 157, H W Wulsin 157, O Driga 158, P Elmer 158, J Hardenbrook 158, P Hebda 158, S A Koay 158, P Lujan 158, D Marlow 158, T Medvedeva 158, M Mooney 158, J Olsen 158, C Palmer 158, P Piroué 158, D Stickland 158, C Tully 158, A Zuranski 158, S Malik 159, A Barker 160, V E Barnes 160, D Benedetti 160, D Bortoletto 160, L Gutay 160, M K Jha 160, M Jones 160, A W Jung 160, K Jung 160, D H Miller 160, N Neumeister 160, B C Radburn-Smith 160, X Shi 160, I Shipsey 160, D Silvers 160, J Sun 160, A Svyatkovskiy 160, F Wang 160, W Xie 160, L Xu 160, N Parashar 161, J Stupak 161, A Adair 162, B Akgun 162, Z Chen 162, K M Ecklund 162, F J M Geurts 162, M Guilbaud 162, W Li 162, B Michlin 162, M Northup 162, B P Padley 162, R Redjimi 162, J Roberts 162, J Rorie 162, Z Tu 162, J Zabel 162, B Betchart 163, A Bodek 163, P de Barbaro 163, R Demina 163, Y Eshaq 163, T Ferbel 163, M Galanti 163, A Garcia-Bellido 163, J Han 163, O Hindrichs 163, A Khukhunaishvili 163, K H Lo 163, P Tan 163, M Verzetti 163, J P Chou 164, E Contreras-Campana 164, D Ferencek 164, Y Gershtein 164, E Halkiadakis 164, M Heindl 164, D Hidas 164, E Hughes 164, S Kaplan 164, R Kunnawalkam Elayavalli 164, A Lath 164, K Nash 164, H Saka 164, S Salur 164, S Schnetzer 164, D Sheffield 164, S Somalwar 164, R Stone 164, S Thomas 164, P Thomassen 164, M Walker 164, M Foerster 165, J Heideman 165, G Riley 165, K Rose 165, S Spanier 165, K Thapa 165, O Bouhali 166, A Castaneda Hernandez 166, A Celik 166, M Dalchenko 166, M De Mattia 166, A Delgado 166, S Dildick 166, R Eusebi 166, J Gilmore 166, T Huang 166, T Kamon 166, V Krutelyov 166, R Mueller 166, I Osipenkov 166, Y Pakhotin 166, R Patel 166, A Perloff 166, L Perniè 166, D Rathjens 166, A Rose 166, A Safonov 166, A Tatarinov 166, K A Ulmer 166, N Akchurin 167, C Cowden 167, J Damgov 167, C Dragoiu 167, P R Dudero 167, J Faulkner 167, S Kunori 167, K Lamichhane 167, S W Lee 167, T Libeiro 167, S Undleeb 167, I Volobouev 167, Z Wang 167, E Appelt 168, A G Delannoy 168, S Greene 168, A Gurrola 168, R Janjam 168, W Johns 168, C Maguire 168, Y Mao 168, A Melo 168, H Ni 168, P Sheldon 168, S Tuo 168, J Velkovska 168, Q Xu 168, M W Arenton 169, P Barria 169, B Cox 169, B Francis 169, J Goodell 169, R Hirosky 169, A Ledovskoy 169, H Li 169, C Neu 169, T Sinthuprasith 169, X Sun 169, Y Wang 169, E Wolfe 169, J Wood 169, F Xia 169, C Clarke 170, R Harr 170, P E Karchin 170, C Kottachchi Kankanamge Don 170, P Lamichhane 170, J Sturdy 170, D A Belknap 171, D Carlsmith 171, S Dasu 171, L Dodd 171, S Duric 171, B Gomber 171, M Grothe 171, M Herndon 171, A Hervé 171, P Klabbers 171, A Lanaro 171, A Levine 171, K Long 171, R Loveless 171, A Mohapatra 171, I Ojalvo 171, T Perry 171, G A Pierro 171, G Polese 171, T Ruggles 171, T Sarangi 171, A Savin 171, A Sharma 171, N Smith 171, W H Smith 171, D Taylor 171, P Verwilligen 171, N Woods 171, [Authorinst]The CMS Collaboration 172,
PMCID: PMC5331902  PMID: 28303084

Abstract

The differential cross section and charge asymmetry for inclusive ppW±+Xμ±ν+X production at s=8TeV are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8fb-1 recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from 10-3 to 10-1.

Introduction

We present measurements of the ppW±+Xμ±ν+X differential cross section and the muon charge asymmetry that provide important constraints on the valence and sea quark distributions in the proton. Uncertainties in the parton distribution functions (PDF) have become a limiting factor for the precision of many inclusive and differential cross section calculations, given the development of precise theoretical tools describing hard scattering processes in pp collisions.

For each charge of the W boson, the differential cross section,

ση±=dσdη(ppW±+Xμ±ν+X), 1

is measured in bins of muon pseudorapidity η=-lntan(θ/2) in the laboratory frame, where θ is the polar angle of the muon direction with respect to the beam axis. Current theoretical calculations predict these cross sections with next-to-next-to-leading-order (NNLO) accuracy in perturbative quantum chromodynamics (QCD). The dominant W± boson production occurs through the annihilation of a valence quark from one of the protons with a sea antiquark from the other: ud¯W+ and du¯W-. Because of the presence of two valence u quarks in the proton, W+ bosons are produced more often than W- bosons. Precise measurement of the charge asymmetry as a function of the muon η,

A(η)=ση+-ση-ση++ση-, 2

provides significant constraints on the ratio of u and d quark distributions in the proton for values of x, the Bjorken scaling variable [1], between 10-3 and 10-1.

The W± boson production asymmetry was previously studied in pp¯ collisions by the CDF and D0 collaborations [26]. At the LHC, the first measurements of the lepton charge asymmetries were performed by the CMS, ATLAS, and LHCb experiments using data collected in 2010 [79]. The CMS experiment has further improved the measurement precision in both the electron and muon decay channels using data from pp collisions at s=7TeV corresponding to integrated luminosities of 0.84 and 4.7fb-1 in the electron [10] and muon [11] decay channels, respectively.

This measurement is based on a data sample of pp collisions at s=8TeV collected by CMS during 2012, corresponding to an integrated luminosity of 18.8fb-1. At s=8TeV the average value of the Bjorken scaling variable for the interacting partons in W± boson production is lower than at s=7TeV, which is expected to result in a lower W± boson production charge asymmetry. This measurement provides important constraints on the proton PDFs, which is illustrated by the QCD analysis also presented in this paper.

CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6\,m internal diameter, providing a magnetic field of 3.8\,T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description of the CMS detector can be found in Ref. [12].

Data selection and simulation

A W±μ±ν event is characterized by an isolated muon with a high transverse momentum pT and a large missing transverse energy ET/ associated with an undetected neutrino. Events in this sample are collected with an isolated single-muon trigger with a pT threshold of 24GeV. To reduce the background, identification and isolation criteria are applied to the reconstructed muons. These requirements are similar to those used in the previous measurement [11]. Muon tracks must be reconstructed in both the silicon tracker and the muon detectors. The global muon fit is required to have a χ2 per degree of freedom less than 10. The pseudorapidity coverage for reconstructed muons is restricted to |η|<2.4. Cosmic ray contamination is largely reduced by rejecting the muon candidates with a large (>0.2cm) distance of closest approach to the primary vertex in the transverse plane. The isolation criterion is based on additional tracks reconstructed in a cone of (Δη)2+(Δϕ)2<0.3 around the muon, where ϕ is the azimuthal angle (in radians) in the laboratory frame. The muon candidate is rejected if the scalar pT sum of these tracks is more than 10 % of the muon pT. The selected muon candidate with the largest pT, identified as a signal muon from the W boson decay, is required to have a pT>25GeV and also to be the particle that triggered the event. To reduce the background from Drell–Yan (DY) dimuon production, events containing a second identified muon with pT>15GeV are rejected.

A total of about 61 million W+μ+ν and 45 million W-μ-ν¯ candidate events are selected. The W±μ±ν signal is contaminated with backgrounds that also produce a muon with high pT. The major background sources are (i) multijet (QCD) events with high-pT muons produced in hadron decays (about 10 % of the selected sample), and (ii) Z/γμ+μ- events (5 % of the sample). The contribution from other backgrounds, such as W±τ±ν (2.6 %), Z/γτ+τ- (0.5 %), and tt¯ (0.5 %) events, is relatively small. The contributions from single top quark (0.14 %) and diboson (0.07 %) events, as well as from cosmic muons (10-5), are negligible.

Simulated samples are used to model the signal and background processes. The signal, as well as the electroweak and tt¯ background samples, is based on the next-to-leading-order (NLO) matrix element calculations implemented in the powheg Monte Carlo (MC) event generator [1316], interfaced with pythia6 [17] for parton showering and hadronization, including electromagnetic final-state radiation (FSR). The CT10 NLO PDFs [18] are used. The τ lepton decays in relevant processes are simulated with tauola  [19]. The QCD background is generated with pythia6 using CTEQ6L PDF [20].

The MC events are overlaid by simulated minimum-bias events to model additional pp interactions (pileup) present in data. The detector response to all generated particles is simulated with Geant4  [21]. Final-state particles are reconstructed with the same algorithms used for the data sample.

Corrections to the data and simulations

The fiducial cross sections are measured for muon pT>25GeV in 11 bins of absolute pseudorapidity, covering the range |η|<2.4. The |η| binning is such that the migration effects due to the finite η resolution are negligible. In each |η| bin, the number of W+μ+ν and W-μ-ν events is extracted by fitting the ET/ distributions with signal and background distributions (templates). The template shapes and initial normalizations are derived from MC simulations. To improve the simulation, several corrections are applied to the MC samples. The corrections, which are similar to those used in the previous measurement [11], are briefly summarized below.

All simulated events are weighted to match the pileup distribution in data. The weight factors are based on the measured instantaneous luminosity and minimum-bias cross section leading to a good description of the average number of reconstructed vertices in the data.

Accurate calibration of the muon momentum is important for the proper modeling of the yields of W± events and of the shapes of ET/ templates. Dominant sources of the muon momentum mismeasurement are the mismodeling of the tracker alignment and the magnetic field. Muon momentum correction factors are derived using Z/γμ+μ- events in several iterations [22]. First, “reference” distributions are defined based on the MC generated muons, with momenta smeared by the reconstruction resolution. Then, corrections to muon momentum in bins of η and ϕ are extracted separately for positively and negatively charged muons. These corrections match the mean values of reconstructed 1/pT spectra to the corresponding reference values. Finally, correction factors are tuned further by comparing the reconstructed dimuon invariant mass spectra in each μ+ and μ- pseudorapidity bin with the reference. The correction factors are determined separately for data and simulated events following the same procedure.

The overall muon selection efficiency includes contributions from reconstruction, identification, isolation, and trigger efficiencies. Each component is measured from Z/γμ+μ- events using the “tag-and-probe” method  [23, 24]. The efficiencies are measured in bins of η and pT for μ+ and μ- separately. Each η bin of the efficiency measurement is fully contained in a single |η| bin used for the asymmetry measurement. The total average efficiency is about 85 % at central rapidities and drops to about 50 % in the last |η| bin. The ratio of the average μ+ and μ- efficiencies varies within 0.6 % of unity in the first 10 |η| bins. In the last bin the ratio is 0.98. The same procedure is used in data and MC simulation, and scale factors are determined to match the MC simulation efficiencies to data.

Template shapes, used in the fits, are based on the missing transverse momentum (pTmiss) reconstructed with the particle-flow algorithm [25, 26]. The pTmiss is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed particles in an event. A set of corrections is applied to pTmiss in order to improve the modeling of distributions of ET/=|pTmiss| in data and MC templates. First, the average bias in the pTmiss-component along the direction of pT-sum of charged particles associated with the pileup vertices is removed [27]. Second, the muon momentum correction to pT, described above, is added vectorially to pTmiss. In addition, the “ϕ-modulation” corrections, which increase linearly as a function of pileup, make the ϕ(pTmiss) distributions uniform [27]. The above corrections are applied to both data and simulated events. The final set of corrections, derived from the “hadronic recoil” technique [28, 29], is applied to simulated W±μ±ν, Z/γμ+μ-, and QCD events to match the average pTmiss scale and resolution to data.

The modeling of the multijet events is further improved with a set of corrections derived from a QCD control sample selected by inverting the offline isolation requirement for events collected using a prescaled muon trigger with no isolation requirement. Muon pT-dependent weight factors are determined for the QCD simulation that match the muon pT distributions with data. The QCD control sample is also used to derive ratios between the yields with positive and negative muons in each muon |η| bin. These ratios are used to constrain the relative QCD contributions to W+ and W- events, as described in Sect. 5.

Signal extraction

In each of the 11 muon |η| bins, yields of W+ and W- events are obtained from the simultaneous χ2-fit of the ET/ distributions of μ+ and μ- events. The definition of χ2 used in the fit takes into account the statistical uncertainties in the simulated templates. The shapes of the ET/ distributions for the W±μ±ν signal and the backgrounds are taken from the MC simulation after correcting for mismodeling of the detector response and for the pT distribution of W bosons. All electroweak and tt¯ background samples are normalized to the integrated luminosity using the theoretical cross sections calculated at NNLO. Each simulated event is also weighted with scale factors to match the average muon selection efficiencies in data. In addition, mass-dependent correction factors are applied to Z/γμ+μ- simulated events to match the observed mass distribution of dimuon events in data.

The W+ and W- signal yields and the total QCD background normalization are free parameters in each fit. The relative contributions of QCD background events in the W+ and W- samples are constrained to values obtained from the QCD control sample. The W±τ±ν background is normalized to the W±μ±ν signal, for each charge, using the scale factors corresponding to the free parameters of the signal yield. The normalizations of the remaining electroweak and tt¯ backgrounds are fixed in the fit.

Table 1 summarizes the fitted yields of W+ (N+) and W- (N-) events, the correlation coefficient (ρ+,-), and the χ2 value for each fit. Examples of fits for three |η| ranges are shown in Fig. 1. The ratio of the data to the final fit, shown below each distribution, demonstrates good agreement of the fits with data. It should be noted that the χ2 values reported in Table 1 are calculated using the statistical uncertainties of both data and simulated templates; systematic uncertainties are not taken into account.

Table 1.

Summary of the fitted N+, N-, the correlation (ρ+,-) between the uncertainties in N+ and N-, and the χ2 of the fit for each |η| bin. The number of degrees of freedom (ndof) in each fit is 197. The quoted uncertainties are statistical and include statistical uncertainties in the templates. The correlation coefficients are expressed as percentages

|η| bin χ2 (ndof = 197) N+ (103) N- (103) ρ+,- (%)
0.00–0.20 238 4648.5±4.2 3584.9±3.8 18.9
0.20–0.40 242 4414.5±4.0 3360.9±3.7 18.8
0.40–0.60 248 4893.8±4.3 3692.5±3.9 18.9
0.60–0.80 199 4900.1±4.3 3621.3±3.8 19.2
0.80–1.00 218 4420.8±4.0 3218.0±3.6 18.7
1.00–1.20 204 4235.7±3.9 2949.2±3.4 18.5
1.20–1.40 193 4176.8±3.9 2827.0±3.5 19.3
1.40–1.60 213 4351.2±4.2 2864.7±3.7 19.3
1.60–1.85 208 4956.2±4.4 3134.1±3.9 19.5
1.85–2.10 238 5292.9±4.4 3229.6±3.8 18.5
2.10–2.40 229 4023.7±3.9 2428.2±3.3 17.6

Fig. 1.

Fig. 1

Examples of fits in three |η| ranges: 0.0<|η|<0.2 (top), 1.0<|η|<1.2 (center), and 2.1<|η|<2.4 (bottom). For each η range, results for W+ (left) and W- (right) are shown. The ratios between the data points and the final fits are shown at the bottom of each panel

For each muon charge and |η| bin, the fiducial cross section is calculated as

ση±=12ΔηN±ϵ±ϵFSR±Lint, 3

where ϵ± is the average μ± selection efficiency per |η| bin, ϵFSR takes into account the event loss within the muon pT acceptance due to the final-state photon emission, and Lint is the integrated luminosity of the data sample. Each ϵFSR± factor, defined as a ratio of the numbers of events within the pT acceptance after and before FSR, is evaluated using the signal MC samples.

Systematic uncertainties

To estimate the systematic uncertainties in the muon selection efficiencies, several variations are applied to the measured efficiency tables. First, the efficiency values in each ηpT bin are varied within their statistical errors for data and simulation independently. In each pseudo-experiment the varied set of efficiencies is used to correct the MC simulation templates and extract the cross sections using Eq. (3). The standard deviation of the resulting distribution is taken as a systematic uncertainty for each charge and |η| bin. The statistical uncertainties between the two charges and all ηpT bins are uncorrelated. Second, the offline muon selection efficiency scale factors are varied by ±0.5% coherently for both charges and all bins. The trigger selection efficiency scale factors are varied by ±0.2%, assuming no correlations between the η bins, but +100% correlations between the charges and pT bins. The above systematic variations take into account uncertainties associated with the tag-and-probe technique and are assessed by varying signal and background dimuon mass shapes, levels of background, and dimuon mass range and binning used in the fits. Finally, an additional ±100% correlated variation is applied based on the bin-by-bin difference between the true and measured efficiencies in the Z/γμ+μ- MC sample. This difference changes gradually from about 0.5 % in the first bin to about -2% in the last bin. This contribution is the main source of negative correlations in the systematic uncertainties between the central and high rapidity bins. The total systematic uncertainty in the efficiency is obtained by adding up the four covariance matrices corresponding to the above variations.

A possible mismeasurement of the charge of the muon could lead to a bias in the observed asymmetry between the W+ and W- event rates. The muon charge misidentification rate has been studied in detail and was found to be negligible (10-5) [7].

The muon momentum correction affects the yields and the shapes of the ET/ distributions in both data and MC simulation. To estimate the systematic uncertainty, the muon correction parameters in each ηϕ bin and overall scale are varied within their uncertainties. The standard deviation of the resulting cross section distribution for each charge and muon |η| bin is taken as the systematic uncertainty and the corresponding correlations are calculated. Finite detector resolution effects, which result in the migration of events around the pT threshold and between |η| bins, have been studied with the signal MC sample and found to have a negligible impact on the measured cross sections and asymmetries.

There are two sources of systematic uncertainties associated with the QCD background estimate. One is the uncertainty in the ratio of QCD background events in the W+ and W- samples (R±QCD). Whereas the total QCD normalization is one of the free parameters in the fit, R±QCDis constrained to the value observed in the QCD control sample, which varies within 3 % of unity depending on the |η| bin. The corresponding systematic uncertainty is evaluated by changing it by ±5% in each |η| bin. This variation covers the maximum deviations indicated by the QCD MC simulation, as indicated in Fig. 2. The resulting systematic uncertainties are assumed to be uncorrelated between the |η| bins. Additionally, to take into account possible bias in this ratio due to different flavor composition in the signal and QCD control regions, the average difference of this ratio between the signal and QCD control regions is evaluated using the QCD MC simulation. This difference of about 3 % is taken as an additional 100 %-correlated systematic uncertainty in R±QCD. As a check, using the same shape for the QCD background in μ+ and μ- events, its normalization is allowed to float independently for the two charges. The resulting values of R±QCDare covered by the above systematic uncertainties.

Fig. 2.

Fig. 2

Distribution of R±QCDin QCD control region for data (solid circles), QCD control region for simulation (solid squares), and signal region for simulation (open squares). Open circles show the R±QCDdistribution when QCD contributions in W+ and W- events are not constrained. Shaded area indicates assigned systematic uncertainty

The other component of systematic uncertainty, associated with the QCD background, is the ET/ shape. To estimate the systematic uncertainty in modeling the shape of the ET/ distributions in QCD events, additional fits are performed using the ET/ distributions without the hadronic recoil corrections and the pT-dependent scale factors; this results in a variation of about 2 % in the average ET/ resolution. The resulting shifts in the extracted cross section values in each |η| bin are taken as systematic uncertainties. The correlations between the |η| bins and the two charges are assumed to be 100 %.

The normalization of the Z/γμ+μ- background in the signal region is corrected with mass-dependent scale factors that match the dimuon mass distribution in MC simulation with data. The systematic uncertainty is the difference between the cross sections calculated with and without applying these corrections to the DY background normalizations. An uncertainty of 7 % is assigned to the tt¯ theoretical cross section [30], which is used to normalize the tt¯ background to the integrated luminosity of the data sample. In the fits, the W±τ±ν background is normalized to the W±μ±ν yields in data with a ratio obtained from the simulation. A ±2% uncertainty is assigned to the W±τ±ν to W±μ±ν ratio [31]. Each of the above variations is assumed to be fully correlated for the different bins and the two charges.

There are several sources of systematic uncertainty that affect the ET/ shapes. The systematic uncertainty associated with the ϕ modulation of pTmiss is small and is evaluated by removing the corresponding correction to pTmiss. A 5 % uncertainty is assigned to the minimum bias cross section used to calculate the expected pileup distribution in data. To improve the agreement between data and simulation, the W boson pT spectrum is weighted using factors determined by the ratios of the pT distributions in Z/γμ+μ- events in data and MC simulation. The difference in measured cross sections with and without this correction is taken as a systematic uncertainty. Each of the sources above are assumed to be fully correlated between the two charges and different bins. Systematic uncertainties associated with the recoil corrections are evaluated by varying the average recoil and resolution parameters within their uncertainties. The standard deviation of the resulting cross section distribution is taken as the systematic uncertainty and correlations between the two charges and different bins are calculated.

The emission of FSR photons tends, on average, to reduce the muon pT. The observed post-FSR cross sections within the pT acceptance are corrected using the ϵFSR± factors derived from the signal MC sample. The difference between the pT spectra of positive and negative muons results in smaller charge asymmetries after FSR compared with those before FSR within the same pT>25GeV acceptance. These differences, which vary between 0.07 and 0.11 % depending on the |η| bin, are corrected by the charge-dependent ϵFSR± efficiency factors. The systematic uncertainty in the FSR modeling is estimated by reweighting events with radiated photons with correction factors that account for missing electroweak corrections in the parton shower [32, 33]. The ϵFSR± correction factors are reevaluated after such reweighting, and the difference between the cross sections, calculated with the new and default ϵFSR± values, is taken as a systematic uncertainty. The correlations between the two charges and different |η| bins are assumed to be 100 %. The effects of migration between the |η| bins due to final-state photon emission have been evaluated with the signal MC sample and are found to be negligible.

The PDF uncertainties are evaluated by using the NLO MSTW2008 [34], CT10 [18], and NNPDF2.1 [35] PDF sets. All simulated events are weighted according to a given PDF set, varying both the template normalizations and shapes. For CT10 and MSTW2008 PDFs, asymmetric master equations are used [18, 34]. For the NNPDF2.1 PDF set, the standard deviation of the extracted cross section distributions is taken as a systematic uncertainty. For the CT10, the 90 % confidence level (CL) uncertainty is rescaled to 68 % CL using a factor of 1.645. The half-width of the total envelope of all three PDF uncertainty bands is taken as the PDF uncertainty. The CT10 error set is used to estimate the correlations between the two charges and different |η| bins.

Finally, a ±2.6% uncertainty [36] is assigned to the integrated luminosity of the data sample. The luminosity uncertainty is fully correlated between the |η| bins and two charges. Therefore, this uncertainty cancels in the measured charge asymmetries. The uncertainty in the normalization of the electroweak backgrounds due to the luminosity uncertainty has a negligible impact on the measurements.

Table 2 summarizes the systematic uncertainties in the measured cross sections and asymmetries. For comparison, the statistical and luminosity uncertainties are also shown. The uncertainty in the integrated luminosity dominates the total uncertainties in the measured cross sections, while the uncertainty in the QCD background estimation dominates the uncertainties in the charge asymmetries. The uncertainties for the muon charge asymmetries are calculated from those in the differential cross sections, taking into account the correlations between the two charges.

Table 2.

Systematic uncertainties in cross sections (δση±) and charge asymmetry (δA) for each |η| bin. The statistical and integrated luminosity uncertainties are also shown for comparison. A detailed description of each systematic uncertainty is given in the text

|η| bin 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.4 1.4–1.6 1.6–1.85 1.85–2.1 2.1–2.4
δση+ (pb)
   Efficiency 5.5 7.0 6.3 6.2 6.6 4.5 4.3 4.3 5.3 6.9 17.7
   Muon scale 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.4
   QCD +/- 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.3 1.2 1.0 0.7
   QCD shape 2.0 1.9 2.0 2.0 1.9 1.9 2.0 2.3 2.1 1.5 1.0
   EW+tt¯ bkg 0.6 0.6 0.6 0.6 0.6 0.7 0.8 0.9 1.0 1.2 1.3
   ET/ shape 2.4 2.4 2.5 2.4 2.4 2.5 2.8 2.9 2.9 2.4 1.9
   PDF 0.6 0.5 0.5 0.5 0.7 0.9 1.1 1.3 1.6 1.8 2.0
   FSR 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0 0.0
   Total syst. 6.5 7.7 7.2 7.1 7.4 5.8 5.8 6.1 6.8 7.9 18.0
   Int. lum. 19.3 19.5 19.5 19.6 19.8 19.9 20.1 20.1 20.2 20.0 19.5
   Stat. 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.7
   Total unc. 20.4 21.0 20.8 20.9 21.2 20.7 21.0 21.0 21.3 21.6 26.5
δση- (pb)
   Efficiency 4.3 5.5 4.8 4.6 4.4 3.2 2.9 2.8 3.4 4.0 10.1
   Muon scale 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.3
   QCD +/- 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.8 0.5
   QCD shape 1.8 1.8 1.9 1.8 1.8 1.8 2.0 2.1 2.1 1.5 1.0
   EW+tt¯ bkg 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.8 0.9 1.1 1.2
   ET/ shape 2.2 2.2 2.3 2.2 2.3 2.4 2.5 2.8 2.7 2.3 1.7
   PDF 0.6 0.6 0.5 0.5 0.7 0.8 1.1 1.2 1.5 1.6 1.9
   FSR 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
   Total syst. 5.3 6.4 5.7 5.5 5.5 4.6 4.6 4.9 5.2 5.3 10.6
   Int. lum. 14.8 14.8 14.7 14.5 14.3 13.9 13.6 13.2 12.7 12.1 11.4
   Stat. 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
   Total unc. 15.7 16.1 15.8 15.5 15.3 14.7 14.3 14.1 13.7 13.2 15.6
δA×100
   Efficiency 0.06 0.07 0.06 0.06 0.09 0.09 0.10 0.09 0.09 0.08 0.14
   Muon scale 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.03
   QCD +/- 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.18 0.17 0.14 0.10
   QCD shape 0.02 0.03 0.03 0.03 0.04 0.04 0.05 0.06 0.07 0.05 0.04
   EW+tt¯ bkg 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.05
   ET/ shape 0.03 0.04 0.04 0.04 0.05 0.06 0.06 0.09 0.09 0.09 0.07
   PDF 0.03 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.05 0.09 0.08
   FSR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
   Total syst. 0.17 0.18 0.18 0.18 0.19 0.20 0.22 0.23 0.23 0.22 0.21
   Stat. 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.06 0.06 0.07
   Total unc. 0.18 0.19 0.19 0.19 0.20 0.21 0.23 0.24 0.24 0.23 0.22

The correlations in the systematic uncertainty between the charges and different |η| bins are shown in Table 3. The full 22×22 correlation matrix C is split into four 11×11 blocks as

C=C++C+-C+-TC--, 4

where the C++ and C-- matrices represent the bin-to-bin correlations of systematic uncertainties in ση+ and ση-, respectively, and C+- describes the correlations between the two charges. To construct the total covariance matrix, the covariance matrix of the systematic uncertainties should be added to those of the statistical and integrated luminosity uncertainties. The latter are fully correlated between the two charges and |η| bins. For the statistical uncertainties bin-to-bin correlations are zero; the correlations between the two charges are shown in Table 1.

Table 3.

Correlation matrices of systematic uncertainties for ση± and A. The statistical and integrated luminosity uncertainties are not included. The full 22×22 correlation matrix for ση± is presented as four blocks of 11×11 matrices, as shown in Eq. (4). The C++ and C-- blocks on the diagonal represent the bin-to-bin correlations of δση+ and δση-, respectively. The off-diagonal C+- and C+-T blocks describe the correlations between the two charges. The values are expressed as percentages

|η| bin 0.0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.4 1.4–1.6 1.6–1.85 1.85–2.1 2.1–2.4
Correlation matrix of systematic uncertainties in ση±
C++
   0.00–0.20 100.0 90.3 91.3 91.2 90.2 81.8 69.4 63.3 32.9 6.1 -37.2
   0.20–0.40 100.0 92.5 92.4 92.2 74.9 58.6 51.1 16.2 -11.8 -54.7
   0.40–0.60 100.0 92.5 92.1 79.2 64.8 57.9 25.0 -2.8 -46.6
   0.60–0.80 100.0 92.2 79.5 65.4 58.6 25.8 -1.9 -46.0
   0.80–1.00 100.0 78.3 63.7 56.7 23.2 -4.5 -48.7
   1.00–1.20 100.0 82.8 79.9 60.0 38.5 -3.9
   1.20–1.40 100.0 85.6 74.8 58.4 20.5
   1.40–1.60 100.0 79.8 65.6 30.0
   1.60–1.85 100.0 86.6 64.5
   1.85–2.10 100.0 83.8
   2.10–2.40 100.0
C--
   0.00–0.20 100.0 91.1 92.1 91.9 91.2 81.8 64.8 65.6 38.5 19.0 -31.5
   0.20–0.40 100.0 92.8 92.3 91.2 74.6 53.0 54.4 23.1 2.2 -48.8
   0.40–0.60 100.0 92.8 92.1 80.1 61.2 62.5 33.3 12.8 -38.7
   0.60–0.80 100.0 92.3 81.3 63.4 64.6 36.2 15.8 -35.9
   0.80–1.00 100.0 82.5 65.4 66.8 39.0 18.6 -33.3
   1.00–1.20 100.0 83.5 84.1 67.9 52.2 5.4
   1.20–1.40 100.0 88.9 83.9 73.2 35.4
   1.40–1.60 100.0 83.8 72.6 33.1
   1.60–1.85 100.0 88.5 64.4
   1.85–2.10 100.0 80.4
   2.10–2.40 100.0
C+-
   0.00–0.20 92.7 89.5 90.1 89.9 89.0 78.7 61.1 61.7 34.6 16.0 -32.9
   0.20–0.40 88.9 94.4 90.7 90.1 88.8 71.2 49.0 50.1 18.8 -1.2 -50.5
   0.40–0.60 90.0 91.7 93.6 90.9 89.9 76.0 55.9 56.9 27.4 7.6 -42.2
   0.60–0.80 89.7 91.4 90.9 93.2 89.9 76.2 56.4 57.3 28.1 8.3 -41.6
   0.80–1.00 88.8 91.3 90.5 90.4 92.0 74.9 54.6 55.7 25.9 5.9 -44.1
   1.00–1.20 80.4 74.4 78.8 80.1 80.8 87.9 77.4 77.4 60.4 45.7 0.8
   1.20–1.40 68.5 58.5 65.4 67.3 68.7 82.1 86.3 82.8 74.5 63.8 25.2
   1.40–1.60 62.6 51.2 59.0 61.2 62.9 80.1 84.7 86.4 79.6 70.5 34.8
   1.60–1.85 32.7 16.8 26.9 29.8 32.2 61.8 78.4 77.1 89.1 87.0 68.2
   1.85–2.10 6.0 -11.4 -0.8 2.3 4.9 40.4 63.9 61.7 82.1 91.4 86.0
   2.10–2.40 -36.9 -54.0 -44.2 -41.7 -39.3 -1.0 29.0 26.2 58.5 75.1 98.2
Correlation matrix of systematic uncertainties in A
   0.00–0.20 100.0 27.2 27.4 26.8 24.8 26.7 24.3 27.0 26.1 25.0 19.7
   0.20–0.40 100.0 27.8 27.2 24.5 27.3 24.1 28.9 27.8 28.1 22.5
   0.40–0.60 100.0 28.3 27.4 28.6 27.0 29.9 29.5 28.0 21.4
   0.60–0.80 100.0 29.3 29.0 29.1 30.6 30.9 28.7 22.2
   0.80–1.00 100.0 29.7 32.8 32.0 33.0 28.4 20.7
   1.00–1.20 100.0 31.2 33.6 34.3 31.9 25.4
   1.20–1.40 100.0 34.2 36.8 30.6 25.1
   1.40–1.60 100.0 39.1 37.4 31.0
   1.60–1.85 100.0 38.6 33.3
   1.85–2.10 100.0 42.0
   2.10–2.40 100.0

Results

The measured cross sections and charge asymmetries are summarized in Table 4 and displayed in Fig. 3. The error bars of the measurements represent both statistical and systematic uncertainties, including the uncertainty in the integrated luminosity. The measurements are compared with theoretical predictions based on several PDF sets. The predictions are obtained using the fewz 3.1 [37] NNLO MC calculation interfaced with CT10 [18], NNPDF3.0 [38], HERAPDF1.5 [39], MMHT2014 [40], and ABM12 [41] PDF sets. No electroweak corrections are included in these calculations. The error bars of the theoretical predictions represent the PDF uncertainty, which is the dominant source of uncertainty in these calculations. For the CT10, MMHT, HERA, and ABM PDFs, the uncertainties are calculated with their eigenvector sets using asymmetric master equations where applicable. For the NNPDF set the standard deviations over its 100 replicas are evaluated.

Table 4.

Summary of the measured differential cross sections ση± (pb) and charge asymmetry A. The first uncertainty is statistical, the second uncertainty is systematic, and the third is the integrated luminosity uncertainty. The theoretical predictions are obtained using the fewz 3.1 [37] NNLO MC tool interfaced with five different PDF sets

Measurement Theory
|η| bin (± stat ± syst ± lumi) CT10 NNPDF3.0 MMHT2014 ABM12 HERAPDF1.5
ση+ (pb)
   0.00–0.20 743.7±0.7±6.5±19.3 759.7-25.1+19.3 740.5±16.8 750.8-10.8+13.2 764.2±9.3 762.8-7.8+6.8
   0.20–0.40 749.5±0.7±7.7±19.5 761.2-24.9+19.2 740.8±16.6 751.8-10.6+13.1 766.0±9.6 764.7-7.8+7.2
   0.40–0.60 751.9±0.7±7.2±19.5 763.6-24.6+19.1 743.5±16.5 754.0-10.3+13.0 769.4±9.7 767.9-6.6+6.5
   0.60–0.80 755.0±0.7±7.1±19.6 769.1-23.8+18.6 746.9±16.0 759.0-10.1+13.1 773.8±9.4 772.0-7.2+7.8
   0.80–1.00 761.9±0.7±7.4±19.8 773.4-22.8+18.2 750.7±16.0 763.6-9.8+13.0 780.0±9.9 777.5-6.4+7.6
   1.00–1.20 766.0±0.7±5.8±19.9 777.8-22.1+17.7 756.5±15.8 769.2-9.8+12.8 784.9±9.7 782.5-6.8+8.2
   1.20–1.40 774.4±0.7±5.8±20.1 785.0-21.5+17.7 760.9±15.6 775.5-10.5+13.1 791.5±9.9 787.3-6.8+8.7
   1.40–1.60 774.6±0.7±6.1±20.1 793.7-20.8+17.5 768.5±15.7 784.0-11.3+13.3 799.7±10.2 796.7-9.5+11.4
   1.60–1.85 776.4±0.7±6.8±20.2 784.4-19.5+16.9 761.3±15.4 778.5-12.4+13.5 792.4±10.3 788.9-11.5+15.0
   1.85–2.10 771.1±0.6±7.9±20.0 785.5-18.8+16.9 762.2±15.7 780.3-14.0+14.0 791.6±10.2 788.9-11.4+17.6
   2.10–2.40 748.3±0.7±18.0±19.5 750.0-17.7+16.4 730.1±15.4 746.9-14.6+13.9 755.6±9.6 754.8-12.3+20.9
ση- (pb)
   0.00–0.20 569.0±0.6±5.3±14.8 574.5-20.2+14.5 562.2±13.3 576.2-10.1+9.4 580.2±7.2 578.8-7.6+4.1
   0.20–0.40 568.9±0.6±6.4±14.8 571.0-20.1+14.6 559.6±13.3 573.2-10.3+9.6 577.4±7.4 576.1-8.1+5.0
   0.40–0.60 564.1±0.6±5.7±14.7 566.4-19.3+14.2 555.6±12.8 569.7-9.3+8.8 572.6±6.9 572.5-7.2+4.1
   0.60–0.80 556.1±0.6±5.5±14.5 558.6-18.3+13.7 547.5±12.4 561.8-8.9+8.6 565.9±7.2 565.7-8.0+5.8
   0.80–1.00 549.6±0.6±5.5±14.3 548.6-17.3+13.4 538.8±11.7 553.6-8.3+8.3 557.9±7.0 557.4-7.0+4.9
   1.00–1.20 535.7±0.6±4.6±13.9 535.6-16.0+12.8 526.6±11.6 542.2-8.1+8.0 544.2±6.8 547.2-7.0+5.3
   1.20–1.40 521.4±0.6±4.6±13.6 521.8-14.9+12.4 512.4±10.9 527.5-8.2+8.0 530.9±6.6 534.5-7.0+5.3
   1.40–1.60 508.3±0.6±4.9±13.2 509.3-13.9+11.8 500.6±10.5 516.3-8.4+8.2 519.3±6.5 524.2-6.7+5.4
   1.60–1.85 487.7±0.6±5.2±12.7 485.1-12.6+11.2 478.1±9.9 492.5-8.8+8.6 494.6±6.0 501.6-6.6+6.3
   1.85–2.10 466.6±0.6±5.3±12.1 467.0-11.7+11.0 459.9±9.4 473.8-9.4+9.1 475.1±5.6 483.4-7.3+8.7
   2.10–2.40 439.8±0.6±10.6±11.4 436.0-11.1+10.6 431.0±9.0 442.3-9.4+9.1 442.0±5.3 452.4-6.6+10.1
A (%)
   0.00–0.20 13.31±0.06±0.17 13.89-0.57+0.55 13.68±0.25 13.16-0.30+0.48 13.69±0.20 13.71-0.43+0.50
   0.20–0.40 13.70±0.06±0.18 14.28-0.59+0.56 13.94±0.23 13.48-0.30+0.49 14.04±0.20 14.07-0.44+0.51
   0.40–0.60 14.27±0.06±0.18 14.83-0.60+0.56 14.47±0.21 13.92-0.30+0.48 14.66±0.23 14.58-0.45+0.53
   0.60–0.80 15.18±0.06±0.18 15.85-0.61+0.55 15.40±0.19 14.93-0.30+0.49 15.52±0.21 15.42-0.47+0.54
   0.80–1.00 16.19±0.06±0.19 17.01-0.64+0.57 16.44±0.19 15.95-0.31+0.50 16.59±0.22 16.49-0.50+0.58
   1.00–1.20 17.69±0.07±0.20 18.44-0.65+0.55 17.92±0.19 17.31-0.34+0.51 18.11±0.21 17.69-0.51+0.58
   1.20–1.40 19.52±0.07±0.22 20.14-0.67+0.56 19.52±0.20 19.03-0.38+0.53 19.70±0.23 19.13-0.54+0.62
   1.40–1.60 20.75±0.07±0.23 21.82-0.68+0.56 21.10±0.21 20.59-0.42+0.55 21.26±0.23 20.63-0.54+0.60
   1.60–1.85 22.83±0.06±0.23 23.57-0.68+0.55 22.84±0.23 22.50-0.48+0.57 23.14±0.23 22.26-0.55+0.63
   1.85–2.10 24.61±0.06±0.22 25.43-0.67+0.54 24.74±0.25 24.44-0.52+0.57 24.99±0.24 24.01-0.60+0.69
   2.10–2.40 25.96±0.07±0.21 26.47-0.62+0.50 25.75±0.28 25.61-0.55+0.57 26.19±0.29 25.05-0.67+0.78

Fig. 3.

Fig. 3

Comparison of the measured cross sections (upper plot for ση+ and middle for ση-) and asymmetries (lower plot) to NNLO predictions calculated using the fewz 3.1 MC tool interfaced with different PDF sets. The right column shows the ratios (differences) between the theoretical predictions and the measured cross sections (asymmetries). The smaller vertical error bars on the data points represent the statistical and systematic uncertainties. The full error bars include the integrated luminosity uncertainty. The PDF uncertainty of each PDF set is shown by a shaded (or hatched) band and corresponds to 68 % CL

The numerical values of the predictions are also shown in Table 4. We note that the previous lepton charge asymmetries measured by CMS at s=7TeV have been included in the global PDF fits for the NNPDF3.0, MMHT2014, and ABM12 PDFs. The measured cross sections and charge asymmetries are well described by all considered PDF sets within their corresponding uncertainties.

QCD analysis

The muon charge asymmetry measurements at 8TeV presented here are used in a QCD analysis at NNLO together with the combined measurements of neutral- and charged-current cross sections of deep inelastic electron(positron)-proton scattering (DIS) at HERA [42]. The correlations of the experimental uncertainties for the muon charge asymmetry and for the inclusive DIS cross sections are taken into account. The theoretical predictions are calculated at NLO by using the mcfm 6.8 program [43, 44], which is interfaced to applgrid 1.4.56 [45]. The NNLO corrections are obtained by using k-factors, defined as ratios of the predictions at NNLO to the ones at NLO, both calculated with the fewz 3.1 [37] program, using NNLO CT10 [18] PDFs.

Version 1.1.1 of the open-source QCD fit framework for PDF determination herafitter [46, 47] is used with the partons evolved by using the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equations [4853] at NNLO, as implemented in the qcdnum 17-00/06 program [54].

The Thorne–Roberts [34, 55] general mass variable flavor number scheme at NNLO is used for the treatment of heavy-quark contributions with heavy-quark masses mc=1.43GeV and mb=4.5GeV. The renormalization and factorization scales are set to Q, which denotes the four-momentum transfer in case of the DIS data and the mass of the W boson in case of the muon charge asymmetry, respectively.

The strong coupling constant is set to αs(mZ) = 0.118. The Q2 range of HERA data is restricted to Q2Qmin2=3.5GeV2 to assure the applicability of perturbative QCD over the kinematic range of the fit.

The procedure for the determination of the PDFs follows the approach used in the analysis in Ref. [11]. The parameterised PDFs are the gluon distribution, xg, the valence quark distributions, xuv, xdv, and the u-type and d-type anti-quark distributions, xU¯, xD¯. At the initial scale of the QCD evolution Q02=1.9GeV2, the PDFs are parametrized as:

xg(x)=AgxBg(1-x)Cg(1+Dgx), 5
xuv(x)=AuvxBuv(1-x)Cuv(1+Euvx2), 6
xdv(x)=AdvxBdv(1-x)Cdv, 7
xU¯(x)=AU¯xBU¯(1-x)CU¯(1+EU¯x2), 8
xD¯(x)=AD¯xBD¯(1-x)CD¯, 9

with the relations xU¯=xu¯ and xD¯=xd¯+xs¯ assumed.

The normalization parameters Auv, Adv, and Ag are determined by the QCD sum rules, the B parameter is responsible for small-x behavior of the PDFs, and the parameter C describes the shape of the distribution as x1. Additional constraints BU¯=BD¯ and AU¯=AD¯(1-fs) are imposed with fs being the strangeness fraction, fs=s¯/(d¯+s¯), which is fixed to fs=0.31±0.08 as in Ref. [34], consistent with the determination of the strangeness fraction by using the CMS measurements of W + charm production [11]. The χ2 definition in the QCD analysis follows that of Eq. (32) of [42] without the logarithmic term. The parameters in Eqs. (5)–(9) were selected by first fitting with all D and E parameters set to zero. The other parameters were then included in the fit one at a time independently. The improvement of the χ2 of the fits was monitored and the procedure was stopped when no further improvement was observed. This led to a 13-parameter fit.

The PDF uncertainties are estimated according to the general approach of HERAPDF1.0 [56] in which the experimental, model, and parametrization uncertainties are taken into account. A tolerance criterion of Δχ2=1 is adopted for defining the experimental uncertainties that originate from the measurements included in the analysis.

Model uncertainties arise from the variations in the values assumed for the heavy-quark masses mb, mc with 4.25mb4.75GeV, 1.37mc1.49GeV, following Ref. [42], and the value of Qmin2 imposed on the HERA data, which is varied in the interval 2.5Qmin25.0GeV2. The strangeness fraction fs is varied by its uncertainty.

The parametrization uncertainty is estimated by extending the functional form of all parton densities with additional parameters. The uncertainty is constructed as an envelope built from the maximal differences between the PDFs resulting from all the parametrization variations and the central fit at each x value. The total PDF uncertainty is obtained by adding experimental, model, and parametrization uncertainties in quadrature. In the following, the quoted uncertainties correspond to 68 % CL.

The global and partial χ2 values for the data sets used are listed in Table 5, illustrating the consistency among the data sets used. The somewhat high χ2/ndof values for the combined DIS data are very similar to those observed in Ref. [42], where they are investigated in detail.

Table 5.

Partial χ2 per number of data points, ndp, and the global χ2 per degrees of freedom, ndof, as obtained in the QCD analysis of HERA DIS and the CMS muon charge asymmetry data. For HERA measurements, the energy of the proton beam is listed for each data set, with electron energy being Ee=27.5GeV

Data sets Partial χ2/ndp
HERA1+2 neutral current, e+p, Ep=920GeV 440 / 377
HERA1+2 neutral current, e+p, Ep=820GeV 69 / 70
HERA1+2 neutral current, e+p, Ep=575GeV 214 / 254
HERA1+2 neutral current, e+p, Ep=460GeV 210 / 204
HERA1+2 neutral current, e-p, Ep=920GeV 218 / 159
HERA1+2 charged current, e+p, Ep=920GeV 46 / 39
HERA1+2 charged current, e-p, Ep=920GeV 50 / 42
Correlated χ2 of HERA1+2 data 141
CMS W± muon charge asymmetry A(ημ), s=8TeV 3 / 11
Global χ2/ndof 1391 / 1143

In the kinematic range probed, the final combined HERA DIS data currently provide the most significant constraints on the valence distributions. By adding these muon charge asymmetry measurements, the constraints can be significantly improved, as illustrated in Fig. 4 where the xu and xd valence distributions are shown at the scale of mW2, relevant for the W boson production. The changes in shapes and the reduction of the uncertainties of the valence quark distributions with respect to those obtained with the HERA data are clear.

Fig. 4.

Fig. 4

Distributions of u valence (left) and d valence (right) quarks as functions of x at the scale Q2=mW2. The results of the fit to the HERA data and muon asymmetry measurements (light shaded band), and to HERA data only (hatched band) are compared. The total PDF uncertainties are shown. In the bottom panels the distributions are normalized to 1 for a direct comparison of the uncertainties. The change of the PDFs with respect to the HERA-only fit is represented by a solid line

For direct comparison to the results of the earlier CMS QCD analysis [11] based on the W asymmetry measured at s=7TeV and the subset of HERA DIS data [56], an alternative PDF fit is performed at NLO, following exactly the data and model inputs of Ref. [11], but replacing the CMS measurements at s=7TeV by those at s=8TeV. Also, a combined QCD analysis of both CMS data sets is performed. Very good agreement is observed between the CMS measurements of W asymmetry at s=7TeV and s=8TeV and a similar effect on the central values of the PDFs as reported in Ref. [11]. Compared to the PDFs obtained with HERA only data, the improvement of the precision in the valence quark distributions is more pronounced, when the measurements at s=8TeV are used compared to the results of Ref. [11]. Due to somewhat lower Bjorken x probed by the measurements at 8TeV, as compared to 7TeV, the two data sets are complementary and should both be used in the future global QCD analyses.

Summary

In summary, we have measured the differential cross section and charge asymmetry of the W±μ±ν production in pp collisions at s=8TeV using a data sample corresponding to an integrated luminosity of 18.8fb-1 collected with the CMS detector at the LHC. The measurements were performed in 11 bins of absolute muon pseudorapidity |η| for muons with pT>25GeV. The results have been incorporated into a QCD analysis at next-to-next-to-leading-order together with the inclusive deep inelastic scattering data from HERA. A significant improvement in the accuracy of the valence quark distributions is observed in the range 10-3<x<10-1, demonstrating the power of these muon charge asymmetry measurements to improve the main constraints on the valence distributions imposed by the HERA data, in the kinematics range probed. This strongly suggests the use of these measurements in future PDF determinations.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its Second Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

  • 1.Bjorken JD, Paschos EA. Inelastic electron-proton and γ-proton scattering and the structure of the nucleon. Phys. Rev. 1969;185:1975. doi: 10.1103/PhysRev.185.1975. [DOI] [Google Scholar]
  • 2.CDF Collaboration, Measurement of the lepton charge asymmetry in W boson decays produced in pp¯ collisions. Phys. Rev. Lett. 81, 5754 (1998). doi:10.1103/PhysRevLett.81.5754. arXiv:hep-ex/9809001
  • 3.CDF Collaboration, Direct measurement of the W production charge asymmetry in pp¯ Collisions at s=1.96TeV. Phys. Rev. Lett. 102, 181801 (2009). doi:10.1103/PhysRevLett.102.181801. arXiv:0901.2169 [DOI] [PubMed]
  • 4.D0 Collaboration, Measurement of the muon charge asymmetry from W boson decays. Phys. Rev. D 77, 011106 (2008). doi:10.1103/PhysRevD.77.011106. arXiv:0709.4254
  • 5.D0 Collaboration, Measurement of the electron charge asymmetry in pp¯W+Xeν+X events at s=1.96TeV. Phys. Rev. Lett. 101, 211801 (2008). doi:10.1103/PhysRevLett.101.211801. arXiv:0807.3367 [DOI] [PubMed]
  • 6.D0 Collaboration, Measurement of the muon charge asymmetry in pp¯W+Xμν+X events at s=1.96TeV. Phys. Rev. D 88, 091102 (2013). doi:10.1103/PhysRevD.88.091102. arXiv:1309.2591
  • 7.CMS Collaboration, Measurement of the lepton charge asymmetry in inclusive W production in pp collisions at s=7TeV. JHEP 04, 050 (2011). doi:10.1007/JHEP04(2011)050. arXiv:1103.3470
  • 8.ATLAS Collaboration, Measurement of the inclusive W± and Z/γ cross sections in the e and μ decay channels in pp collisions at s=7TeV with the ATLAS detector. Phys. Rev. D85, 072004 (2012). doi:10.1103/PhysRevD.85.072004. arXiv:1109.5141
  • 9.LHCb Collaboration, Inclusive W and Z production in the forward region at s=7TeV. JHEP 06, 058 (2012). doi:10.1007/JHEP06(2012)058. arXiv:1204.1620
  • 10.CMS Collaboration, Measurement of the Electron charge asymmetry in inclusive W production in pp collisions at s=7TeV. Phys. Rev. Lett. 109, 111806 (2012). doi:10.1103/PhysRevLett.109.111806. arXiv:1206.2598 [DOI] [PubMed]
  • 11.CMS Collaboration, Measurement of the muon charge asymmetry in inclusive ppW+X production at s=7TeV and an improved determination of light parton distribution functions. Phys. Rev. D 90, 032004 (2014). doi:10.1103/PhysRevD.90.032004. arXiv:1312.6283
  • 12.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004
  • 13.Alioli S, Nason P, Oleari C, Re E. NLO vector-boson production matched with shower in POWHEG. JHEP. 2008;07:060. doi: 10.1088/1126-6708/2008/07/060. [DOI] [Google Scholar]
  • 14.Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [Google Scholar]
  • 15.Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 16.Alioli S, Nason P, Oleari C, Re E. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
  • 17.Sjöstrand T, Mrenna S, Skands P. PYTHIA 6.4 physics and manual. JHEP. 2006;15:026. doi: 10.1088/1126-6708/2006/05/026. [DOI] [Google Scholar]
  • 18.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 19.Davidson N, et al. Universal interface of TAUOLA technical and physics documentation. Comput. Phys. Commun. 2012;183:821. doi: 10.1016/j.cpc.2011.12.009. [DOI] [Google Scholar]
  • 20.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 21.GEANT4 Collaboration, GEANT4–a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8
  • 22.Bodek A, et al. Extracting muon momentum scale corrections for hadron collider experiments. Eur. Phys. J. C. 2012;72:2194. doi: 10.1140/epjc/s10052-012-2194-8. [DOI] [Google Scholar]
  • 23.CMS Collaboration, Measurements of inclusive W and Z cross sections in pp collisions at s=7TeV with the CMS experiment. JHEP 10, 132 (2011). doi:10.1007/JHEP10(2011)132. arXiv:1107.4789
  • 24.CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at s=7TeV. JINST 7, P10002 (2012). doi:10.1088/1748-0221/7/10/P10002. arXiv:1206.4071
  • 25.CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and ETmiss. CMS Physics Analysis Summary CMS-PAS-PFT-09-001, CERN, 2009
  • 26.CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. CMS Physics Analysis Summary CMS-PAS-PFT-10-001, CERN, 2010
  • 27.CMS Collaboration, Performance of the CMS missing transverse momentum reconstruction in pp data at s=8TeV. JINST 10, P02006 (2015). doi:10.1088/1748-0221/10/02/P02006. arXiv:1411.0511
  • 28.D0 Collaboration, A novel method for modeling the recoil in W boson events at hadron collider. Nucl. Instrum. Meth. A 609, 250 (2009). doi:10.1016/j.nima.2009.08.056. arXiv:0907.3713
  • 29.CMS Collaboration, Missing transverse energy performance of the CMS detector. JINST 6, P09001 (2011). doi:10.1088/1748-0221/6/09/P09001. arXiv:1106.5048
  • 30.Czakon M, Mitov A. Top++: a program for the calculation of the top-pair cross-section at hadron colliders. Comput. Phys. Commun. 2014;185:2930. doi: 10.1016/j.cpc.2014.06.021. [DOI] [Google Scholar]
  • 31.Particle Data Group Collaboration, Review of particle physics. Chin. Phys. C 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001
  • 32.Nanava G, Was Z. How to use SANC to improve the PHOTOS Monte Carlo simulation of bremsstrahlung in leptonic W boson decays. Acta Phys. Polon. B. 2003;34:4561. [Google Scholar]
  • 33.Burkhardt H, Pietrzyk B. Update of the hadronic contribution to the QED vacuum polarization. Phys. Lett. B. 2001;513:46. doi: 10.1016/S0370-2693(01)00393-8. [DOI] [Google Scholar]
  • 34.Martin AD, Stirling WJ, Thorne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 35.NNPDF Collaboration, Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). doi:10.1016/j.nuclphysb.2011.03.021. arXiv:1101.1300
  • 36.CMS Collaboration, CMS luminosity based on pixel cluster counting—summer 2013 update. CMS Physics Analysis Summary CMS-PAS-LUM-13-001, CERN, 2013
  • 37.Li Y, Petriello F. Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code. Phys. Rev. D. 2012;86:094034. doi: 10.1103/PhysRevD.86.094034. [DOI] [Google Scholar]
  • 38.NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04, 040 (2015). doi:10.1007/JHEP04(2015)040. arXiv:1410.8849
  • 39.H1 and ZEUS Collaborations, in Combination and QCD Analysis of the HERA Inclusive Cross Sections. Proceedings of the 35th International Conference of High Energy Physics, vol. 168. 2010. PoS(ICHEP2010)168. Grids available at http://www.desy.de/h1zeus/combined_results/index.php?do=proton_structure. Accessed July 2010
  • 40.Harland-Lang LA, Martin AD, Motylinski P, Thorne RS. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C. 2015;75:204. doi: 10.1140/epjc/s10052-015-3397-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Alekhin S, Blumlein J, Moch S. The ABM parton distributions tuned to LHC data. Phys. Rev. D. 2014;89:054028. doi: 10.1103/PhysRevD.89.054028. [DOI] [Google Scholar]
  • 42.H1 and ZEUS Collaborations, Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C 75, 580 (2015). doi:10.1140/epjc/s10052-015-3710-4. arXiv:1506.06042
  • 43.Campbell JM, Ellis RK. Update on vector boson pair production at hadron colliders. Phys. Rev. D. 1999;60:113006. doi: 10.1103/PhysRevD.60.113006. [DOI] [Google Scholar]
  • 44.Campbell JM, Ellis RK. MCFM for the tevatron and the LHC. Nucl. Phys. Proc. Suppl. 2010;205–206:10. doi: 10.1016/j.nuclphysbps.2010.08.011. [DOI] [Google Scholar]
  • 45.Carli T, et al. A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project. Eur. Phys. J. C. 2010;66:503. doi: 10.1140/epjc/s10052-010-1255-0. [DOI] [Google Scholar]
  • 46.Alekhin S, et al. HERAFitter. Eur. Phys. J. C. 2015;75:304. doi: 10.1140/epjc/s10052-015-3480-z. [DOI] [Google Scholar]
  • 47.HERAFitter web site, http://www.herafitter.org. Accessed Aug 2015
  • 48.Gribov VN, Lipatov LN. Deep inelastic e-p scattering in perturbation theory. Sov. J. Nucl. Phys. 1972;15:438. [Google Scholar]
  • 49.Altarelli G, Parisi G. Asymptotic freedom in parton language. Nucl. Phys. B. 1977;126:298. doi: 10.1016/0550-3213(77)90384-4. [DOI] [Google Scholar]
  • 50.Curci G, Furmanski W, Petronzio R. Evolution of parton densities beyond leading order: the non-singlet case. Nucl. Phys. B. 1980;175:27. doi: 10.1016/0550-3213(80)90003-6. [DOI] [Google Scholar]
  • 51.Furmanski W, Petronzio R. Singlet parton densities beyond leading order. Phys. Lett. B. 1980;97:437. doi: 10.1016/0370-2693(80)90636-X. [DOI] [Google Scholar]
  • 52.Moch S, Vermaseren JAM, Vogt A. The three-loop splitting functions in QCD: the non-singlet case. Nucl. Phys. B. 2004;688:101. doi: 10.1016/j.nuclphysb.2004.03.030. [DOI] [Google Scholar]
  • 53.Vogt A, Moch S, Vermaseren JAM. The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B. 2004;691:129. doi: 10.1016/j.nuclphysb.2004.04.024. [DOI] [Google Scholar]
  • 54.Botje M. QCDNUM: fast QCD evolution and convolution. Comput. Phys. Commun. 2011;182:490. doi: 10.1016/j.cpc.2010.10.020. [DOI] [Google Scholar]
  • 55.Thorne RS. Variable-flavor number scheme for NNLO. Phys. Rev. D. 2006;73:054019. doi: 10.1103/PhysRevD.73.054019. [DOI] [Google Scholar]
  • 56.H1 and ZEUS Collaborations, Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA. JHEP 01, 109 (2010). doi:10.1007/JHEP01(2010)109. arXiv:0911.0884

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES