Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Jan;87(2):673–676. doi: 10.1073/pnas.87.2.673

Pea leaf mitochondrial pyruvate dehydrogenase complex is inactivated in vivo in a light-dependent manner.

R J Budde 1, D D Randall 1
PMCID: PMC53327  PMID: 11607058

Abstract

We examined the effect of light on the activity of the mitochondrial pyruvate dehydrogenase complex (mt-PDC) by using intact green pea (Pisum sativum) seedlings. Upon illumination there is an initial drop in mtPDC activity followed by oscillations that dampen during the initial period of photosynthesis to a steady-state level of one-fourth or less of the mtPDC activity measured in the dark. The initial light-dependent decrease in mtPDC activity is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of photosystem II of photosynthesis) and does not occur in etiolated seedlings. Therefore, the effect of light is indirect and most likely associated with photosynthesis and/or photorespiration. Conditions that would be unfavorable for photorespiration also inhibited the light-dependent decrease in mtPDC activity.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Budde R. J., Fang T. K., Randall D. D. Regulation of the phosphorylation of mitochondrial pyruvate dehydrogenase complex in situ: effects of respiratory substrates and calcium. Plant Physiol. 1988 Dec;88(4):1031–1036. doi: 10.1104/pp.88.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Budde R. J., Randall D. D. Regulation of pea mitochondrial pyruvate dehydrogenase complex activity: inhibition of ATP-dependent inactivation. Arch Biochem Biophys. 1987 Nov 1;258(2):600–606. doi: 10.1016/0003-9861(87)90382-1. [DOI] [PubMed] [Google Scholar]
  3. Budde R. J., Randall D. D. Regulation of steady state pyruvate dehydrogenase complex activity in plant mitochondria : reactivation constraints. Plant Physiol. 1988 Dec;88(4):1026–1030. doi: 10.1104/pp.88.4.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camp P. J., Randall D. D. Purification and Characterization of the Pea Chloroplast Pyruvate Dehydrogenase Complex : A Source of Acetyl-CoA and NADH for Fatty Acid Biosynthesis. Plant Physiol. 1985 Mar;77(3):571–577. doi: 10.1104/pp.77.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gardeström P., Wigge B. Influence of Photorespiration on ATP/ADP Ratios in the Chloroplasts, Mitochondria, and Cytosol, Studied by Rapid Fractionation of Barley (Hordeum vulgare) Protoplasts. Plant Physiol. 1988 Sep;88(1):69–76. doi: 10.1104/pp.88.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Givan C. V., Joy K. W., Kleczkowski L. A. A decade of photorespiratory nitrogen cycling. Trends Biochem Sci. 1988 Nov;13(11):433–437. doi: 10.1016/0968-0004(88)90217-4. [DOI] [PubMed] [Google Scholar]
  7. Karabourniotis G., Manetas Y., Gavalas N. A. Photoregulation of Phosphoenolpyruvate Carboxylase in Salsola soda L. and Other C(4) Plants. Plant Physiol. 1983 Nov;73(3):735–739. doi: 10.1104/pp.73.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krebs E. G. The phosphorylation of proteins: a major mechanism for biological regulation. Fourteenth Sir Frederick Gowland Hopkins memorial lecture. Biochem Soc Trans. 1985 Oct;13(5):813–820. doi: 10.1042/bst0130813. [DOI] [PubMed] [Google Scholar]
  9. Miernyk J. A., Randall D. D. Some kinetic and regulatory properties of the pea mitochondrial pyruvate dehydrogenase complex. Plant Physiol. 1987 Feb;83(2):306–310. doi: 10.1104/pp.83.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Randle P. J. Mitochondrial 2-oxoacid dehydrogenase complexes of animal tissues. Philos Trans R Soc Lond B Biol Sci. 1983 Jul 5;302(1108):47–57. doi: 10.1098/rstb.1983.0037. [DOI] [PubMed] [Google Scholar]
  11. Rufty T. W., Huber S. C. Changes in Starch Formation and Activities of Sucrose Phosphate Synthase and Cytoplasmic Fructose-1,6-bisphosphatase in Response to Source-Sink Alterations. Plant Physiol. 1983 Jun;72(2):474–480. doi: 10.1104/pp.72.2.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Santarius K. A., Heber U. Changes in the intracellular levels of ATP, ADP, AMP and P1 and regulatory function of the adenylate system in leaf cells during photosynthesis. Biochim Biophys Acta. 1965 May 25;102(1):39–54. doi: 10.1016/0926-6585(65)90201-3. [DOI] [PubMed] [Google Scholar]
  13. Schuller K. A., Randall D. D. Regulation of pea mitochondrial pyruvate dehydrogenase complex : does photorespiratory ammonium influence mitochondrial carbon metabolism? Plant Physiol. 1989 Apr;89(4):1207–1212. doi: 10.1104/pp.89.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Snyder F. W. Effect of CO(2) Concentration on Glycine and Serine Formation during Photorespiration. Plant Physiol. 1974 Mar;53(3):514–515. doi: 10.1104/pp.53.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stitt M., Lilley R. M., Heldt H. W. Adenine nucleotide levels in the cytosol, chloroplasts, and mitochondria of wheat leaf protoplasts. Plant Physiol. 1982 Oct;70(4):971–977. doi: 10.1104/pp.70.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES