Skip to main content
Springer logoLink to Springer
. 2016 Sep 15;76(9):502. doi: 10.1140/epjc/s10052-016-4335-y

Charged-particle distributions at low transverse momentum in s=13 TeV pp interactions measured with the ATLAS detector at the LHC

M Aaboud 179, G Aad 114, B Abbott 143, J Abdallah 91, O Abdinov 14, B Abeloos 147, R Aben 137, O S AbouZeid 182, N L Abraham 198, H Abramowicz 202, H Abreu 201, R Abreu 146, Y Abulaiti 194,195, B S Acharya 163, L Adamczyk 60, D L Adams 36, J Adelman 138, S Adomeit 129, T Adye 169, A A Affolder 103, T Agatonovic-Jovin 16, J Agricola 79, J A Aguilar-Saavedra 158,163, S P Ahlen 30, F Ahmadov 93, G Aielli 172,173, H Akerstedt 194,195, T P A Åkesson 110, A V Akimov 125, G L Alberghi 27,28, J Albert 220, S Albrand 80, M J Alconada Verzini 99, M Aleksa 45, I N Aleksandrov 93, C Alexa 38, G Alexander 202, T Alexopoulos 12, M Alhroob 143, B Ali 166, M Aliev 101,102, G Alimonti 120, J Alison 46, S P Alkire 56, B M M Allbrooke 198, B W Allen 146, P P Allport 21, A Aloisio 133,134, A Alonso 57, F Alonso 99, C Alpigiani 183, M Alstaty 114, B Alvarez Gonzalez 45, D Álvarez Piqueras 218, M G Alviggi 133,134, B T Amadio 18, K Amako 94, Y Amaral Coutinho 32, C Amelung 31, D Amidei 118, S P Amor Dos Santos 158,160, A Amorim 158,159, S Amoroso 45, G Amundsen 31, C Anastopoulos 184, L S Ancu 72, N Andari 138, T Andeen 13, C F Anders 83, G Anders 45, J K Anders 103, K J Anderson 46, A Andreazza 120,121, V Andrei 82, S Angelidakis 11, I Angelozzi 137, P Anger 67, A Angerami 56, F Anghinolfi 45, A V Anisenkov 139, N Anjos 15, A Annovi 155,156, C Antel 82, M Antonelli 70, A Antonov 127, F Anulli 170, M Aoki 94, L Aperio Bella 21, G Arabidze 119, Y Arai 94, J P Araque 158, A T H Arce 68, F A Arduh 99, J-F Arguin 124, S Argyropoulos 91, M Arik 22, A J Armbruster 188, L J Armitage 105, O Arnaez 45, H Arnold 71, M Arratia 43, O Arslan 29, A Artamonov 126, G Artoni 150, S Artz 112, S Asai 204, N Asbah 65, A Ashkenazi 202, B Åsman 194,195, L Asquith 198, K Assamagan 36, R Astalos 189, M Atkinson 217, N B Atlay 186, K Augsten 166, G Avolio 45, B Axen 18, M K Ayoub 147, G Azuelos 124, M A Baak 45, A E Baas 82, M J Baca 21, H Bachacou 181, K Bachas 101,102, M Backes 45, M Backhaus 45, P Bagiacchi 170,171, P Bagnaia 170,171, Y Bai 49, J T Baines 169, O K Baker 227, E M Baldin 139, P Balek 223, T Balestri 197, F Balli 181, W K Balunas 153, E Banas 62, Sw Banerjee 224, A A E Bannoura 226, L Barak 45, E L Barberio 117, D Barberis 73,74, M Barbero 114, T Barillari 130, M-S Barisits 45, T Barklow 188, N Barlow 43, S L Barnes 113, B M Barnett 169, R M Barnett 18, Z Barnovska 7, A Baroncelli 174, G Barone 31, A J Barr 150, L Barranco Navarro 218, F Barreiro 111, J Barreiro Guimarães da Costa 49, R Bartoldus 188, A E Barton 100, P Bartos 189, A Basalaev 154, A Bassalat 147, R L Bates 78, S J Batista 207, J R Batley 43, M Battaglia 182, M Bauce 170,171, F Bauer 181, H S Bawa 188, J B Beacham 141, M D Beattie 100, T Beau 109, P H Beauchemin 211, P Bechtle 29, H P Beck 20, K Becker 150, M Becker 112, M Beckingham 221, C Becot 140, A J Beddall 25, A Beddall 23, V A Bednyakov 93, M Bedognetti 137, C P Bee 197, L J Beemster 137, T A Beermann 45, M Begel 36, J K Behr 65, C Belanger-Champagne 116, A S Bell 107, G Bella 202, L Bellagamba 27, A Bellerive 44, M Bellomo 115, K Belotskiy 127, O Beltramello 45, N L Belyaev 127, O Benary 202, D Benchekroun 176, M Bender 129, K Bendtz 194,195, N Benekos 12, Y Benhammou 202, E Benhar Noccioli 227, J Benitez 91, D P Benjamin 68, J R Bensinger 31, S Bentvelsen 137, L Beresford 150, M Beretta 70, D Berge 137, E Bergeaas Kuutmann 216, N Berger 7, J Beringer 18, S Berlendis 80, N R Bernard 115, C Bernius 140, F U Bernlochner 29, T Berry 106, P Berta 167, C Bertella 112, G Bertoli 194,195, F Bertolucci 155,156, I A Bertram 100, C Bertsche 65, D Bertsche 143, G J Besjes 57, O Bessidskaia Bylund 194,195, M Bessner 65, N Besson 181, C Betancourt 71, S Bethke 130, A J Bevan 105, W Bhimji 18, R M Bianchi 157, L Bianchini 31, M Bianco 45, O Biebel 129, D Biedermann 19, R Bielski 113, N V Biesuz 155,156, M Biglietti 174, J Bilbao De Mendizabal 72, H Bilokon 70, M Bindi 79, S Binet 147, A Bingul 23, C Bini 170,171, S Biondi 27,28, D M Bjergaard 68, C W Black 199, J E Black 188, K M Black 30, D Blackburn 183, R E Blair 8, J-B Blanchard 181, J E Blanco 106, T Blazek 189, I Bloch 65, C Blocker 31, W Blum 1,112, U Blumenschein 79, S Blunier 47, G J Bobbink 137, V S Bobrovnikov 139, S S Bocchetta 110, A Bocci 68, C Bock 129, M Boehler 71, D Boerner 226, J A Bogaerts 45, D Bogavac 16, A G Bogdanchikov 139, C Bohm 194, V Boisvert 106, P Bokan 16, T Bold 60, A S Boldyrev 213,215, M Bomben 109, M Bona 105, M Boonekamp 181, A Borisov 168, G Borissov 100, J Bortfeldt 45, D Bortoletto 150, V Bortolotto 86,87,88, K Bos 137, D Boscherini 27, M Bosman 15, J D Bossio Sola 42, J Boudreau 157, J Bouffard 2, E V Bouhova-Thacker 100, D Boumediene 55, C Bourdarios 147, S K Boutle 78, A Boveia 45, J Boyd 45, I R Boyko 93, J Bracinik 21, A Brandt 10, G Brandt 79, O Brandt 82, U Bratzler 205, B Brau 115, J E Brau 146, H M Braun 1,226, W D Breaden Madden 78, K Brendlinger 153, A J Brennan 117, L Brenner 137, R Brenner 216, S Bressler 223, T M Bristow 69, D Britton 78, D Britzger 65, F M Brochu 43, I Brock 29, R Brock 119, G Brooijmans 56, T Brooks 106, W K Brooks 48, J Brosamer 18, E Brost 146, J H Broughton 21, P A Bruckman de Renstrom 62, D Bruncko 190, R Bruneliere 71, A Bruni 27, G Bruni 27, L S Bruni 137, BH Brunt 43, M Bruschi 27, N Bruscino 29, P Bryant 46, L Bryngemark 110, T Buanes 17, Q Buat 187, P Buchholz 186, A G Buckley 78, I A Budagov 93, F Buehrer 71, M K Bugge 149, O Bulekov 127, D Bullock 10, H Burckhart 45, S Burdin 103, C D Burgard 71, B Burghgrave 138, K Burka 62, S Burke 169, I Burmeister 66, J T P Burr 150, E Busato 55, D Büscher 71, V Büscher 112, P Bussey 78, J M Butler 30, C M Buttar 78, J M Butterworth 107, P Butti 137, W Buttinger 36, A Buzatu 78, A R Buzykaev 139, S Cabrera Urbán 218, D Caforio 166, V M Cairo 58,59, O Cakir 4, N Calace 72, P Calafiura 18, A Calandri 114, G Calderini 109, P Calfayan 129, G Callea 58,59, L P Caloba 32, S Calvente Lopez 111, D Calvet 55, S Calvet 55, T P Calvet 114, R Camacho Toro 46, S Camarda 45, P Camarri 172,173, D Cameron 149, R Caminal Armadans 217, C Camincher 80, S Campana 45, M Campanelli 107, A Camplani 120,121, A Campoverde 186, V Canale 133,134, A Canepa 208, M Cano Bret 53, J Cantero 144, R Cantrill 158, T Cao 63, M D M Capeans Garrido 45, I Caprini 38, M Caprini 38, M Capua 58,59, R Caputo 112, R M Carbone 56, R Cardarelli 172, F Cardillo 71, I Carli 167, T Carli 45, G Carlino 133, L Carminati 120,121, S Caron 136, E Carquin 48, G D Carrillo-Montoya 45, J R Carter 43, J Carvalho 158,160, D Casadei 21, M P Casado 15, M Casolino 15, D W Casper 212, E Castaneda-Miranda 191, R Castelijn 137, A Castelli 137, V Castillo Gimenez 218, N F Castro 158, A Catinaccio 45, J R Catmore 149, A Cattai 45, J Caudron 112, V Cavaliere 217, E Cavallaro 15, D Cavalli 120, M Cavalli-Sforza 15, V Cavasinni 155,156, F Ceradini 174,175, L Cerda Alberich 218, B C Cerio 68, A S Cerqueira 33, A Cerri 198, L Cerrito 105, F Cerutti 18, M Cerv 45, A Cervelli 20, S A Cetin 24, A Chafaq 176, D Chakraborty 138, S K Chan 81, Y L Chan 86, P Chang 217, J D Chapman 43, D G Charlton 21, A Chatterjee 72, C C Chau 207, C A Chavez Barajas 198, S Che 141, S Cheatham 100, A Chegwidden 119, S Chekanov 8, S V Chekulaev 208, G A Chelkov 93, M A Chelstowska 118, C Chen 92, H Chen 36, K Chen 197, S Chen 51, S Chen 204, X Chen 54, Y Chen 95, H C Cheng 118, H J Cheng 49, Y Cheng 46, A Cheplakov 93, E Cheremushkina 168, R Cherkaoui El Moursli 180, V Chernyatin 1,36, E Cheu 9, L Chevalier 181, V Chiarella 70, G Chiarelli 155,156, G Chiodini 101, A S Chisholm 21, A Chitan 38, M V Chizhov 93, K Choi 89, A R Chomont 55, S Chouridou 11, B K B Chow 129, V Christodoulou 107, D Chromek-Burckhart 45, J Chudoba 165, A J Chuinard 116, J J Chwastowski 62, L Chytka 145, G Ciapetti 170,171, A K Ciftci 4, D Cinca 66, V Cindro 104, I A Cioara 29, C Ciocca 27,28, A Ciocio 18, F Cirotto 133,134, Z H Citron 223, M Citterio 120, M Ciubancan 38, A Clark 72, B L Clark 81, M R Clark 56, P J Clark 69, R N Clarke 18, C Clement 194,195, Y Coadou 114, M Cobal 213,215, A Coccaro 72, J Cochran 92, L Coffey 31, L Colasurdo 136, B Cole 56, A P Colijn 137, J Collot 80, T Colombo 45, G Compostella 130, P Conde Muiño 158,159, E Coniavitis 71, S H Connell 192, I A Connelly 106, V Consorti 71, S Constantinescu 38, G Conti 45, F Conventi 133, M Cooke 18, B D Cooper 107, A M Cooper-Sarkar 150, K J R Cormier 207, T Cornelissen 226, M Corradi 170,171, F Corriveau 116, A Corso-Radu 212, A Cortes-Gonzalez 15, G Cortiana 130, G Costa 120, M J Costa 218, D Costanzo 184, G Cottin 43, G Cowan 106, B E Cox 113, K Cranmer 140, S J Crawley 78, G Cree 44, S Crépé-Renaudin 80, F Crescioli 109, W A Cribbs 194,195, M Crispin Ortuzar 150, M Cristinziani 29, V Croft 136, G Crosetti 58,59, T Cuhadar Donszelmann 184, J Cummings 227, M Curatolo 70, J Cúth 112, C Cuthbert 199, H Czirr 186, P Czodrowski 3, G D’amen 27,28, S D’Auria 78, M D’Onofrio 103, M J Da Cunha Sargedas De Sousa 158,159, C Da Via 113, W Dabrowski 60, T Dado 189, T Dai 118, O Dale 17, F Dallaire 124, C Dallapiccola 115, M Dam 57, J R Dandoy 46, N P Dang 71, A C Daniells 21, N S Dann 113, M Danninger 219, M Dano Hoffmann 181, V Dao 71, G Darbo 73, S Darmora 10, J Dassoulas 3, A Dattagupta 89, W Davey 29, C David 220, T Davidek 167, M Davies 202, P Davison 107, E Dawe 117, I Dawson 184, R K Daya-Ishmukhametova 115, K De 10, R de Asmundis 133, A De Benedetti 143, S De Castro 27,28, S De Cecco 109, N De Groot 136, P de Jong 137, H De la Torre 111, F De Lorenzi 92, A De Maria 79, D De Pedis 170, A De Salvo 170, U De Sanctis 198, A De Santo 198, J B De Vivie De Regie 147, W J Dearnaley 100, R Debbe 36, C Debenedetti 182, D V Dedovich 93, N Dehghanian 3, I Deigaard 137, M Del Gaudio 58,59, J Del Peso 111, T Del Prete 155,156, D Delgove 147, F Deliot 181, C M Delitzsch 72, M Deliyergiyev 104, A Dell’Acqua 45, L Dell’Asta 30, M Dell’Orso 155,156, M Della Pietra 133, D della Volpe 72, M Delmastro 7, P A Delsart 80, D A DeMarco 207, S Demers 227, M Demichev 93, A Demilly 109, S P Denisov 168, D Denysiuk 181, D Derendarz 62, J E Derkaoui 179, F Derue 109, P Dervan 103, K Desch 29, C Deterre 65, K Dette 66, M R Devesa 42, P O Deviveiros 45, A Dewhurst 169, S Dhaliwal 31, A Di Ciaccio 172,173, L Di Ciaccio 7, W K Di Clemente 153, C Di Donato 170,171, A Di Girolamo 45, B Di Girolamo 45, B Di Micco 174,175, R Di Nardo 45, A Di Simone 71, R Di Sipio 207, D Di Valentino 44, C Diaconu 114, M Diamond 207, F A Dias 69, M A Diaz 47, E B Diehl 118, J Dietrich 19, S Diglio 114, A Dimitrievska 16, J Dingfelder 29, P Dita 38, S Dita 38, F Dittus 45, F Djama 114, T Djobava 76, J I Djuvsland 82, M A B do Vale 34, D Dobos 45, M Dobre 38, C Doglioni 110, T Dohmae 204, J Dolejsi 167, Z Dolezal 167, B A Dolgoshein 1,127, M Donadelli 35, S Donati 155,156, P Dondero 151,152, J Donini 55, J Dopke 169, A Doria 133, M T Dova 99, A T Doyle 78, E Drechsler 79, M Dris 12, Y Du 52, J Duarte-Campderros 202, E Duchovni 223, G Duckeck 129, O A Ducu 124, D Duda 137, A Dudarev 45, E M Duffield 18, L Duflot 147, L Duguid 106, M Dührssen 45, M Dumancic 223, M Dunford 82, H Duran Yildiz 4, M Düren 77, A Durglishvili 76, D Duschinger 67, B Dutta 65, M Dyndal 65, C Eckardt 65, K M Ecker 130, R C Edgar 118, N C Edwards 69, T Eifert 45, G Eigen 17, K Einsweiler 18, T Ekelof 216, M El Kacimi 178, V Ellajosyula 114, M Ellert 216, S Elles 7, F Ellinghaus 226, A A Elliot 220, N Ellis 45, J Elmsheuser 36, M Elsing 45, D Emeliyanov 169, Y Enari 204, O C Endner 112, M Endo 148, J S Ennis 221, J Erdmann 66, A Ereditato 20, G Ernis 226, J Ernst 2, M Ernst 36, S Errede 217, E Ertel 112, M Escalier 147, H Esch 66, C Escobar 157, B Esposito 70, A I Etienvre 181, E Etzion 202, H Evans 89, A Ezhilov 154, F Fabbri 27,28, L Fabbri 27,28, G Facini 46, R M Fakhrutdinov 168, S Falciano 170, R J Falla 107, J Faltova 167, Y Fang 49, M Fanti 120,121, A Farbin 10, A Farilla 174, C Farina 157, E M Farina 151,152, T Farooque 15, S Farrell 18, S M Farrington 221, P Farthouat 45, F Fassi 180, P Fassnacht 45, D Fassouliotis 11, M Faucci Giannelli 106, A Favareto 73,74, W J Fawcett 150, L Fayard 147, O L Fedin 154, W Fedorko 219, S Feigl 149, L Feligioni 114, C Feng 52, E J Feng 45, H Feng 118, A B Fenyuk 168, L Feremenga 10, P Fernandez Martinez 218, S Fernandez Perez 15, J Ferrando 78, A Ferrari 216, P Ferrari 137, R Ferrari 151, D E Ferreira de Lima 83, A Ferrer 218, D Ferrere 72, C Ferretti 118, A Ferretto Parodi 73,74, F Fiedler 112, A Filipčič 104, M Filipuzzi 65, F Filthaut 136, M Fincke-Keeler 220, K D Finelli 199, M C N Fiolhais 158,160, L Fiorini 218, A Firan 63, A Fischer 2, C Fischer 15, J Fischer 226, W C Fisher 119, N Flaschel 65, I Fleck 186, P Fleischmann 118, G T Fletcher 184, R R M Fletcher 153, T Flick 226, A Floderus 110, L R Flores Castillo 86, M J Flowerdew 130, G T Forcolin 113, A Formica 181, A Forti 113, A G Foster 21, D Fournier 147, H Fox 100, S Fracchia 15, P Francavilla 109, M Franchini 27,28, D Francis 45, L Franconi 149, M Franklin 81, M Frate 212, M Fraternali 151,152, D Freeborn 107, S M Fressard-Batraneanu 45, F Friedrich 67, D Froidevaux 45, J A Frost 150, C Fukunaga 205, E Fullana Torregrosa 112, T Fusayasu 131, J Fuster 218, C Gabaldon 80, O Gabizon 226, A Gabrielli 27,28, A Gabrielli 18, G P Gach 60, S Gadatsch 45, S Gadomski 72, G Gagliardi 73,74, L G Gagnon 124, P Gagnon 89, C Galea 136, B Galhardo 158,160, E J Gallas 150, B J Gallop 169, P Gallus 166, G Galster 57, K K Gan 141, J Gao 50,114, Y Gao 69, Y S Gao 188, F M Garay Walls 69, C García 218, J E García Navarro 218, M Garcia-Sciveres 18, R W Gardner 46, N Garelli 188, V Garonne 149, A Gascon Bravo 65, C Gatti 70, A Gaudiello 73,74, G Gaudio 151, B Gaur 186, L Gauthier 124, I L Gavrilenko 125, C Gay 219, G Gaycken 29, E N Gazis 12, Z Gecse 219, C N P Gee 169, Ch Geich-Gimbel 29, M Geisen 112, M P Geisler 82, C Gemme 73, M H Genest 80, C Geng 50, S Gentile 170,171, C Gentsos 203, S George 106, D Gerbaudo 15, A Gershon 202, S Ghasemi 186, H Ghazlane 177, M Ghneimat 29, B Giacobbe 27, S Giagu 170,171, P Giannetti 155,156, B Gibbard 36, S M Gibson 106, M Gignac 219, M Gilchriese 18, T P S Gillam 43, D Gillberg 44, G Gilles 226, D M Gingrich 3, N Giokaris 11, M P Giordani 213,215, F M Giorgi 27, F M Giorgi 19, P F Giraud 181, P Giromini 81, D Giugni 120, F Giuli 150, C Giuliani 130, M Giulini 83, B K Gjelsten 149, S Gkaitatzis 203, I Gkialas 203, E L Gkougkousis 147, L K Gladilin 128, C Glasman 111, J Glatzer 45, P C F Glaysher 69, A Glazov 65, M Goblirsch-Kolb 31, J Godlewski 62, S Goldfarb 117, T Golling 72, D Golubkov 168, A Gomes 158,159,161, R Gonçalo 158, J Goncalves Pinto Firmino Da Costa 181, G Gonella 71, L Gonella 21, A Gongadze 93, S González de la Hoz 218, G Gonzalez Parra 15, S Gonzalez-Sevilla 72, L Goossens 45, P A Gorbounov 126, H A Gordon 36, I Gorelov 135, B Gorini 45, E Gorini 101,102, A Gorišek 104, E Gornicki 62, A T Goshaw 68, C Gössling 66, M I Gostkin 93, C R Goudet 147, D Goujdami 178, A G Goussiou 183, N Govender 192, E Gozani 201, L Graber 79, I Grabowska-Bold 60, P O J Gradin 80, P Grafström 27,28, J Gramling 72, E Gramstad 149, S Grancagnolo 19, V Gratchev 154, P M Gravila 41, H M Gray 45, E Graziani 174, Z D Greenwood 108, C Grefe 29, K Gregersen 107, I M Gregor 65, P Grenier 188, K Grevtsov 7, J Griffiths 10, A A Grillo 182, K Grimm 100, S Grinstein 15, Ph Gris 55, J-F Grivaz 147, S Groh 112, J P Grohs 67, E Gross 223, J Grosse-Knetter 79, G C Grossi 108, Z J Grout 198, L Guan 118, W Guan 224, J Guenther 90, F Guescini 72, D Guest 212, O Gueta 202, E Guido 73,74, T Guillemin 7, S Guindon 2, U Gul 78, C Gumpert 45, J Guo 53, Y Guo 50, R Gupta 63, S Gupta 150, G Gustavino 170,171, P Gutierrez 143, N G Gutierrez Ortiz 107, C Gutschow 67, C Guyot 181, C Gwenlan 150, C B Gwilliam 103, A Haas 140, C Haber 18, H K Hadavand 10, N Haddad 180, A Hadef 114, P Haefner 29, S Hageböck 29, Z Hajduk 62, H Hakobyan 1,228, M Haleem 65, J Haley 144, G Halladjian 119, G D Hallewell 114, K Hamacher 226, P Hamal 145, K Hamano 220, A Hamilton 191, G N Hamity 184, P G Hamnett 65, L Han 50, K Hanagaki 94, K Hanawa 204, M Hance 182, B Haney 153, S Hanisch 45, P Hanke 82, R Hanna 181, J B Hansen 57, J D Hansen 57, M C Hansen 29, P H Hansen 57, K Hara 210, A S Hard 224, T Harenberg 226, F Hariri 147, S Harkusha 122, R D Harrington 69, P F Harrison 221, F Hartjes 137, N M Hartmann 129, M Hasegawa 95, Y Hasegawa 185, A Hasib 143, S Hassani 181, S Haug 20, R Hauser 119, L Hauswald 67, M Havranek 165, C M Hawkes 21, R J Hawkings 45, D Hayden 119, C P Hays 150, J M Hays 105, H S Hayward 103, S J Haywood 169, S J Head 21, T Heck 112, V Hedberg 110, L Heelan 10, S Heim 153, T Heim 18, B Heinemann 18, J J Heinrich 129, L Heinrich 140, C Heinz 77, J Hejbal 165, L Helary 30, S Hellman 194,195, C Helsens 45, J Henderson 150, R C W Henderson 100, Y Heng 224, S Henkelmann 219, A M Henriques Correia 45, S Henrot-Versille 147, G H Herbert 19, Y Hernández Jiménez 218, G Herten 71, R Hertenberger 129, L Hervas 45, G G Hesketh 107, N P Hessey 137, J W Hetherly 63, R Hickling 105, E Higón-Rodriguez 218, E Hill 220, J C Hill 43, K H Hiller 65, S J Hillier 21, I Hinchliffe 18, E Hines 153, R R Hinman 18, M Hirose 71, D Hirschbuehl 226, J Hobbs 197, N Hod 208, M C Hodgkinson 184, P Hodgson 184, A Hoecker 45, M R Hoeferkamp 135, F Hoenig 129, D Hohn 29, T R Holmes 18, M Homann 66, T M Hong 157, B H Hooberman 217, W H Hopkins 146, Y Horii 132, A J Horton 187, J-Y Hostachy 80, S Hou 200, A Hoummada 176, J Howarth 65, M Hrabovsky 145, I Hristova 19, J Hrivnac 147, T Hryn’ova 7, A Hrynevich 123, C Hsu 193, P J Hsu 200, S-C Hsu 183, D Hu 56, Q Hu 50, Y Huang 65, Z Hubacek 166, F Hubaut 114, F Huegging 29, T B Huffman 150, E W Hughes 56, G Hughes 100, M Huhtinen 45, P Huo 197, N Huseynov 93, J Huston 119, J Huth 81, G Iacobucci 72, G Iakovidis 36, I Ibragimov 186, L Iconomidou-Fayard 147, E Ideal 227, Z Idrissi 180, P Iengo 45, O Igonkina 137, T Iizawa 222, Y Ikegami 94, M Ikeno 94, Y Ilchenko 13, D Iliadis 203, N Ilic 188, T Ince 130, G Introzzi 151,152, P Ioannou 1,11, M Iodice 174, K Iordanidou 56, V Ippolito 81, N Ishijima 148, M Ishino 96, M Ishitsuka 206, R Ishmukhametov 141, C Issever 150, S Istin 22, F Ito 210, J M Iturbe Ponce 113, R Iuppa 172,173, W Iwanski 62, H Iwasaki 94, J M Izen 64, V Izzo 133, S Jabbar 3, B Jackson 153, M Jackson 103, P Jackson 1, V Jain 2, K B Jakobi 112, K Jakobs 71, S Jakobsen 45, T Jakoubek 165, D O Jamin 144, D K Jana 108, E Jansen 107, R Jansky 90, J Janssen 29, M Janus 79, G Jarlskog 110, N Javadov 93, T Javůrek 71, F Jeanneau 181, L Jeanty 18, J Jejelava 75, G-Y Jeng 199, D Jennens 117, P Jenni 71, J Jentzsch 66, C Jeske 221, S Jézéquel 7, H Ji 224, J Jia 197, H Jiang 92, Y Jiang 50, S Jiggins 107, J Jimenez Pena 218, S Jin 49, A Jinaru 38, O Jinnouchi 206, P Johansson 184, K A Johns 9, W J Johnson 183, K Jon-And 194,195, G Jones 221, R W L Jones 100, S Jones 9, T J Jones 103, J Jongmanns 82, P M Jorge 158,159, J Jovicevic 208, X Ju 224, A Juste Rozas 15, M K Köhler 223, A Kaczmarska 62, M Kado 147, H Kagan 141, M Kagan 188, S J Kahn 114, E Kajomovitz 68, C W Kalderon 150, A Kaluza 112, S Kama 63, A Kamenshchikov 168, N Kanaya 204, S Kaneti 43, L Kanjir 104, V A Kantserov 127, J Kanzaki 94, B Kaplan 140, L S Kaplan 224, A Kapliy 46, D Kar 193, K Karakostas 12, A Karamaoun 3, N Karastathis 12, M J Kareem 79, E Karentzos 12, M Karnevskiy 112, S N Karpov 93, Z M Karpova 93, K Karthik 140, V Kartvelishvili 100, A N Karyukhin 168, K Kasahara 210, L Kashif 224, R D Kass 141, A Kastanas 17, Y Kataoka 204, C Kato 204, A Katre 72, J Katzy 65, K Kawagoe 98, T Kawamoto 204, G Kawamura 79, S Kazama 204, V F Kazanin 139, R Keeler 220, R Kehoe 63, J S Keller 65, J J Kempster 106, K Kentaro 132, H Keoshkerian 207, O Kepka 165, B P Kerševan 104, S Kersten 226, R A Keyes 116, M Khader 217, F Khalil-zada 14, A Khanov 144, A G Kharlamov 139, T J Khoo 72, V Khovanskiy 126, E Khramov 93, J Khubua 76, S Kido 95, H Y Kim 10, S H Kim 210, Y K Kim 46, N Kimura 203, O M Kind 19, B T King 103, M King 218, S B King 219, J Kirk 169, A E Kiryunin 130, T Kishimoto 95, D Kisielewska 60, F Kiss 71, K Kiuchi 210, O Kivernyk 181, E Kladiva 190, M H Klein 56, M Klein 103, U Klein 103, K Kleinknecht 112, P Klimek 138, A Klimentov 36, R Klingenberg 66, J A Klinger 184, T Klioutchnikova 45, E-E Kluge 82, P Kluit 137, S Kluth 130, J Knapik 62, E Kneringer 90, E B F G Knoops 114, A Knue 78, A Kobayashi 204, D Kobayashi 206, T Kobayashi 204, M Kobel 67, M Kocian 188, P Kodys 167, T Koffas 44, E Koffeman 137, T Koi 188, H Kolanoski 19, M Kolb 83, I Koletsou 7, A A Komar 1,125, Y Komori 204, T Kondo 94, N Kondrashova 65, K Köneke 71, A C König 136, T Kono 94, R Konoplich 140, N Konstantinidis 107, R Kopeliansky 89, S Koperny 60, L Köpke 112, A K Kopp 71, K Korcyl 62, K Kordas 203, A Korn 107, A A Korol 139, I Korolkov 15, E V Korolkova 184, O Kortner 130, S Kortner 130, T Kosek 167, V V Kostyukhin 29, A Kotwal 68, A Kourkoumeli-Charalampidi 203, C Kourkoumelis 11, V Kouskoura 36, A B Kowalewska 62, R Kowalewski 220, T Z Kowalski 60, C Kozakai 204, W Kozanecki 181, A S Kozhin 168, V A Kramarenko 128, G Kramberger 104, D Krasnopevtsev 127, M W Krasny 109, A Krasznahorkay 45, J K Kraus 29, A Kravchenko 36, M Kretz 84, J Kretzschmar 103, K Kreutzfeldt 77, P Krieger 207, K Krizka 46, K Kroeninger 66, H Kroha 130, J Kroll 153, J Kroseberg 29, J Krstic 16, U Kruchonak 93, H Krüger 29, N Krumnack 92, A Kruse 224, M C Kruse 68, M Kruskal 30, T Kubota 117, H Kucuk 107, S Kuday 5, J T Kuechler 226, S Kuehn 71, A Kugel 84, F Kuger 225, A Kuhl 182, T Kuhl 65, V Kukhtin 93, R Kukla 181, Y Kulchitsky 122, S Kuleshov 48, M Kuna 170,171, T Kunigo 96, A Kupco 165, H Kurashige 95, Y A Kurochkin 122, V Kus 165, E S Kuwertz 220, M Kuze 206, J Kvita 145, T Kwan 220, D Kyriazopoulos 184, A La Rosa 130, J L La Rosa Navarro 35, L La Rotonda 58,59, C Lacasta 218, F Lacava 170,171, J Lacey 44, H Lacker 19, D Lacour 109, V R Lacuesta 218, E Ladygin 93, R Lafaye 7, B Laforge 109, T Lagouri 227, S Lai 79, S Lammers 89, W Lampl 9, E Lançon 181, U Landgraf 71, M P J Landon 105, M C Lanfermann 72, V S Lang 82, J C Lange 15, A J Lankford 212, F Lanni 36, K Lantzsch 29, A Lanza 151, S Laplace 109, C Lapoire 45, J F Laporte 181, T Lari 120, F Lasagni Manghi 27,28, M Lassnig 45, P Laurelli 70, W Lavrijsen 18, A T Law 182, P Laycock 103, T Lazovich 81, M Lazzaroni 120,121, B Le 117, O Le Dortz 109, E Le Guirriec 114, E P Le Quilleuc 181, M LeBlanc 220, T LeCompte 8, F Ledroit-Guillon 80, C A Lee 36, S C Lee 200, L Lee 1, G Lefebvre 109, M Lefebvre 220, F Legger 129, C Leggett 18, A Lehan 103, G Lehmann Miotto 45, X Lei 9, W A Leight 44, A Leisos 203, A G Leister 227, M A L Leite 35, R Leitner 167, D Lellouch 223, B Lemmer 79, K J C Leney 107, T Lenz 29, B Lenzi 45, R Leone 9, S Leone 155,156, C Leonidopoulos 69, S Leontsinis 12, G Lerner 198, C Leroy 124, A A J Lesage 181, C G Lester 43, M Levchenko 154, J Levêque 7, D Levin 118, L J Levinson 223, M Levy 21, D Lewis 105, A M Leyko 29, M Leyton 64, B Li 50, H Li 197, H L Li 46, L Li 68, L Li 53, Q Li 49, S Li 68, X Li 113, Y Li 186, Z Liang 49, B Liberti 172, A Liblong 207, P Lichard 45, K Lie 217, J Liebal 29, W Liebig 17, A Limosani 199, S C Lin 200, T H Lin 112, B E Lindquist 197, A E Lionti 72, E Lipeles 153, A Lipniacka 17, M Lisovyi 83, T M Liss 217, A Lister 219, A M Litke 182, B Liu 200, D Liu 200, H Liu 118, H Liu 36, J Liu 114, J B Liu 50, K Liu 114, L Liu 217, M Liu 68, M Liu 50, Y L Liu 50, Y Liu 50, M Livan 151,152, A Lleres 80, J Llorente Merino 49, S L Lloyd 105, F Lo Sterzo 200, E Lobodzinska 65, P Loch 9, W S Lockman 182, F K Loebinger 113, A E Loevschall-Jensen 57, K M Loew 31, A Loginov 227, T Lohse 19, K Lohwasser 65, M Lokajicek 165, B A Long 30, J D Long 217, R E Long 100, L Longo 101,102, K A Looper 141, L Lopes 158, D Lopez Mateos 81, B Lopez Paredes 184, I Lopez Paz 15, A Lopez Solis 109, J Lorenz 129, N Lorenzo Martinez 89, M Losada 26, P J Lösel 129, X Lou 49, A Lounis 147, J Love 8, P A Love 100, H Lu 86, N Lu 118, H J Lubatti 183, C Luci 170,171, A Lucotte 80, C Luedtke 71, F Luehring 89, W Lukas 90, L Luminari 170, O Lundberg 194,195, B Lund-Jensen 196, P M Luzi 109, D Lynn 36, R Lysak 165, E Lytken 110, V Lyubushkin 93, H Ma 36, L L Ma 52, Y Ma 52, G Maccarrone 70, A Macchiolo 130, C M Macdonald 184, B Maček 104, J Machado Miguens 153,159, D Madaffari 114, R Madar 55, H J Maddocks 216, W F Mader 67, A Madsen 65, J Maeda 95, S Maeland 17, T Maeno 36, A Maevskiy 128, E Magradze 79, J Mahlstedt 137, C Maiani 147, C Maidantchik 32, A A Maier 130, T Maier 129, A Maio 158,159,161, S Majewski 146, Y Makida 94, N Makovec 147, B Malaescu 109, Pa Malecki 62, V P Maleev 154, F Malek 80, U Mallik 91, D Malon 8, C Malone 188, S Maltezos 12, S Malyukov 45, J Mamuzic 218, G Mancini 70, B Mandelli 45, L Mandelli 120, I Mandić 104, J Maneira 158,159, L Manhaes de Andrade Filho 33, J Manjarres Ramos 209, A Mann 129, A Manousos 45, B Mansoulie 181, J D Mansour 49, R Mantifel 116, M Mantoani 79, S Manzoni 120,121, L Mapelli 45, G Marceca 42, L March 72, G Marchiori 109, M Marcisovsky 165, M Marjanovic 16, D E Marley 118, F Marroquim 32, S P Marsden 113, Z Marshall 18, S Marti-Garcia 218, B Martin 119, T A Martin 221, V J Martin 69, B Martin dit Latour 17, M Martinez 15, V I Martinez Outschoorn 217, S Martin-Haugh 169, V S Martoiu 38, A C Martyniuk 107, M Marx 183, A Marzin 45, L Masetti 112, T Mashimo 204, R Mashinistov 125, J Masik 113, A L Maslennikov 139, I Massa 27,28, L Massa 27,28, P Mastrandrea 7, A Mastroberardino 58,59, T Masubuchi 204, P Mättig 226, J Mattmann 112, J Maurer 38, S J Maxfield 103, D A Maximov 139, R Mazini 200, S M Mazza 120,121, N C Mc Fadden 135, G Mc Goldrick 207, S P Mc Kee 118, A McCarn 118, R L McCarthy 197, T G McCarthy 130, L I McClymont 107, E F McDonald 117, J A Mcfayden 107, G Mchedlidze 79, S J McMahon 169, R A McPherson 220, M Medinnis 65, S Meehan 183, S Mehlhase 129, A Mehta 103, K Meier 82, C Meineck 129, B Meirose 64, D Melini 218, B R Mellado Garcia 193, M Melo 189, F Meloni 20, A Mengarelli 27,28, S Menke 130, E Meoni 211, S Mergelmeyer 19, P Mermod 72, L Merola 133,134, C Meroni 120, F S Merritt 46, A Messina 170,171, J Metcalfe 8, A S Mete 212, C Meyer 112, C Meyer 153, J-P Meyer 181, J Meyer 137, H Meyer Zu Theenhausen 82, F Miano 198, R P Middleton 169, S Miglioranzi 73,74, L Mijović 29, G Mikenberg 223, M Mikestikova 165, M Mikuž 104, M Milesi 117, A Milic 90, D W Miller 46, C Mills 69, A Milov 223, D A Milstead 194,195, A A Minaenko 168, Y Minami 204, I A Minashvili 93, A I Mincer 140, B Mindur 60, M Mineev 93, Y Ming 224, L M Mir 15, K P Mistry 153, T Mitani 222, J Mitrevski 129, V A Mitsou 218, A Miucci 72, P S Miyagawa 184, J U Mjörnmark 110, T Moa 194,195, K Mochizuki 124, S Mohapatra 56, S Molander 194,195, R Moles-Valls 29, R Monden 96, M C Mondragon 119, K Mönig 65, J Monk 57, E Monnier 114, A Montalbano 197, J Montejo Berlingen 45, F Monticelli 99, S Monzani 120,121, R W Moore 3, N Morange 147, D Moreno 26, M Moreno Llácer 79, P Morettini 73, D Mori 187, T Mori 204, M Morii 81, M Morinaga 204, V Morisbak 149, S Moritz 112, A K Morley 199, G Mornacchi 45, J D Morris 105, S S Mortensen 57, L Morvaj 197, M Mosidze 76, J Moss 188, K Motohashi 206, R Mount 188, E Mountricha 36, S V Mouraviev 1,125, E J W Moyse 115, S Muanza 114, R D Mudd 21, F Mueller 130, J Mueller 157, R S P Mueller 129, T Mueller 43, D Muenstermann 100, P Mullen 78, G A Mullier 20, F J Munoz Sanchez 113, J A Murillo Quijada 21, W J Murray 169,221, H Musheghyan 79, M Muškinja 104, A G Myagkov 168, M Myska 166, B P Nachman 188, O Nackenhorst 72, K Nagai 150, R Nagai 94, K Nagano 94, Y Nagasaka 85, K Nagata 210, M Nagel 71, E Nagy 114, A M Nairz 45, Y Nakahama 45, K Nakamura 94, T Nakamura 204, I Nakano 142, H Namasivayam 64, R F Naranjo Garcia 65, R Narayan 13, D I Narrias Villar 82, I Naryshkin 154, T Naumann 65, G Navarro 26, R Nayyar 9, H A Neal 118, P Yu Nechaeva 125, T J Neep 113, P D Nef 188, A Negri 151,152, M Negrini 27, S Nektarijevic 136, C Nellist 147, A Nelson 212, S Nemecek 165, P Nemethy 140, A A Nepomuceno 32, M Nessi 45, M S Neubauer 217, M Neumann 226, R M Neves 140, P Nevski 36, P R Newman 21, D H Nguyen 8, T Nguyen Manh 124, R B Nickerson 150, R Nicolaidou 181, J Nielsen 182, A Nikiforov 19, V Nikolaenko 168, I Nikolic-Audit 109, K Nikolopoulos 21, J K Nilsen 149, P Nilsson 36, Y Ninomiya 204, A Nisati 170, R Nisius 130, T Nobe 204, M Nomachi 148, I Nomidis 44, T Nooney 105, S Norberg 143, M Nordberg 45, N Norjoharuddeen 150, O Novgorodova 67, S Nowak 130, M Nozaki 94, L Nozka 145, K Ntekas 12, E Nurse 107, F Nuti 117, F O’grady 9, D C O’Neil 187, A A O’Rourke 65, V O’Shea 78, F G Oakham 44, H Oberlack 130, T Obermann 29, J Ocariz 109, A Ochi 95, I Ochoa 56, J P Ochoa-Ricoux 47, S Oda 98, S Odaka 94, H Ogren 89, A Oh 113, S H Oh 68, C C Ohm 18, H Ohman 216, H Oide 45, H Okawa 210, Y Okumura 46, T Okuyama 94, A Olariu 38, L F Oleiro Seabra 158, S A Olivares Pino 69, D Oliveira Damazio 36, A Olszewski 62, J Olszowska 62, A Onofre 158,162, K Onogi 132, P U E Onyisi 13, M J Oreglia 46, Y Oren 202, D Orestano 174,175, N Orlando 87, R S Orr 207, B Osculati 73,74, R Ospanov 113, G Otero y Garzon 42, H Otono 98, M Ouchrif 179, F Ould-Saada 149, A Ouraou 181, K P Oussoren 137, Q Ouyang 49, M Owen 78, R E Owen 21, V E Ozcan 22, N Ozturk 10, K Pachal 187, A Pacheco Pages 15, L Pacheco Rodriguez 181, C Padilla Aranda 15, M Pagáčová 71, S Pagan Griso 18, F Paige 36, P Pais 115, K Pajchel 149, G Palacino 209, S Palestini 45, M Palka 61, D Pallin 55, A Palma 158,159, E St Panagiotopoulou 12, C E Pandini 109, J G Panduro Vazquez 106, P Pani 194,195, S Panitkin 36, D Pantea 38, L Paolozzi 72, Th D Papadopoulou 12, K Papageorgiou 203, A Paramonov 8, D Paredes Hernandez 227, A J Parker 100, M A Parker 43, K A Parker 184, F Parodi 73,74, J A Parsons 56, U Parzefall 71, V R Pascuzzi 207, E Pasqualucci 170, S Passaggio 73, Fr Pastore 106, G Pásztor 44, S Pataraia 226, J R Pater 113, T Pauly 45, J Pearce 220, B Pearson 143, L E Pedersen 57, M Pedersen 149, S Pedraza Lopez 218, R Pedro 158,159, S V Peleganchuk 139, D Pelikan 216, O Penc 165, C Peng 49, H Peng 50, J Penwell 89, B S Peralva 33, M M Perego 181, D V Perepelitsa 36, E Perez Codina 208, L Perini 120,121, H Pernegger 45, S Perrella 133,134, R Peschke 65, V D Peshekhonov 93, K Peters 65, R F Y Peters 113, B A Petersen 45, T C Petersen 57, E Petit 80, A Petridis 1, C Petridou 203, P Petroff 147, E Petrolo 170, M Petrov 150, F Petrucci 174,175, N E Pettersson 115, A Peyaud 181, R Pezoa 48, P W Phillips 169, G Piacquadio 188, E Pianori 221, A Picazio 115, E Piccaro 105, M Piccinini 27,28, M A Pickering 150, R Piegaia 42, J E Pilcher 46, A D Pilkington 113, A W J Pin 113, M Pinamonti 163, J L Pinfold 3, A Pingel 57, S Pires 109, H Pirumov 65, M Pitt 223, L Plazak 189, M-A Pleier 36, V Pleskot 112, E Plotnikova 93, P Plucinski 119, D Pluth 92, R Poettgen 194,195, L Poggioli 147, D Pohl 29, G Polesello 151, A Poley 65, A Policicchio 58,59, R Polifka 207, A Polini 27, C S Pollard 78, V Polychronakos 36, K Pommès 45, L Pontecorvo 170, B G Pope 119, G A Popeneciu 39, D S Popovic 16, A Poppleton 45, S Pospisil 166, K Potamianos 18, I N Potrap 93, C J Potter 43, C T Potter 146, G Poulard 45, J Poveda 45, V Pozdnyakov 93, M E Pozo Astigarraga 45, P Pralavorio 114, A Pranko 18, S Prell 92, D Price 113, L E Price 8, M Primavera 101, S Prince 116, M Proissl 69, K Prokofiev 88, F Prokoshin 48, S Protopopescu 36, J Proudfoot 8, M Przybycien 60, D Puddu 174,175, M Purohit 36, P Puzo 147, J Qian 118, G Qin 78, Y Qin 113, A Quadt 79, W B Quayle 213,214, M Queitsch-Maitland 113, D Quilty 78, S Raddum 149, V Radeka 36, V Radescu 83, S K Radhakrishnan 197, P Radloff 146, P Rados 117, F Ragusa 120,121, G Rahal 229, J A Raine 113, S Rajagopalan 36, M Rammensee 45, C Rangel-Smith 216, M G Ratti 120,121, F Rauscher 129, S Rave 112, T Ravenscroft 78, I Ravinovich 223, M Raymond 45, A L Read 149, N P Readioff 103, M Reale 101,102, D M Rebuzzi 151,152, A Redelbach 225, G Redlinger 36, R Reece 182, K Reeves 64, L Rehnisch 19, J Reichert 153, H Reisin 42, C Rembser 45, H Ren 49, M Rescigno 170, S Resconi 120, O L Rezanova 139, P Reznicek 167, R Rezvani 124, R Richter 130, S Richter 107, E Richter-Was 61, O Ricken 29, M Ridel 109, P Rieck 19, C J Riegel 226, J Rieger 79, O Rifki 143, M Rijssenbeek 197, A Rimoldi 151,152, M Rimoldi 20, L Rinaldi 27, B Ristić 72, E Ritsch 45, I Riu 15, F Rizatdinova 144, E Rizvi 105, C Rizzi 15, S H Robertson 116, A Robichaud-Veronneau 116, D Robinson 43, J E M Robinson 65, A Robson 78, C Roda 155,156, Y Rodina 114, A Rodriguez Perez 15, D Rodriguez Rodriguez 218, S Roe 45, C S Rogan 81, O Røhne 149, A Romaniouk 127, M Romano 27,28, S M Romano Saez 55, E Romero Adam 218, N Rompotis 183, M Ronzani 71, L Roos 109, E Ros 218, S Rosati 170, K Rosbach 71, P Rose 182, O Rosenthal 186, N-A Rosien 79, V Rossetti 194,195, E Rossi 133,134, L P Rossi 73, J H N Rosten 43, R Rosten 183, M Rotaru 38, I Roth 223, J Rothberg 183, D Rousseau 147, C R Royon 181, A Rozanov 114, Y Rozen 201, X Ruan 193, F Rubbo 188, M S Rudolph 207, F Rühr 71, A Ruiz-Martinez 44, Z Rurikova 71, N A Rusakovich 93, A Ruschke 129, H L Russell 183, J P Rutherfoord 9, N Ruthmann 45, Y F Ryabov 154, M Rybar 217, G Rybkin 147, S Ryu 8, A Ryzhov 168, G F Rzehorz 79, A F Saavedra 199, G Sabato 137, S Sacerdoti 42, H F-W Sadrozinski 182, R Sadykov 93, F Safai Tehrani 170, P Saha 138, M Sahinsoy 82, M Saimpert 181, T Saito 204, H Sakamoto 204, Y Sakurai 222, G Salamanna 174,175, A Salamon 172,173, J E Salazar Loyola 48, D Salek 137, P H Sales De Bruin 183, D Salihagic 130, A Salnikov 188, J Salt 218, D Salvatore 58,59, F Salvatore 198, A Salvucci 86, A Salzburger 45, D Sammel 71, D Sampsonidis 203, A Sanchez 133,134, J Sánchez 218, V Sanchez Martinez 218, H Sandaker 149, R L Sandbach 105, H G Sander 112, M Sandhoff 226, C Sandoval 26, R Sandstroem 130, D P C Sankey 169, M Sannino 73,74, A Sansoni 70, C Santoni 55, R Santonico 172,173, H Santos 158, I Santoyo Castillo 198, K Sapp 157, A Sapronov 93, J G Saraiva 158,161, B Sarrazin 29, O Sasaki 94, Y Sasaki 204, K Sato 210, G Sauvage 1,7, E Sauvan 7, G Savage 106, P Savard 207, C Sawyer 169, L Sawyer 108, J Saxon 46, C Sbarra 27, A Sbrizzi 27,28, T Scanlon 107, D A Scannicchio 212, M Scarcella 199, V Scarfone 58,59, J Schaarschmidt 223, P Schacht 130, B M Schachtner 129, D Schaefer 45, R Schaefer 65, J Schaeffer 112, S Schaepe 29, S Schaetzel 83, U Schäfer 112, A C Schaffer 147, D Schaile 129, R D Schamberger 197, V Scharf 82, V A Schegelsky 154, D Scheirich 167, M Schernau 212, C Schiavi 73,74, S Schier 182, C Schillo 71, M Schioppa 58,59, S Schlenker 45, K R Schmidt-Sommerfeld 130, K Schmieden 45, C Schmitt 112, S Schmitt 65, S Schmitz 112, B Schneider 208, U Schnoor 71, L Schoeffel 181, A Schoening 83, B D Schoenrock 119, E Schopf 29, M Schott 112, J Schovancova 10, S Schramm 72, M Schreyer 225, N Schuh 112, A Schulte 112, M J Schultens 29, H-C Schultz-Coulon 82, H Schulz 19, M Schumacher 71, B A Schumm 182, Ph Schune 181, A Schwartzman 188, T A Schwarz 118, Ph Schwegler 130, H Schweiger 113, Ph Schwemling 181, R Schwienhorst 119, J Schwindling 181, T Schwindt 29, G Sciolla 31, F Scuri 155,156, F Scutti 117, J Searcy 118, P Seema 29, S C Seidel 135, A Seiden 182, F Seifert 166, J M Seixas 32, G Sekhniaidze 133, K Sekhon 118, S J Sekula 63, D M Seliverstov 1,154, N Semprini-Cesari 27,28, C Serfon 149, L Serin 147, L Serkin 213,214, M Sessa 174,175, R Seuster 220, H Severini 143, T Sfiligoj 104, F Sforza 45, A Sfyrla 72, E Shabalina 79, N W Shaikh 194,195, L Y Shan 49, R Shang 217, J T Shank 30, M Shapiro 18, P B Shatalov 126, K Shaw 213,214, S M Shaw 113, A Shcherbakova 194,195, C Y Shehu 198, P Sherwood 107, L Shi 200, S Shimizu 95, C O Shimmin 212, M Shimojima 131, M Shiyakova 93, A Shmeleva 125, D Shoaleh Saadi 124, M J Shochet 46, S Shojaii 120,121, S Shrestha 141, E Shulga 127, M A Shupe 9, P Sicho 165, A M Sickles 217, P E Sidebo 196, O Sidiropoulou 225, D Sidorov 144, A Sidoti 27,28, F Siegert 67, Dj Sijacki 16, J Silva 158,161, S B Silverstein 194, V Simak 166, O Simard 7, Lj Simic 16, S Simion 147, E Simioni 112, B Simmons 107, D Simon 55, M Simon 112, P Sinervo 207, N B Sinev 146, M Sioli 27,28, G Siragusa 225, S Yu Sivoklokov 128, J Sjölin 194,195, M B Skinner 100, H P Skottowe 81, P Skubic 143, M Slater 21, T Slavicek 166, M Slawinska 137, K Sliwa 211, R Slovak 167, V Smakhtin 223, B H Smart 7, L Smestad 17, J Smiesko 189, S Yu Smirnov 127, Y Smirnov 127, L N Smirnova 128, O Smirnova 110, M N K Smith 56, R W Smith 56, M Smizanska 100, K Smolek 166, A A Snesarev 125, S Snyder 36, R Sobie 220, F Socher 67, A Soffer 202, D A Soh 200, G Sokhrannyi 104, C A Solans Sanchez 45, M Solar 166, E Yu Soldatov 127, U Soldevila 218, A A Solodkov 168, A Soloshenko 93, O V Solovyanov 168, V Solovyev 154, P Sommer 71, H Son 211, H Y Song 50, A Sood 18, A Sopczak 166, V Sopko 166, V Sorin 15, D Sosa 83, C L Sotiropoulou 155,156, R Soualah 213,215, A M Soukharev 139, D South 65, B C Sowden 106, S Spagnolo 101,102, M Spalla 155,156, M Spangenberg 221, F Spanò 106, D Sperlich 19, F Spettel 130, R Spighi 27, G Spigo 45, L A Spiller 117, M Spousta 167, R D St Denis 1,78, A Stabile 120, R Stamen 82, S Stamm 19, E Stanecka 62, R W Stanek 8, C Stanescu 174, M Stanescu-Bellu 65, M M Stanitzki 65, S Stapnes 149, E A Starchenko 168, G H Stark 46, J Stark 80, P Staroba 165, P Starovoitov 82, S Stärz 45, R Staszewski 62, P Steinberg 36, B Stelzer 187, H J Stelzer 45, O Stelzer-Chilton 208, H Stenzel 77, G A Stewart 78, J A Stillings 29, M C Stockton 116, M Stoebe 116, G Stoicea 38, P Stolte 79, S Stonjek 130, A R Stradling 10, A Straessner 67, M E Stramaglia 20, J Strandberg 196, S Strandberg 194,195, A Strandlie 149, M Strauss 143, P Strizenec 190, R Ströhmer 225, D M Strom 146, R Stroynowski 63, A Strubig 136, S A Stucci 20, B Stugu 17, N A Styles 65, D Su 188, J Su 157, S Suchek 82, Y Sugaya 148, M Suk 166, V V Sulin 125, S Sultansoy 6, T Sumida 96, S Sun 81, X Sun 49, J E Sundermann 71, K Suruliz 198, G Susinno 58,59, M R Sutton 198, S Suzuki 94, M Svatos 165, M Swiatlowski 46, I Sykora 189, T Sykora 167, D Ta 71, C Taccini 174,175, K Tackmann 65, J Taenzer 207, A Taffard 212, R Tafirout 208, N Taiblum 202, H Takai 36, R Takashima 97, T Takeshita 185, Y Takubo 94, M Talby 114, A A Talyshev 139, K G Tan 117, J Tanaka 204, R Tanaka 147, S Tanaka 94, B B Tannenwald 141, S Tapia Araya 48, S Tapprogge 112, S Tarem 201, G F Tartarelli 120, P Tas 167, M Tasevsky 165, T Tashiro 96, E Tassi 58,59, A Tavares Delgado 158,159, Y Tayalati 179, A C Taylor 135, G N Taylor 117, P T E Taylor 117, W Taylor 209, F A Teischinger 45, P Teixeira-Dias 106, K K Temming 71, D Temple 187, H Ten Kate 45, P K Teng 200, J J Teoh 148, F Tepel 226, S Terada 94, K Terashi 204, J Terron 111, S Terzo 130, M Testa 70, R J Teuscher 207, T Theveneaux-Pelzer 114, J P Thomas 21, J Thomas-Wilsker 106, E N Thompson 56, P D Thompson 21, A S Thompson 78, L A Thomsen 227, E Thomson 153, M Thomson 43, M J Tibbetts 18, R E Ticse Torres 114, V O Tikhomirov 125, Yu A Tikhonov 139, S Timoshenko 127, P Tipton 227, S Tisserant 114, K Todome 206, T Todorov 1,7, S Todorova-Nova 167, J Tojo 98, S Tokár 189, K Tokushuku 94, E Tolley 81, L Tomlinson 113, M Tomoto 132, L Tompkins 188, K Toms 135, B Tong 81, E Torrence 146, H Torres 187, E Torró Pastor 183, J Toth 114, F Touchard 114, D R Tovey 184, T Trefzger 225, A Tricoli 36, I M Trigger 208, S Trincaz-Duvoid 109, M F Tripiana 15, W Trischuk 207, B Trocmé 80, A Trofymov 65, C Troncon 120, M Trottier-McDonald 18, M Trovatelli 220, L Truong 213,215, M Trzebinski 62, A Trzupek 62, J C-L Tseng 150, P V Tsiareshka 122, G Tsipolitis 12, N Tsirintanis 11, S Tsiskaridze 15, V Tsiskaridze 71, E G Tskhadadze 75, K M Tsui 86, I I Tsukerman 126, V Tsulaia 18, S Tsuno 94, D Tsybychev 197, A Tudorache 38, V Tudorache 38, A N Tuna 81, S A Tupputi 27,28, S Turchikhin 128, D Turecek 166, D Turgeman 223, R Turra 120,121, A J Turvey 63, P M Tuts 56, M Tyndel 169, G Ucchielli 27,28, I Ueda 204, M Ughetto 194,195, F Ukegawa 210, G Unal 45, A Undrus 36, G Unel 212, F C Ungaro 117, Y Unno 94, C Unverdorben 129, J Urban 190, P Urquijo 117, P Urrejola 112, G Usai 10, A Usanova 90, L Vacavant 114, V Vacek 166, B Vachon 116, C Valderanis 129, E Valdes Santurio 194,195, N Valencic 137, S Valentinetti 27,28, A Valero 218, L Valery 15, S Valkar 167, S Vallecorsa 72, J A Valls Ferrer 218, W Van Den Wollenberg 137, P C Van Der Deijl 137, R van der Geer 137, H van der Graaf 137, N van Eldik 201, P van Gemmeren 8, J Van Nieuwkoop 187, I van Vulpen 137, M C van Woerden 45, M Vanadia 170,171, W Vandelli 45, R Vanguri 153, A Vaniachine 168, P Vankov 137, G Vardanyan 228, R Vari 170, E W Varnes 9, T Varol 63, D Varouchas 109, A Vartapetian 10, K E Varvell 199, J G Vasquez 227, F Vazeille 55, T Vazquez Schroeder 116, J Veatch 79, L M Veloce 207, F Veloso 158,160, S Veneziano 170, A Ventura 101,102, M Venturi 220, N Venturi 207, A Venturini 31, V Vercesi 151, M Verducci 170,171, W Verkerke 137, J C Vermeulen 137, A Vest 67, M C Vetterli 187, O Viazlo 110, I Vichou 217, T Vickey 184, O E Vickey Boeriu 184, G H A Viehhauser 150, S Viel 18, L Vigani 150, R Vigne 90, M Villa 27,28, M Villaplana Perez 120,121, E Vilucchi 70, M G Vincter 44, V B Vinogradov 93, C Vittori 27,28, I Vivarelli 198, S Vlachos 12, M Vlasak 166, M Vogel 226, P Vokac 166, G Volpi 155,156, M Volpi 117, H von der Schmitt 130, E von Toerne 29, V Vorobel 167, K Vorobev 127, M Vos 218, R Voss 45, J H Vossebeld 103, N Vranjes 16, M Vranjes Milosavljevic 16, V Vrba 165, M Vreeswijk 137, R Vuillermet 45, I Vukotic 46, Z Vykydal 166, P Wagner 29, W Wagner 226, H Wahlberg 99, S Wahrmund 67, J Wakabayashi 132, J Walder 100, R Walker 129, W Walkowiak 186, V Wallangen 194,195, C Wang 51, C Wang 52,114, F Wang 224, H Wang 18, H Wang 63, J Wang 65, J Wang 199, K Wang 116, R Wang 8, S M Wang 200, T Wang 29, T Wang 56, W Wang 50, X Wang 227, C Wanotayaroj 146, A Warburton 116, C P Ward 43, D R Wardrope 107, A Washbrook 69, P M Watkins 21, A T Watson 21, M F Watson 21, G Watts 183, S Watts 113, B M Waugh 107, S Webb 112, M S Weber 20, S W Weber 225, J S Webster 8, A R Weidberg 150, B Weinert 89, J Weingarten 79, C Weiser 71, H Weits 137, P S Wells 45, T Wenaus 36, T Wengler 45, S Wenig 45, N Wermes 29, M Werner 71, M D Werner 92, P Werner 45, M Wessels 82, J Wetter 211, K Whalen 146, N L Whallon 183, A M Wharton 100, A White 10, M J White 1, R White 48, D Whiteson 212, F J Wickens 169, W Wiedenmann 224, M Wielers 169, P Wienemann 29, C Wiglesworth 57, L A M Wiik-Fuchs 29, A Wildauer 130, F Wilk 113, H G Wilkens 45, H H Williams 153, S Williams 137, C Willis 119, S Willocq 115, J A Wilson 21, I Wingerter-Seez 7, F Winklmeier 146, O J Winston 198, B T Winter 29, M Wittgen 188, J Wittkowski 129, M W Wolter 62, H Wolters 158,160, S D Worm 169, B K Wosiek 62, J Wotschack 45, M J Woudstra 113, K W Wozniak 62, M Wu 80, M Wu 46, S L Wu 224, X Wu 72, Y Wu 118, T R Wyatt 113, B M Wynne 69, S Xella 57, D Xu 49, L Xu 36, B Yabsley 199, S Yacoob 191, R Yakabe 95, D Yamaguchi 206, Y Yamaguchi 148, A Yamamoto 94, S Yamamoto 204, T Yamanaka 204, K Yamauchi 132, Y Yamazaki 95, Z Yan 30, H Yang 53, H Yang 224, Y Yang 200, Z Yang 17, W-M Yao 18, Y C Yap 109, Y Yasu 94, E Yatsenko 7, K H Yau Wong 29, J Ye 63, S Ye 36, I Yeletskikh 93, A L Yen 81, E Yildirim 112, K Yorita 222, R Yoshida 8, K Yoshihara 153, C Young 188, C J S Young 45, S Youssef 30, D R Yu 18, J Yu 10, J M Yu 118, J Yu 92, L Yuan 95, S P Y Yuen 29, I Yusuff 43, B Zabinski 62, R Zaidan 52, A M Zaitsev 168, N Zakharchuk 65, J Zalieckas 17, A Zaman 197, S Zambito 81, L Zanello 170,171, D Zanzi 117, C Zeitnitz 226, M Zeman 166, A Zemla 60, J C Zeng 217, Q Zeng 188, K Zengel 31, O Zenin 168, T Ženiš 189, D Zerwas 147, D Zhang 118, F Zhang 224, G Zhang 50, H Zhang 51, J Zhang 8, L Zhang 71, R Zhang 29, R Zhang 50, X Zhang 52, Z Zhang 147, X Zhao 63, Y Zhao 52, Z Zhao 50, A Zhemchugov 93, J Zhong 150, B Zhou 118, C Zhou 68, L Zhou 56, L Zhou 63, M Zhou 197, N Zhou 54, C G Zhu 52, H Zhu 49, J Zhu 118, Y Zhu 50, X Zhuang 49, K Zhukov 125, A Zibell 225, D Zieminska 89, N I Zimine 93, C Zimmermann 112, S Zimmermann 71, Z Zinonos 79, M Zinser 112, M Ziolkowski 186, L Živković 16, G Zobernig 224, A Zoccoli 27,28, M zur Nedden 19, L Zwalinski 45; ATLAS Collaboration45,37,40,164
PMCID: PMC5335502  PMID: 28316503

Abstract

Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb-1. The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators.

Introduction

Measurements of charged-particle distributions in proton–proton (pp) collisions probe the strong interaction in the low-momentum transfer, non-perturbative region of quantum chromodynamics (QCD). In this region, charged-particle interactions are typically described by QCD-inspired models implemented in Monte Carlo (MC) event generators. Measurements are used to constrain the free parameters of these models. An accurate description of low-energy strong interaction processes is essential for simulating single pp interactions and the effects of multiple pp interactions in the same bunch crossing at high instantaneous luminosity in hadron colliders. Charged-particle distributions have been measured previously in hadronic collisions at various centre-of-mass energies [111].

The measurements presented in this paper use data from pp collisions at a centre-of-mass energy s=13TeV recorded by the ATLAS experiment [12] at the Large Hadron Collider (LHC) [13] in 2015, corresponding to an integrated luminosity of 151 μb-1. The data were recorded during special fills with low beam currents and reduced focusing to give a mean number of interactions per bunch crossing of 0.005. The same dataset and a similar analysis strategy were used to measure distributions of charged particles with transverse momentum pT greater than 500 MeV [9]. This paper extends the measurements to the low-pT regime of pT>100 MeV. While this nearly doubles the overall number of particles in the kinematic acceptance, the measurements are rendered more difficult due to multiple scattering and imprecise knowledge of the material in the detector. Measurements in the low-momentum regime provide important information for the description of the strong interaction in the low-momentum-transfer, non-perturbative region of QCD.

These measurements use tracks from primary charged particles, corrected for detector effects to the particle level, and are presented as inclusive distributions in a fiducial phase space region. Primary charged particles are defined in the same way as in Refs. [2, 9] as charged particles with a mean lifetime τ>300 ps, either directly produced in pp interactions or from subsequent decays of directly produced particles with τ<30 ps; particles produced from decays of particles with τ>30 ps, denoted secondary particles, are excluded. Earlier analyses also included charged particles with a mean lifetime of 30<τ<300 ps. These are charged strange baryons and have been removed for the present analysis due to their low reconstruction efficiency. For comparison to the earlier measurements, the measured multiplicity at η=0 is extrapolated to include charged strange baryons. All primary charged particles are required to have a momentum component transverse to the beam direction pT>100 MeV and absolute pseudorapidity1 |η|<2.5 to be within the geometrical acceptance of the tracking detector. Each event is required to have at least two primary charged particles. The following observables are measured:

1Nev·dNchdη,1Nev·12πpT·d2NchdηdpT,1Nev·dNevdnchandpTvs.nch.

Here nch is the number of primary charged particles within the kinematic acceptance in an event, Nev is the number of events with nch2, and Nch is the total number of primary charged particles in the kinematic acceptance.

The PYTHIA 8 [14], EPOS [15] and QGSJET-II [16] MC generators are used to correct the data for detector effects and to compare with particle-level corrected data. PYTHIA 8 and EPOS both model the effects of colour coherence, which is important in dense parton environments and effectively reduces the number of particles produced in multiple parton-parton interactions. In PYTHIA 8, the simulation is split into non-diffractive and diffractive processes, the former dominated by t-channel gluon exchange and amounting to approximately 80 % of the selected events, and the latter described by a pomeron-based approach [17]. In contrast, EPOS implements a parton-based Gribov–Regge [18] theory, an effective field theory describing both hard and soft scattering at the same time. QGSJET-II is based upon the Reggeon field theory framework [19]. The latter two generators do not rely on parton distribution functions (PDFs), as used in PYTHIA 8. Different parameter settings in the models are used in the simulation to reproduce existing experimental data and are referred to as tunes. For PYTHIA 8, the A2 [20] tune is based on the MSTW2008LO PDF [21] while the MONASH [22] underlying-event tune uses the NNPDF2.3LO PDF [23] and incorporates updated fragmentation parameters, as well as SPS and Tevatron data to constrain the energy scaling. For EPOS, the LHC [24] tune is used, while for QGSJET-II the default settings of the generator are applied. Details of the MC generator versions and settings are shown in Table 1. Detector effects are simulated using the GEANT4-based [25] ATLAS simulation framework [26].

Table 1.

Summary of MC generators used to compare to the corrected data. The generator, its version, the corresponding tune and the parton distribution function are given.

Generator Version Tune PDF
PYTHIA 8 8.185 A2 MSTW2008LO
PYTHIA 8 8.186 MONASH NNPDF2.3LO
EPOS LHCv3400 LHC
QGSJET-II II-04 Default

ATLAS detector

The ATLAS detector covers nearly the whole solid angle around the collision point and includes tracking detectors, calorimeters and muon chambers. This measurement uses information from the inner detector and the trigger system, relying on the minimum-bias trigger scintillators (MBTS).

The inner detector covers the full range in ϕ and |η|<2.5. It consists of the silicon pixel detector (pixel), the silicon microstrip detector (SCT) and the transition radiation straw-tube tracker (TRT). These are located around the interaction point spanning radial distances of 33–150, 299–560 and 563–1066 mm respectively. The barrel (each end-cap) consists of four (three) pixel layers, four (nine) double-layers of silicon microstrips and 73 (160) layers of TRT straws. During the LHC long shutdown 2013–2014, a new innermost pixel layer, the insertable B-layer (IBL) [27, 28], was installed around a new smaller beam-pipe. The smaller radius of 33 mm and the reduced pixel size of the IBL result in improvements of both the transverse and longitudinal impact parameter resolutions. Requirements on an innermost pixel-layer hit and on impact parameters strongly suppress the number of tracks from secondary particles. A track from a charged particle passing through the barrel typically has 12 measurement points (hits) in the pixel and SCT detectors. The inner detector is located within a solenoid that provides an axial 2 T magnetic field.

A two-stage trigger system is used: a hardware-based level-1 trigger (L1) and a software-based high-level trigger (HLT). The L1 decision provided by the MBTS detector is used for this measurement. The scintillators are installed on either side of the interaction point in front of the liquid-argon end-cap calorimeter cryostats at z=±3.56 m and segmented into two rings in pseudorapidity (2.07<|η|<2.76 and 2.76<|η|<3.86). The inner (outer) ring consists of eight (four) azimuthal sectors, giving a total of 12 sectors on each side. The trigger used in this measurement requires at least one signal in a scintillator on one side to be above threshold.

Analysis

The analysis closely follows the strategy described in Ref. [9], but modifications for the low-pT region are applied where relevant.

Event and track selection

Events are selected from colliding proton bunches using the MBTS trigger described above. Each event is required to contain a primary vertex [29], reconstructed from at least two tracks with a minimum pT of 100 MeV. To reduce contamination from events with more than one interaction in a bunch crossing, events with a second vertex containing four or more tracks are removed. The contributions from non-collision background events and the fraction of events where two interactions are reconstructed as a single vertex have been studied in data and are found to be negligible.

Track candidates are reconstructed in the pixel and SCT detectors and extended to include measurements in the TRT [30, 31]. A special configuration of the track reconstruction algorithms was used for this analysis to reconstruct low-momentum tracks with good efficiency and purity. The purity is defined as the fraction of selected tracks that are also primary tracks with a transverse momentum of at least 100 MeV and an absolute pseudorapidity less than 2.5. The most critical change with respect to the 500 MeV analysis [9], besides lowering the pT threshold to 100 MeV, is reducing the requirement on the minimum number of silicon hits from 7 to 5. All tracks, irrespective of their transverse momentum, are reconstructed in a single pass of the track reconstruction algorithm. Details of the performance of the track reconstruction in the 13 TeV data and its simulation can be found in Ref. [32]. Figure 1 shows the comparison between data and simulation in the distribution of the number of pixel hits associated with a track for the low-momentum region. Data and simulation agree reasonably well given the known imperfections in the simulation of inactive pixel modules. These differences are taken into account in the systematic uncertainty on the tracking efficiency by comparing the efficiency of the pixel hit requirements in data and simulation after applying all other track selection requirements.

Fig. 1.

Fig. 1

Comparison between data and PYTHIA 8 A2 simulation for the distribution of the number of pixel hits associated with a track. The distribution is shown before the requirement on the number of pixel hits is applied, for tracks with 100<pT<500MeV and |η|<2.5. The error bars on the points are the statistical uncertainties of the data. The lower panel shows the ratio of data to MC prediction

Events are required to contain at least two selected tracks satisfying the following criteria: pT>100MeV and |η|<2.5; at least one pixel hit and an innermost pixel-layer hit if expected;2 at least two, four or six SCT hits for pT<300MeV, <400 MeV or >400 MeV respectively, in order to account for the dependence of track length on pT; |d0BL|<1.5 mm, where the transverse impact parameter d0BL is calculated with respect to the measured beam line (BL); and |z0BL×sinθ|<1.5 mm, where z0BL is the difference between the longitudinal position of the track along the beam line at the point where d0BL is measured and the longitudinal position of the primary vertex and θ is the polar angle of the track. High-momentum tracks with mismeasured pT are removed by requiring the track-fit χ2 probability to be larger than 0.01 for tracks with pT>10GeV. In total 9.3×106 events pass the selection, containing a total of 3.2×108 selected tracks.

Background estimation

Background contributions to the tracks from primary particles include fake tracks (those formed by a random combination of hits), strange baryons and secondary particles. These contributions are subtracted on a statistical basis from the number of reconstructed tracks before correcting for other detector effects. The contribution of fake tracks, estimated from simulation, is at most 1 % for all pT and η intervals with a relative uncertainty of ±50 % determined from dedicated comparisons of data with simulation [33]. Charged strange baryons with a mean lifetime 30<τ<300 ps are treated as background, because these particles and their decay products have a very low reconstruction efficiency. Their contribution is estimated from EPOS, where the best description of this strange baryon contribution is expected [9], to be below 0.01 % on average, with the fraction increasing with track pT to be (3±1)% above 20 GeV. The fraction is much smaller at low pT due to the extremely low track reconstruction efficiency. The contribution from secondary particles is estimated by performing a template fit to the distribution of the track transverse impact parameter d0BL, using templates for primary and secondary particles created from PYTHIA 8 A2 simulation. All selection requirements are applied except that on the transverse impact parameter. The shape of the transverse impact parameter distribution differs for electron and non-electron secondary particles, as the d0BL reflects the radial location at which the secondaries were produced. The processes for conversions and hadronic interactions are rather different, which leads to differences in the radial distributions. The electrons are more often produced from conversions in the beam pipe. Furthermore, the fraction of electrons increases as pT decreases. Therefore, separate templates are used for electrons and non-electron secondary particles in the region pT<500 MeV. The rate of secondary tracks is the sum of these two contributions and is measured with the fit. The background normalisation for fake tracks and strange baryons is determined from the prediction of the simulation. The fit is performed in nine pT intervals, each of width 50 MeV, in the region 4<|d0BL|<9.5 mm. The fitted distribution for 100<pT<150MeV is shown in Fig. 2. For this pT interval, the fraction of secondary tracks within the region |d0BL|<1.5 mm is measured to be (3.6±0.7)%, equally distributed between electrons and non-electrons. For tracks with pT>500MeV, the fraction of secondary particles is measured to be (2.3±0.6)%; these are mostly non-electron secondary particles. The uncertainties are evaluated by using different generators to estimate the interpolation from the fit region to |d0BL|<1.5 mm, changing the fit range and checking the η dependence of the fraction of tracks originating from secondaries. This last study is performed by fits integrated over different η ranges, because the η dependence could be different in data and simulation, as most of the secondary particles are produced in the material of the detector. The systematic uncertainties arising from imperfect knowledge of the passive material in the detector are also included; these are estimated using the same material variations as used in the estimation of the uncertainty on the tracking efficiency, described in Section 3.4.

Fig. 2.

Fig. 2

Comparison between data and PYTHIA 8 A2 simulation for the transverse impact parameter d0BL distribution. The d0BL distribution is shown for 100<pT<150MeV without applying the cut on the transverse impact parameter. The position where the cut is applied is shown as dashed black lines at ±1.5 mm. The simulated d0BL distribution is normalised to the number of tracks in data and the separate contributions from primary, fake, electron and non-electron tracks are shown as lines using various combinations of dots and dashes. The secondary particles are scaled by the fitted fractions as described in the text. The error bars on the points are the statistical uncertainties of the data. The lower panel shows the ratio of data to MC prediction

Trigger and vertex reconstruction efficiency

The trigger efficiency εtrig is measured in a data sample recorded using a control trigger which selected events randomly at L1 only requiring that the beams are colliding in the ATLAS detector. The events are then filtered at the HLT by requiring at least one reconstructed track with pT>200MeV. The efficiency εtrig is defined as the ratio of events that are accepted by both the control and the MBTS trigger to all events accepted by the control trigger. It is measured as a function of the number of selected tracks with the requirement on the longitudinal impact parameter removed, nselno-z. The trigger efficiency increases from 96.5-0.7+0.4 % for events with nselno-z=2 , to (99.3±0.2)% for events with nselno-z4. The quoted uncertainties include statistical and systematic uncertainties. The systematic uncertainties are estimated from the difference between the trigger efficiencies measured on the two sides of the detector, and the impact of beam-induced background; the latter is estimated using events recorded when only one beam was present at the interaction point, as described in Ref. [9].

The vertex reconstruction efficiency εvtx is determined from data by calculating the ratio of the number of triggered events with a reconstructed vertex to the total number of all triggered events. The efficiency, measured as a function of nselno-z, is approximately 87 % for events with nselno-z=2 and rapidly rises to 100 % for events with nselno-z>4. For events with nselno-z=2, the efficiency is also parameterised as a function of the difference between the longitudinal impact parameter of the two tracks (Δztracks). This efficiency decreases roughly linearly from 91 % at Δztracks=0 mm to 32 % at Δztracks=10 mm. The systematic uncertainty is estimated from the difference between the vertex reconstruction efficiency measured before and after beam-background removal and found to be negligible.

Track reconstruction efficiency

The primary-track reconstruction efficiency εtrk is determined from simulation. The efficiency is parameterised in two-dimensional bins of pT and η, and is defined as:

εtrk(pT,η)=Nrecmatched(pT,η)Ngen(pT,η),

where pT and η are generated particle properties, Nrecmatched(pT,η) is the number of reconstructed tracks matched to generated primary charged particles and Ngen(pT,η) is the number of generated primary charged particles in that kinematic region. A track is matched to a generated particle if the weighted fraction of track hits originating from that particle exceeds 50 %. The hits are weighted such that hits in all subdetectors have the same weight in the sum, based on the number of expected hits and the resolution of the individual subdetector. For 100<pT<125MeV and integrated over η, the primary-track reconstruction efficiency is 27.5 %. In the analysis using tracks with pT>500MeV [9], a data-driven correction to the efficiency was evaluated in order to account for material effects in the |η|>1.5 region. This correction to the efficiency is not applied in this analysis due to the large uncertainties of this method for low-momentum tracks, which are larger than the uncertainties in the material description.

The dominant uncertainty in the track reconstruction efficiency arises from imprecise knowledge of the passive material in the detector. This is estimated by evaluating the track reconstruction efficiency in dedicated simulation samples with increased detector material. The total uncertainty in the track reconstruction efficiency due to the amount of material is calculated as the linear sum of the contributions of 5 % additional material in the entire inner detector, 10 % additional material in the IBL and 50 % additional material in the pixel services region at |η|>1.5. The sizes of the variations are estimated from studies of the rate of photon conversions, of hadronic interactions, and of tracks lost due to interactions in the pixel services [34]. The resulting uncertainty in the track reconstruction efficiency is 1 % at low |η| and high pT and up to 10 % for higher |η| or for lower pT. The systematic uncertainty arising from the track selection requirements is studied by comparing the efficiency of each requirement in data and simulation. This results in an uncertainty of 0.5 % for all pT and η. The total uncertainty in the track reconstruction efficiency is obtained by adding all effects in quadrature. The track reconstruction efficiency is shown as function of pT and η in Fig. 3, including all systematic uncertainties. The efficiency is calculated using the PYTHIA 8 A2 and single-particle simulation. Effectively identical results are obtained when using the prediction from EPOS or PYTHIA 8 MONASH.

Fig. 3.

Fig. 3

Track reconstruction efficiency as a function of a transverse momentum pT and of b pseudorapidity η for selected tracks with pT >100 MeV and |η|<2.5 as predicted by PYTHIA 8 A2 and single-particle simulation. The statistical uncertainties are shown as vertical bars, the sum in quadrature of statistical and systematic uncertainties as shaded areas

Correction procedure and systematic uncertainties

The data are corrected to obtain inclusive spectra for primary charged particles satisfying the particle-level phase space requirement. The inefficiencies due to the trigger selection and vertex reconstruction are applied to all distributions as event weights:

wev(nselno-z,Δztracks)=1εtrig(nselno-z)·1εvtx(nselno-z,Δztracks). 1

Distributions of the selected tracks are corrected for inefficiencies in the track reconstruction with a track weight using the tracking efficiency (εtrk) and after subtracting the fractions of fake tracks (ffake), of strange baryons (fsb), of secondary particles (fsec) and of particles outside the kinematic range (fokr):

wtrk(pT,η)=1εtrk(pT,η)·[1-ffake(pT,η)-fsb(pT,η)-fsec(pT,η)-fokr(pT,η)]. 2

These distributions are estimated as described in Sect. 3.2 except that the fraction of particles outside the kinematic range whose reconstructed tracks enter the kinematic range is estimated from simulation. This fraction is largest at low pT and high |η|. At pT=100 MeV and |η|=2.5, 11 % of the particles enter the kinematic range and are subtracted as described in Formula 2 with a relative uncertainty of ± 4.5 %.

The pT and η distributions are corrected by the event and track weights, as discussed above. In order to correct for resolution effects, an iterative Bayesian unfolding [35] is additionally applied to the pT distribution. The response matrix used to unfold the data is calculated from PYTHIA 8 A2 simulation, and six iterations are used; this is the smallest number of iterations after which the process is stable. The statistical uncertainty is obtained using pseudo-experiments. For the η distribution, the resolution is smaller than the bin width and an unfolding is therefore unnecessary. After applying the event weight, the Bayesian unfolding is applied to the multiplicity distribution in order to correct from the observed track multiplicity to the multiplicity of primary charged particles, and therefore the track reconstruction efficiency weight does not need to be applied. The total number of events, Nev, is defined as the integral of the multiplicity distribution after all corrections are applied and is used to normalise the distributions. The dependence of pT on nch is obtained by first separately correcting the total number of tracks and ipT(i) (the scalar sum of the track pT of all tracks with pT > 100 MeV in one event), both versus the number of primary charged particles. After applying the correction to all events using the event and track weights, both distributions are unfolded separately. The ratio of the two unfolded distributions gives the dependence of pT on nch.

A summary of the systematic uncertainties is given in Table 2 for all observables. The dominant uncertainty is due to material effects on the track reconstruction efficiency. Uncertainties due to imperfect detector alignment are taken into account and are less than 5 % at the highest track pT values. In addition, resolution effects on the transverse momentum can result in low-pT particles being reconstructed as high-pT tracks. All these effects are considered as systematic uncertainty on the track reconstruction. The track background uncertainty is dominated by systematic effects in the estimation of the contribution from secondary particles. The track reconstruction efficiency determined in simulation can differ from the one in data if the pT spectrum is different for data and simulation, as the efficiency depends strongly on the track pT. This effect can alter the number of primary charged particles and is taken into account as a systematic uncertainty on the multiplicity distribution and pT vs nch. The non-closure systematic uncertainty is estimated from differences in the unfolding results using PYTHIA 8 A2 and EPOS simulations. For this, all combinations of these MC generators are used to simulate the distribution and the input to the unfolding.

Table 2.

Summary of the systematic uncertainties in the η, pT, nch and pT vs. nch observables. The uncertainties are given at the minimum and the maximum of the phase space

Distribution 1Nev·dNchd|η| 1Nev·12πpT·d2NchdηdpT 1Nev·dNevdnch pTvs.nch
Range 0–2.5 0.1–50 GeV 2–250 0–160 GeV
Track reconstruction 1 %–7 % 1 %–6 % 0 %–-20%+38% 0 %–0.7 %
Track background 0.5 % 0.5 %–1 % 0 %–-1%+7% 0 %–0.1 %
pT spectrum 0 %–-9%+3% 0%–-0.1%+0.3%
Non-closure 0.4 %–1 % 1 %–3 % 0 %–4 % 0.5 %–2 %

Results

The measured charged-particle multiplicities in events containing at least two charged particles with pT>100MeV and |η|< 2.5 are shown in Fig. 4. The corrected data are compared to predictions from various generators. In general, the systematic uncertainties are larger than the statistical uncertainties.

Fig. 4.

Fig. 4

Primary charged-particle multiplicities as a function of a pseudorapidity η and b transverse momentum pT, c the primary charged-particle multiplicity nch and d the mean transverse momentum pT versus nch for events with at least two primary charged particles with pT>100MeV and |η|<2.5, each with a lifetime τ>300 ps. The black dots represent the data and the coloured curves the different MC model predictions. The vertical bars represent the statistical uncertainties, while the shaded areas show statistical and systematic uncertainties added in quadrature. The lower panel in each figure shows the ratio of the MC simulation to data. As the bin centroid is different for data and simulation, the values of the ratio correspond to the averages of the bin content

Figure 4a shows the charged-particle multiplicity as a function of the pseudorapidity η. PYTHIA 8 MONASH, EPOS and QGSJET-II give a good description for |η|<1.5. The prediction from PYTHIA 8 A2 has the same shape as predictions from the other generators, but lies below the data.

The charged-particle transverse momentum is shown in Fig. 4b. EPOS describes the data well for pT>300MeV. For pT<300MeV, the data are underestimated by up to 15 %. The other generators show similar mismodelling at low momentum but with larger discrepancies up to 35 % for QGSJET-II. In addition, they mostly overestimate the charged-particle multiplicity for pT>400MeV; PYTHIA 8 A2 overestimates only in the intermediate pT region and underestimates the data slightly for pT>800MeV.

Figure 4c shows the charged-particle multiplicity. Overall, the form of the measured distribution is reproduced reasonably by all models. PYTHIA 8 A2 describes the data well for 30<nch<80, but underestimates it for higher nch. For 30<nch<80, PYTHIA 8 MONASH, EPOS and QGSJET-II underestimate the data by up to 20 %. PYTHIA 8 MONASH and EPOS overestimate the data for nch>80 and drop below the measurement in the high-nch region, starting from nch>130 and nch>200 respectively. QGSJET-II overestimates the data significantly for nch>100.

The mean transverse momentum versus the primary charged-particle multiplicity is shown in Fig. 4d. It increases towards higher nch, as modelled by a colour reconnection mechanism in PYTHIA 8 and by the hydrodynamical evolution model in EPOS. The QGSJET-II generator, which has no model for colour coherence effects, describes the data poorly. For low nch, PYTHIA 8 A2 and EPOS underestimate the data, where PYTHIA 8 MONASH agrees within the uncertainties. For higher nch all generators overestimate the data, but for nch>40, there is a constant offset for both PYTHIA 8 tunes, which describe the data to within 10 %. EPOS describes the data reasonably well and to within 2 %.

The mean number of primary charged particles per unit pseudorapidity in the central η region is measured to be 6.422±0.096, by averaging over |η|<0.2; the quoted error is the systematic uncertainty, the statistical uncertainty is negligible. In order to compare with other measurements, it is corrected for the contribution from strange baryons (and therefore extrapolated to primary charged particles with τ>30 ps) by a correction factor of 1.0121±0.0035. The central value is taken from EPOS; the systematic uncertainty is taken from the difference between EPOS and PYTHIA 8 A2 (the largest difference was observed between EPOS and PYTHIA 8 A2) and the statistical uncertainty is negligible. The mean number of primary charged particles after the correction is 6.500±0.099. This result is compared to previous measurements [1, 2, 9] at different s values in Fig. 5. The predictions from EPOS and PYTHIA 8 MONASH match the data well. For PYTHIA 8 A2, the match is not as good as was observed when measuring particles with pT > 500 MeV [9].

Fig. 5.

Fig. 5

The average primary charged-particle multiplicity in pp interactions per unit of pseudorapidity η for |η|<0.2 as a function of the centre-of-mass energy s. The values for the other pp centre-of-mass energies are taken from previous ATLAS analyses [1, 2]. The value for particles with pT>500 MeV for a s=13 TeV is taken from Ref. [9]. The results have been extrapolated to include charged strange baryons (charged particles with a mean lifetime of 30<τ<300 ps). The data are shown as black triangles with vertical errors bars representing the total uncertainty. They are compared to various MC predictions which are shown as coloured lines

Conclusion

Primary charged-particle multiplicity measurements with the ATLAS detector using proton–proton collisions delivered by the LHC at s=13 TeV are presented for events with at least two primary charged particles with |η|<2.5 and pT>100MeV using a specialised track reconstruction algorithm. A data sample corresponding to an integrated luminosity of 151 μb-1 is analysed. The mean number of charged particles per unit pseudorapidity in the region |η|<0.2 is measured to be 6.422±0.096 with a negligible statistical uncertainty. Significant differences are observed between the measured distributions and the Monte Carlo predictions tested. Amongst the models considered, EPOS has the best overall description of the data as was seen in a previous ATLAS measurement at s=13 TeV using tracks with pT>500MeV. PYTHIA 8 A2 and PYTHIA 8 MONASH provide a reasonable overall description, whereas QGSJET-II does not describe pT vs. nch well but provides a reasonable level of agreement for other distributions.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [36].

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2).

2

A hit is expected if the extrapolated track crosses an known active region of a pixel module. If an innermost pixel-layer hit is not expected, a next-to-innermost pixel-layer hit is required if expected.

References

  • 1.ATLAS Collaboration, Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC. New J. Phys. 13, 053033 (2011). doi:10.1088/1367-2630/13/5/053033. arXiv:1012.5104 [hep-ex]
  • 2.ATLAS Collaboration, Charged-particle distributions in pp interactions at s=8TeV measured with the ATLAS detector at the LHC (2016). arXiv:1603.02439 [hep-ex]
  • 3.CMS Collaboration, Charged particle multiplicities in pp interactions at s=0.9,2.36,and7TeV. JHEP 1101, 079 (2011). doi:10.1007/JHEP01(2011)079. arXiv:1011.5531 [hep-ex]
  • 4.CMS Collaboration, Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at s=7TeV. Phys. Rev. Lett. 105, 022002 (2010). doi:10.1103/PhysRevLett.105.022002. arXiv:1005.3299 [hep-ex] [DOI] [PubMed]
  • 5.CMS Collaboration, Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at s=0.9and2.36TeV. JHEP 1002, 041 (2010). doi:10.1007/JHEP02(2010)041. arXiv:1002.0621 [hep-ex]
  • 6.ALICE Collaboration, K. Aamodt et al., Charged-particle multiplicity measured in proton–proton collisions at s=7TeV with ALICE at LHC. Eur. Phys. J. C 68, 345–354 (2010). doi:10.1140/epjc/s10052-010-1350-2. arXiv:1004.3514 [hep-ex]
  • 7.CDF Collaboration, T. Aaltonen et al., Measurement of particle production and inclusive differential cross sections in pp¯ collisions at s=1.96TeV. Phys. Rev. D 79, 112005 (2009). doi:10.1103/PhysRevD.79.112005. arXiv:0904.1098 [hep-ex]
  • 8.CMS Collaboration, Pseudorapidity distribution of charged hadrons in proton–proton collisions at s=13TeV. Phys. Lett. B 751, 143–163 (2015). doi:10.1016/j.physletb.2015.10.004. arXiv:1507.05915 [hep-ex]
  • 9.ATLAS Collaboration, Charged-particle distributions in s=13TeV pp interactions measured with the ATLAS detector at the LHC. Phys. Lett. B 758, 67–88 (2016). doi:10.1016/j.physletb.2016.04.050. arXiv:1602.01633 [hep-ex]
  • 10.UA1 Collaboration, C. Albajar et al., A study of the general characteristics of proton–antiproton collisions at s=0.2to0.9TeV. Nucl. Phys. B 335, 261–287 (1990). doi:10.1016/0550-3213(90)90493-W
  • 11.UA5 Collaboration, R.E. Ansorge et al., Charged particle multiplicity distributions at 200 and 900 GeV c.m. energy. Zeit. Phys. 43, 357–374 (1989). doi:10.1007/BF01506531
  • 12.ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008). doi:10.1088/1748-0221/3/08/S08003
  • 13.L. Evans, P. Bryant, LHC machine. JINST 3, S08001 (2008). doi:10.1088/1748-0221/3/08/S08001
  • 14.T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852–867 (2008). doi:10.1016/j.cpc.2008.01.036. arXiv:0710.3820 [hep-ph]
  • 15.S. Porteboeuf, T. Pierog, K. Werner, Producing hard processes regarding the complete event: the EPOS event generator (2010). arXiv:1006.2967 [hep-ph]
  • 16.Ostapchenko S. Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model. Phys. Rev. D. 2011;83:014018. doi: 10.1103/PhysRevD.83.014018. [DOI] [Google Scholar]
  • 17.Corke R, Sjöstrand T. Interleaved parton showers and tuning prospects. JHEP. 2011;1103:032. doi: 10.1007/JHEP03(2011)032. [DOI] [Google Scholar]
  • 18.Drescher HJ, et al. Parton-based Gribov–Regge theory. Phys. Rep. 2001;350:93. doi: 10.1016/S0370-1573(00)00122-8. [DOI] [PubMed] [Google Scholar]
  • 19.Gribov VN. A Reggeon diagram technique. JETP. 1968;26:414. [Google Scholar]
  • 20.ATLAS Collaboration, Further ATLAS tunes of Pythia 6 and Pythia 8. ATL-PHYS-PUB-2011-014 (2011). http://cds.cern.ch/record/1400677
  • 21.Martin AD, Stirling WJ, Thorne RS, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 22.P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. C 74, 3024 (2014). doi:10.1140/epjc/s10052-014-3024-y. arXiv:1404.5630 [hep-ph]
  • 23.NNPDF Collaboration, R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). doi:10.1016/j.nuclphysb.2012.10.003. arXiv:1207.1303 [hep-ph]
  • 24.T. Pierog, Iu. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, EPOS LHC: test of collective hadronization with LHC data. Phys. Rev. C 92, 34906 (2015). doi:10.1103/PhysRevC.92.034906. arXiv:1306.0121 [hep-ph]
  • 25.S. Agostinelli et al., GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8
  • 26.ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823–874 (2010). doi:10.1140/epjc/s10052-010-1429-9. arXiv:1005.4568 [physics.ins-det]
  • 27.ATLAS Collaboration, ATLAS insertable B-layer technical design report. CERN-LHCC-2010-013. ATLAS-TDR-19 (2010). http://cdsweb.cern.ch/record/1291633
  • 28.ATLAS Collaboration, ATLAS insertable B-layer technical design report addendum. CERN-LHCC-2012-009. ATLAS-TDR-19-ADD-1 (2012). Addendum to CERN-LHCC-2010-013, ATLAS-TDR-019. http://cdsweb.cern.ch/record/1451888
  • 29.Piacquadio G, Prokofiev K, Wildauer A. Primary vertex reconstruction in the ATLAS experiment at LHC. J. Phys. Conf. Ser. 2008;119:032033. doi: 10.1088/1742-6596/119/3/032033. [DOI] [Google Scholar]
  • 30.T. Cornelissen et al., Concepts, design and implementation of the ATLAS new tracking (NEWT). ATL-SOFT-PUB-2007-007 (2007). https://cds.cern.ch/record/1020106
  • 31.Cornelissen T, et al. The new ATLAS track reconstruction (NEWT) J. Phys. Conf. Ser. 2008;119:032014. doi: 10.1088/1742-6596/119/3/032014. [DOI] [Google Scholar]
  • 32.ATLAS Collaboration, Track reconstruction performance of the ATLAS inner detector at s=13TeV. ATL-PHYS-PUB-2015-018 (2015). http://cds.cern.ch/record/2037683
  • 33.ATLAS Collaboration, Early inner detector tracking performance in the 2015 data at s=13TeV. ATL-PHYS-PUB-2015-051 (2015). https://cds.cern.ch/record/2110140
  • 34.ATLAS Collaboration, Studies of the ATLAS inner detector material using s=13TeV pp collision data. ATL-PHYS-PUB-2015-050 (2015). https://cds.cern.ch/record/2109010
  • 35.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods A. 1995;362:487–498. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 36.ATLAS Collaboration, ATLAS computing acknowledgements 2016–2017. ATL-GEN-PUB-2016-002 (2016). http://cds.cern.ch/record/2202407

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES