Skip to main content
Springer logoLink to Springer
. 2016 Nov 29;76(12):658. doi: 10.1140/epjc/s10052-016-4499-5

Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector

G Aad 115, B Abbott 144, O Abdinov 13, J Abdallah 208, B Abeloos 148, R Aben 138, M Abolins 120, R Aben 138, M Abolins 120, O S AbouZeid 183, N L Abraham 199, H Abramowicz 203, H Abreu 202, R Abreu 147, Y Abulaiti 195,196, B S Acharya 213,214, L Adamczyk 59, D L Adams 35, J Adelman 139, S Adomeit 130, T Adye 170, A A Affolder 104, T Agatonovic-Jovin 15, J Agricola 78, J A Aguilar-Saavedra 159,164, S P Ahlen 29, F Ahmadov 94, G Aielli 173,174, H Akerstedt 195,196, T P A Åkesson 111, A V Akimov 126, G L Alberghi 26,27, J Albert 220, S Albrand 79, M J Alconada Verzini 100, M Aleksa 44, I N Aleksandrov 94, C Alexa 37, G Alexander 203, T Alexopoulos 12, M Alhroob 144, G Alimonti 121, J Alison 45, S P Alkire 55, B M M Allbrooke 199, B W Allen 147, P P Allport 20, A Aloisio 134,135, A Alonso 56, F Alonso 100, C Alpigiani 184, B Alvarez Gonzalez 44, D Álvarez Piqueras 218, M G Alviggi 134,135, B T Amadio 17, K Amako 95, Y Amaral Coutinho 31, C Amelung 30, D Amidei 119, S P Amor Dos Santos 159,161, A Amorim 159,160, S Amoroso 44, N Amram 203, G Amundsen 30, C Anastopoulos 185, L S Ancu 71, N Andari 139, T Andeen 45, C F Anders 83, G Anders 44, J K Anders 104, K J Anderson 45, A Andreazza 121,122, V Andrei 82, S Angelidakis 11, I Angelozzi 138, P Anger 66, A Angerami 55, F Anghinolfi 44, A V Anisenkov 140, N Anjos 14, A Annovi 156,157, M Antonelli 69, A Antonov 128, J Antos 191, F Anulli 171, M Aoki 95, L Aperio Bella 20, G Arabidze 120, Y Arai 95, J P Araque 159, A T H Arce 67, F A Arduh 100, J-F Arguin 125, S Argyropoulos 91, M Arik 21, A J Armbruster 44, L J Armitage 106, O Arnaez 44, H Arnold 70, M Arratia 42, O Arslan 28, A Artamonov 127, G Artoni 151, S Artz 113, S Asai 205, N Asbah 64, A Ashkenazi 203, B Åsman 195,196, L Asquith 199, K Assamagan 35, R Astalos 190, M Atkinson 217, N B Atlay 187, K Augsten 167, G Avolio 44, B Axen 17, M K Ayoub 148, G Azuelos 125, M A Baak 44, A E Baas 82, M J Baca 20, H Bachacou 182, K Bachas 102,103, M Backes 44, M Backhaus 44, P Bagiacchi 171,172, P Bagnaia 171,172, Y Bai 48, J T Baines 170, O K Baker 227, E M Baldin 140, P Balek 168, T Balestri 198, F Balli 182, W K Balunas 154, E Banas 61, Sw Banerjee 224, A A E Bannoura 226, L Barak 44, E L Barberio 118, D Barberis 72,73, M Barbero 115, T Barillari 131, M Barisonzi 213,214, T Barklow 189, N Barlow 42, S L Barnes 114, B M Barnett 170, R M Barnett 17, Z Barnovska 7, A Baroncelli 175, G Barone 30, A J Barr 151, L Barranco Navarro 218, F Barreiro 112, J Barreiro Guimarães da Costa 48, R Bartoldus 189, A E Barton 101, P Bartos 190, A Basalaev 155, A Bassalat 148, A Basye 217, R L Bates 77, S J Batista 208, J R Batley 42, M Battaglia 183, M Bauce 171,172, F Bauer 182, H S Bawa 189, J B Beacham 142, M D Beattie 101, T Beau 110, P H Beauchemin 212, P Bechtle 28, H P Beck 19, K Becker 151, M Becker 113, M Beckingham 221, C Becot 141, A J Beddall 24, A Beddall 22, V A Bednyakov 94, M Bedognetti 138, C P Bee 198, L J Beemster 138, T A Beermann 44, M Begel 35, J K Behr 64, C Belanger-Champagne 117, A S Bell 108, W H Bell 71, G Bella 203, L Bellagamba 26, A Bellerive 43, M Bellomo 116, K Belotskiy 128, O Beltramello 44, N L Belyaev 128, O Benary 203, D Benchekroun 177, M Bender 130, K Bendtz 195,196, N Benekos 12, Y Benhammou 203, E Benhar Noccioli 227, J Benitez 91, J A Benitez Garcia 210, D P Benjamin 67, J R Bensinger 30, S Bentvelsen 138, L Beresford 151, M Beretta 69, D Berge 138, E Bergeaas Kuutmann 216, N Berger 7, F Berghaus 220, J Beringer 17, S Berlendis 79, N R Bernard 116, C Bernius 141, F U Bernlochner 28, T Berry 107, P Berta 168, C Bertella 113, G Bertoli 195,196, F Bertolucci 156,157, I A Bertram 101, C Bertsche 144, D Bertsche 144, G J Besjes 56, O Bessidskaia Bylund 195,196, M Bessner 64, N Besson 182, C Betancourt 70, S Bethke 131, A J Bevan 106, W Bhimji 17, R M Bianchi 158, L Bianchini 30, M Bianco 44, O Biebel 130, D Biedermann 18, R Bielski 114, N V Biesuz 156,157, M Biglietti 175, J Bilbao De Mendizabal 71, H Bilokon 69, M Bindi 78, S Binet 148, A Bingul 22, C Bini 171,172, S Biondi 26,27, D M Bjergaard 67, C W Black 200, J E Black 189, K M Black 29, D Blackburn 184, R E Blair 8, J-B Blanchard 182, J E Blanco 107, T Blazek 190, I Bloch 64, C Blocker 30, W Blum 1,113, U Blumenschein 78, S Blunier 46, G J Bobbink 138, V S Bobrovnikov 140, S S Bocchetta 111, A Bocci 67, C Bock 130, M Boehler 70, D Boerner 226, J A Bogaerts 44, D Bogavac 15, A G Bogdanchikov 140, C Bohm 195, V Boisvert 107, T Bold 59, V Boldea 37, A S Boldyrev 213,215, M Bomben 110, M Bona 106, M Boonekamp 182, A Borisov 169, G Borissov 101, J Bortfeldt 130, D Bortoletto 151, V Bortolotto 86,87,88, K Bos 138, D Boscherini 26, M Bosman 14, J D Bossio Sola 41, J Boudreau 158, J Bouffard 2, E V Bouhova-Thacker 101, D Boumediene 54, C Bourdarios 148, S K Boutle 77, A Boveia 44, J Boyd 44, I R Boyko 94, J Bracinik 20, A Brandt 10, G Brandt 78, O Brandt 82, U Bratzler 206, B Brau 116, J E Brau 147, H M Braun 1,226, W D Breaden Madden 77, K Brendlinger 154, A J Brennan 118, L Brenner 138, R Brenner 216, S Bressler 223, T M Bristow 68, D Britton 77, D Britzger 64, F M Brochu 42, I Brock 28, R Brock 120, G Brooijmans 55, T Brooks 107, W K Brooks 47, J Brosamer 17, E Brost 147, J H Broughton 20, P A Bruckman de Renstrom 61, D Bruncko 191, R Bruneliere 70, A Bruni 26, G Bruni 26, B H Brunt 42, M Bruschi 26, N Bruscino 28, P Bryant 45, L Bryngemark 111, T Buanes 16, Q Buat 188, P Buchholz 187, A G Buckley 77, I A Budagov 94, F Buehrer 70, M K Bugge 150, O Bulekov 128, D Bullock 10, H Burckhart 44, S Burdin 104, C D Burgard 70, B Burghgrave 139, K Burka 61, S Burke 170, I Burmeister 65, E Busato 54, D Büscher 70, V Büscher 113, P Bussey 77, J M Butler 29, A I Butt 3, C M Buttar 77, J M Butterworth 108, P Butti 138, W Buttinger 35, A Buzatu 77, A R Buzykaev 140, S Cabrera Urbán 218, D Caforio 167, V M Cairo 57,58, O Cakir 4, N Calace 71, P Calafiura 17, A Calandri 115, G Calderini 110, P Calfayan 130, L P Caloba 31, D Calvet 54, S Calvet 54, T P Calvet 115, R Camacho Toro 45, S Camarda 44, P Camarri 173,174, D Cameron 150, R Caminal Armadans 217, C Camincher 79, S Campana 44, M Campanelli 108, A Campoverde 198, V Canale 134,135, A Canepa 209, M Cano Bret 52, J Cantero 112, R Cantrill 159, T Cao 62, M D M Capeans Garrido 44, I Caprini 37, M Caprini 37, M Capua 57,58, R Caputo 113, R M Carbone 55, R Cardarelli 173, F Cardillo 70, T Carli 44, G Carlino 134, L Carminati 121,122, S Caron 137, E Carquin 47, G D Carrillo-Montoya 44, J R Carter 42, J Carvalho 159,161, D Casadei 108, M P Casado 14, M Casolino 14, D W Casper 93, E Castaneda-Miranda 192, A Castelli 138, V Castillo Gimenez 218, N F Castro 159, A Catinaccio 44, J R Catmore 150, A Cattai 44, J Caudron 113, V Cavaliere 217, E Cavallaro 14, D Cavalli 121, M Cavalli-Sforza 14, V Cavasinni 156,157, F Ceradini 175,176, L Cerda Alberich 218, B C Cerio 67, A S Cerqueira 32, A Cerri 199, L Cerrito 106, F Cerutti 17, M Cerv 44, A Cervelli 19, S A Cetin 23, A Chafaq 177, D Chakraborty 139, I Chalupkova 168, S K Chan 81, Y L Chan 86, P Chang 217, J D Chapman 42, D G Charlton 20, A Chatterjee 71, C C Chau 208, C A Chavez Barajas 199, S Che 142, S Cheatham 101, A Chegwidden 120, S Chekanov 8, S V Chekulaev 209, G A Chelkov 94, M A Chelstowska 119, C Chen 92, H Chen 35, K Chen 198, S Chen 50, S Chen 205, X Chen 53, Y Chen 96, H C Cheng 119, H J Cheng 48, Y Cheng 45, A Cheplakov 94, E Cheremushkina 169, R Cherkaoui El Moursli 181, V Chernyatin 1,35, E Cheu 9, L Chevalier 182, V Chiarella 69, G Chiarelli 156,157, G Chiodini 102, A S Chisholm 20, A Chitan 37, M V Chizhov 94, K Choi 89, A R Chomont 54, S Chouridou 11, B K B Chow 130, V Christodoulou 108, D Chromek-Burckhart 44, J Chudoba 166, A J Chuinard 117, J J Chwastowski 61, L Chytka 146, G Ciapetti 171,172, A K Ciftci 4, D Cinca 77, V Cindro 105, I A Cioara 28, A Ciocio 17, F Cirotto 134,135, Z H Citron 223, M Ciubancan 37, A Clark 71, B L Clark 81, P J Clark 68, R N Clarke 17, C Clement 195,196, Y Coadou 115, M Cobal 213,215, A Coccaro 71, J Cochran 92, L Coffey 30, L Colasurdo 137, B Cole 55, S Cole 139, A P Colijn 138, J Collot 79, T Colombo 44, G Compostella 131, P Conde Muiño 159,160, E Coniavitis 70, S H Connell 193, I A Connelly 107, V Consorti 70, S Constantinescu 37, C Conta 152,153, G Conti 44, F Conventi 134, M Cooke 17, B D Cooper 108, A M Cooper-Sarkar 151, T Cornelissen 226, M Corradi 171,172, F Corriveau 117, A Corso-Radu 93, A Cortes-Gonzalez 14, G Cortiana 131, G Costa 121, M J Costa 218, D Costanzo 185, G Cottin 42, G Cowan 107, B E Cox 114, K Cranmer 141, S J Crawley 77, G Cree 43, S Crépé-Renaudin 79, F Crescioli 110, W A Cribbs 195,196, M Crispin Ortuzar 151, M Cristinziani 28, V Croft 137, G Crosetti 57,58, T Cuhadar Donszelmann 185, J Cummings 227, M Curatolo 69, J Cúth 113, C Cuthbert 200, H Czirr 187, P Czodrowski 3, S D’Auria 77, M D’Onofrio 104, M J Da Cunha Sargedas De Sousa 159,160, C Da Via 114, W Dabrowski 59, T Dai 119, O Dale 16, F Dallaire 125, C Dallapiccola 116, M Dam 56, J R Dandoy 45, N P Dang 70, A C Daniells 20, N S Dann 114, M Danninger 219, M Dano Hoffmann 182, V Dao 70, G Darbo 72, S Darmora 10, J Dassoulas 3, A Dattagupta 89, W Davey 28, C David 220, T Davidek 168, M Davies 203, P Davison 108, Y Davygora 82, E Dawe 118, I Dawson 185, R K Daya-Ishmukhametova 116, K De 10, R de Asmundis 134, A De Benedetti 144, S De Castro 26,27, S De Cecco 110, N De Groot 137, P de Jong 138, H De la Torre 112, F De Lorenzi 92, D De Pedis 171, A De Salvo 171, U De Sanctis 199, A De Santo 199, J B De Vivie De Regie 148, W J Dearnaley 101, R Debbe 35, C Debenedetti 183, D V Dedovich 94, I Deigaard 138, J Del Peso 112, T Del Prete 156,157, D Delgove 148, F Deliot 182, C M Delitzsch 71, M Deliyergiyev 105, A Dell’Acqua 44, L Dell’Asta 29, M Dell’Orso 156,157, M Della Pietra 134, D della Volpe 71, M Delmastro 7, P A Delsart 79, C Deluca 138, D A DeMarco 208, S Demers 227, M Demichev 94, A Demilly 110, S P Denisov 169, D Denysiuk 182, D Derendarz 61, J E Derkaoui 180, F Derue 110, P Dervan 104, K Desch 28, C Deterre 64, K Dette 65, P O Deviveiros 44, A Dewhurst 170, S Dhaliwal 30, A Di Ciaccio 173,174, L Di Ciaccio 7, W K Di Clemente 154, A Di Domenico 171,172, C Di Donato 171,172, A Di Girolamo 44, B Di Girolamo 44, A Di Mattia 202, B Di Micco 175,176, R Di Nardo 69, A Di Simone 70, R Di Sipio 208, D Di Valentino 43, C Diaconu 115, M Diamond 208, F A Dias 68, M A Diaz 46, E B Diehl 119, J Dietrich 18, S Diglio 115, A Dimitrievska 15, J Dingfelder 28, P Dita 37, S Dita 37, F Dittus 44, F Djama 115, T Djobava 75, J I Djuvsland 82, M A B do Vale 33, D Dobos 44, M Dobre 37, C Doglioni 111, T Dohmae 205, J Dolejsi 168, Z Dolezal 168, B A Dolgoshein 1,128, M Donadelli 34, S Donati 156,157, P Dondero 152,153, J Donini 54, J Dopke 170, A Doria 134, M T Dova 100, A T Doyle 77, E Drechsler 78, M Dris 12, Y Du 51, J Duarte-Campderros 203, E Duchovni 223, G Duckeck 130, O A Ducu 37, D Duda 138, A Dudarev 44, L Duflot 148, L Duguid 107, M Dührssen 44, M Dunford 82, H Duran Yildiz 4, M Düren 76, A Durglishvili 75, D Duschinger 66, B Dutta 64, M Dyndal 59, C Eckardt 64, K M Ecker 131, R C Edgar 119, W Edson 2, N C Edwards 68, T Eifert 44, G Eigen 16, K Einsweiler 17, T Ekelof 216, M El Kacimi 179, V Ellajosyula 115, M Ellert 216, S Elles 7, F Ellinghaus 226, A A Elliot 220, N Ellis 44, J Elmsheuser 35, M Elsing 44, D Emeliyanov 170, Y Enari 205, O C Endner 113, M Endo 149, J S Ennis 221, J Erdmann 65, A Ereditato 19, G Ernis 226, J Ernst 2, M Ernst 35, S Errede 217, E Ertel 113, M Escalier 148, H Esch 65, C Escobar 158, B Esposito 69, A I Etienvre 182, E Etzion 203, H Evans 89, A Ezhilov 155, F Fabbri 26,27, L Fabbri 26,27, G Facini 45, R M Fakhrutdinov 169, S Falciano 171, R J Falla 108, J Faltova 168, Y Fang 48, M Fanti 121,122, A Farbin 10, A Farilla 175, C Farina 158, T Farooque 14, S Farrell 17, S M Farrington 221, P Farthouat 44, F Fassi 181, P Fassnacht 44, D Fassouliotis 11, M Faucci Giannelli 107, A Favareto 72,73, W J Fawcett 151, L Fayard 148, O L Fedin 155, W Fedorko 219, S Feigl 150, L Feligioni 115, C Feng 51, E J Feng 44, H Feng 119, A B Fenyuk 169, L Feremenga 10, P Fernandez Martinez 218, S Fernandez Perez 14, J Ferrando 77, A Ferrari 216, P Ferrari 138, R Ferrari 152, D E Ferreira de Lima 77, A Ferrer 218, D Ferrere 71, C Ferretti 119, A Ferretto Parodi 72,73, F Fiedler 113, A Filipčič 105, M Filipuzzi 64, F Filthaut 137, M Fincke-Keeler 220, K D Finelli 200, M C N Fiolhais 159,161, L Fiorini 218, A Firan 62, A Fischer 2, C Fischer 14, J Fischer 226, W C Fisher 120, N Flaschel 64, I Fleck 187, P Fleischmann 119, G T Fletcher 185, G Fletcher 106, R R M Fletcher 154, T Flick 226, A Floderus 111, L R Flores Castillo 86, M J Flowerdew 131, G T Forcolin 114, A Formica 182, A Forti 114, A G Foster 20, D Fournier 148, H Fox 101, S Fracchia 14, P Francavilla 110, M Franchini 26,27, D Francis 44, L Franconi 150, M Franklin 81, M Frate 93, M Fraternali 152,153, D Freeborn 108, S M Fressard-Batraneanu 44, F Friedrich 66, D Froidevaux 44, J A Frost 151, C Fukunaga 206, E Fullana Torregrosa 113, T Fusayasu 132, J Fuster 218, C Gabaldon 79, O Gabizon 226, A Gabrielli 26,27, A Gabrielli 17, G P Gach 59, S Gadatsch 44, S Gadomski 71, G Gagliardi 72,73, L G Gagnon 125, P Gagnon 89, C Galea 137, B Galhardo 159,161, E J Gallas 151, B J Gallop 170, P Gallus 167, G Galster 56, K K Gan 142, J Gao 49,115, Y Gao 68, Y S Gao 189, F M Garay Walls 68, C García 218, J E García Navarro 218, M Garcia-Sciveres 17, R W Gardner 45, N Garelli 189, V Garonne 150, A Gascon Bravo 64, C Gatti 69, A Gaudiello 72,73, G Gaudio 152, B Gaur 187, L Gauthier 125, I L Gavrilenko 126, C Gay 219, G Gaycken 28, E N Gazis 12, Z Gecse 219, C N P Gee 170, Ch Geich-Gimbel 28, M P Geisler 82, C Gemme 72, M H Genest 79, C Geng 49, S Gentile 171,172, S George 107, D Gerbaudo 93, A Gershon 203, S Ghasemi 187, H Ghazlane 178, M Ghneimat 28, B Giacobbe 26, S Giagu 171,172, P Giannetti 156,157, B Gibbard 35, S M Gibson 107, M Gignac 219, M Gilchriese 17, T P S Gillam 42, D Gillberg 43, G Gilles 226, D M Gingrich 3, N Giokaris 11, M P Giordani 213,215, F M Giorgi 26, F M Giorgi 18, P F Giraud 182, P Giromini 81, D Giugni 121, F Giuli 151, C Giuliani 131, M Giulini 83, B K Gjelsten 150, S Gkaitatzis 204, I Gkialas 204, E L Gkougkousis 148, L K Gladilin 129, C Glasman 112, J Glatzer 44, P C F Glaysher 68, A Glazov 64, M Goblirsch-Kolb 131, J Godlewski 61, S Goldfarb 119, T Golling 71, D Golubkov 169, A Gomes 159,160,162, R Gonçalo 159, J Goncalves Pinto Firmino Da Costa 182, L Gonella 20, A Gongadze 94, S González de la Hoz 218, G Gonzalez Parra 14, S Gonzalez-Sevilla 71, L Goossens 44, P A Gorbounov 127, H A Gordon 35, I Gorelov 136, B Gorini 44, E Gorini 102,103, A Gorišek 105, E Gornicki 61, A T Goshaw 67, C Gössling 65, M I Gostkin 94, C R Goudet 148, D Goujdami 179, A G Goussiou 184, N Govender 193, E Gozani 202, L Graber 78, I Grabowska-Bold 59, P O J Gradin 216, P Grafström 26,27, J Gramling 71, E Gramstad 150, S Grancagnolo 18, V Gratchev 155, H M Gray 44, E Graziani 175, Z D Greenwood 109, C Grefe 28, K Gregersen 108, I M Gregor 64, P Grenier 189, K Grevtsov 7, J Griffiths 10, A A Grillo 183, K Grimm 101, S Grinstein 14, Ph Gris 54, J-F Grivaz 148, S Groh 113, J P Grohs 66, E Gross 223, J Grosse-Knetter 78, G C Grossi 109, Z J Grout 199, L Guan 119, W Guan 224, J Guenther 167, F Guescini 71, D Guest 93, O Gueta 203, E Guido 72,73, T Guillemin 7, S Guindon 2, U Gul 77, C Gumpert 44, J Guo 52, Y Guo 49, S Gupta 151, G Gustavino 171,172, P Gutierrez 144, N G Gutierrez Ortiz 108, C Gutschow 66, C Guyot 182, C Gwenlan 151, C B Gwilliam 104, A Haas 141, C Haber 17, H K Hadavand 10, N Haddad 181, A Hadef 115, P Haefner 28, S Hageböck 28, Z Hajduk 61, H Hakobyan 1,228, M Haleem 64, J Haley 145, D Hall 151, G Halladjian 120, G D Hallewell 115, K Hamacher 226, P Hamal 146, K Hamano 220, A Hamilton 192, G N Hamity 185, P G Hamnett 64, L Han 49, K Hanagaki 95, K Hanawa 205, M Hance 183, B Haney 154, P Hanke 82, R Hanna 182, J B Hansen 56, J D Hansen 56, M C Hansen 28, P H Hansen 56, K Hara 211, A S Hard 224, T Harenberg 226, F Hariri 148, S Harkusha 123, R D Harrington 68, P F Harrison 221, F Hartjes 138, M Hasegawa 96, Y Hasegawa 186, A Hasib 144, S Hassani 182, S Haug 19, R Hauser 120, L Hauswald 66, M Havranek 166, C M Hawkes 20, R J Hawkings 44, A D Hawkins 111, D Hayden 120, C P Hays 151, J M Hays 106, H S Hayward 104, S J Haywood 170, S J Head 20, T Heck 113, V Hedberg 111, L Heelan 10, S Heim 154, T Heim 17, B Heinemann 17, J J Heinrich 130, L Heinrich 141, C Heinz 76, J Hejbal 166, L Helary 29, S Hellman 195,196, C Helsens 44, J Henderson 151, R C W Henderson 101, Y Heng 224, S Henkelmann 219, A M Henriques Correia 44, S Henrot-Versille 148, G H Herbert 18, Y Hernández Jiménez 218, G Herten 70, R Hertenberger 130, L Hervas 44, G G Hesketh 108, N P Hessey 138, J W Hetherly 62, R Hickling 106, E Higón-Rodriguez 218, E Hill 220, J C Hill 42, K H Hiller 64, S J Hillier 20, I Hinchliffe 17, E Hines 154, R R Hinman 17, M Hirose 207, D Hirschbuehl 226, J Hobbs 198, N Hod 138, M C Hodgkinson 185, P Hodgson 185, A Hoecker 44, M R Hoeferkamp 136, F Hoenig 130, M Hohlfeld 113, D Hohn 28, T R Holmes 17, M Homann 65, T M Hong 158, B H Hooberman 217, W H Hopkins 147, Y Horii 133, A J Horton 188, J-Y Hostachy 79, S Hou 201, A Hoummada 177, J Howard 151, J Howarth 64, M Hrabovsky 146, I Hristova 18, J Hrivnac 148, T Hryn’ova 7, A Hrynevich 124, C Hsu 194, P J Hsu 201, S-C Hsu 184, D Hu 55, Q Hu 49, Y Huang 64, Z Hubacek 167, F Hubaut 115, F Huegging 28, T B Huffman 151, E W Hughes 55, G Hughes 101, M Huhtinen 44, T A Hülsing 113, N Huseynov 94, J Huston 120, J Huth 81, G Iacobucci 71, G Iakovidis 35, I Ibragimov 187, L Iconomidou-Fayard 148, E Ideal 227, Z Idrissi 181, P Iengo 44, O Igonkina 138, T Iizawa 222, Y Ikegami 95, M Ikeno 95, Y Ilchenko 45, D Iliadis 204, N Ilic 189, T Ince 131, G Introzzi 152,153, P Ioannou 1,11, M Iodice 175, K Iordanidou 55, V Ippolito 81, A Irles Quiles 218, C Isaksson 216, M Ishino 97, M Ishitsuka 207, R Ishmukhametov 142, C Issever 151, S Istin 21, F Ito 211, J M Iturbe Ponce 114, R Iuppa 173,174, J Ivarsson 111, W Iwanski 61, H Iwasaki 95, J M Izen 63, V Izzo 134, S Jabbar 3, B Jackson 154, M Jackson 104, P Jackson 1, V Jain 2, K B Jakobi 113, K Jakobs 70, S Jakobsen 44, T Jakoubek 166, D O Jamin 145, D K Jana 109, E Jansen 108, R Jansky 90, J Janssen 28, M Janus 78, G Jarlskog 111, N Javadov 94, T Javůrek 70, F Jeanneau 182, L Jeanty 17, J Jejelava 74, G-Y Jeng 200, D Jennens 118, P Jenni 70, J Jentzsch 65, C Jeske 221, S Jézéquel 7, H Ji 224, J Jia 198, H Jiang 92, Y Jiang 49, S Jiggins 108, J Jimenez Pena 218, S Jin 48, A Jinaru 37, O Jinnouchi 207, P Johansson 185, K A Johns 9, W J Johnson 184, K Jon-And 195,196, G Jones 221, R W L Jones 101, S Jones 9, T J Jones 104, J Jongmanns 82, P M Jorge 159,160, J Jovicevic 209, X Ju 224, A Juste Rozas 14, M K Köhler 223, A Kaczmarska 61, M Kado 148, H Kagan 142, M Kagan 189, S J Kahn 115, E Kajomovitz 67, C W Kalderon 151, A Kaluza 113, S Kama 62, A Kamenshchikov 169, N Kanaya 205, S Kaneti 42, V A Kantserov 128, J Kanzaki 95, B Kaplan 141, L S Kaplan 224, A Kapliy 45, D Kar 194, K Karakostas 12, A Karamaoun 3, N Karastathis 12, M J Kareem 78, E Karentzos 12, M Karnevskiy 113, S N Karpov 94, Z M Karpova 94, K Karthik 141, V Kartvelishvili 101, A N Karyukhin 169, K Kasahara 211, L Kashif 224, R D Kass 142, A Kastanas 16, Y Kataoka 205, C Kato 205, A Katre 71, J Katzy 64, K Kawade 133, K Kawagoe 99, T Kawamoto 205, G Kawamura 78, S Kazama 205, V F Kazanin 140, R Keeler 220, R Kehoe 62, J S Keller 64, J J Kempster 107, H Keoshkerian 114, O Kepka 166, B P Kerševan 105, S Kersten 226, R A Keyes 117, F Khalil-zada 13, H Khandanyan 195,196, A Khanov 145, A G Kharlamov 140, T J Khoo 42, V Khovanskiy 127, E Khramov 94, J Khubua 75, S Kido 96, H Y Kim 10, S H Kim 211, Y K Kim 45, N Kimura 204, O M Kind 18, B T King 104, M King 218, S B King 219, J Kirk 170, A E Kiryunin 131, T Kishimoto 96, D Kisielewska 59, F Kiss 70, K Kiuchi 211, O Kivernyk 182, E Kladiva 191, M H Klein 55, M Klein 104, U Klein 104, K Kleinknecht 113, P Klimek 195,196, A Klimentov 35, R Klingenberg 65, J A Klinger 185, T Klioutchnikova 44, E-E Kluge 82, P Kluit 138, S Kluth 131, J Knapik 61, E Kneringer 90, E B F G Knoops 115, A Knue 77, A Kobayashi 205, D Kobayashi 207, T Kobayashi 205, M Kobel 66, M Kocian 189, P Kodys 168, T Koffas 43, E Koffeman 138, L A Kogan 151, T Kohriki 95, T Koi 189, H Kolanoski 18, M Kolb 83, I Koletsou 7, A A Komar 1,126, Y Komori 205, T Kondo 95, N Kondrashova 64, K Köneke 70, A C König 137, T Kono 95, R Konoplich 141, N Konstantinidis 108, R Kopeliansky 89, S Koperny 59, L Köpke 113, A K Kopp 70, K Korcyl 61, K Kordas 204, A Korn 108, A A Korol 140, I Korolkov 14, E V Korolkova 185, O Kortner 131, S Kortner 131, T Kosek 168, V V Kostyukhin 28, V M Kotov 94, A Kotwal 67, A Kourkoumeli-Charalampidi 204, C Kourkoumelis 11, V Kouskoura 35, A Koutsman 209, A B Kowalewska 61, R Kowalewski 220, T Z Kowalski 59, W Kozanecki 182, A S Kozhin 169, V A Kramarenko 129, G Kramberger 105, D Krasnopevtsev 128, M W Krasny 110, A Krasznahorkay 44, J K Kraus 28, A Kravchenko 35, M Kretz 84, J Kretzschmar 104, K Kreutzfeldt 76, P Krieger 208, K Krizka 45, K Kroeninger 65, H Kroha 131, J Kroll 154, J Kroseberg 28, J Krstic 15, U Kruchonak 94, H Krüger 28, N Krumnack 92, A Kruse 224, M C Kruse 67, M Kruskal 29, T Kubota 118, H Kucuk 108, S Kuday 5, J T Kuechler 226, S Kuehn 70, A Kugel 84, F Kuger 225, A Kuhl 183, T Kuhl 64, V Kukhtin 94, R Kukla 182, Y Kulchitsky 123, S Kuleshov 47, M Kuna 171,172, T Kunigo 97, A Kupco 166, H Kurashige 96, Y A Kurochkin 123, V Kus 166, E S Kuwertz 220, M Kuze 207, J Kvita 146, T Kwan 220, D Kyriazopoulos 185, A La Rosa 131, J L La Rosa Navarro 34, L La Rotonda 57,58, C Lacasta 218, F Lacava 171,172, J Lacey 43, H Lacker 18, D Lacour 110, V R Lacuesta 218, E Ladygin 94, R Lafaye 7, B Laforge 110, T Lagouri 227, S Lai 78, S Lammers 89, W Lampl 9, E Lançon 182, U Landgraf 70, M P J Landon 106, V S Lang 82, J C Lange 14, A J Lankford 93, F Lanni 35, K Lantzsch 28, A Lanza 152, S Laplace 110, C Lapoire 44, J F Laporte 182, T Lari 121, F Lasagni Manghi 26,27, M Lassnig 44, P Laurelli 69, W Lavrijsen 17, A T Law 183, P Laycock 104, T Lazovich 81, M Lazzaroni 121,122, O Le Dortz 110, E Le Guirriec 115, E Le Menedeu 14, E P Le Quilleuc 182, M LeBlanc 220, T LeCompte 8, F Ledroit-Guillon 79, C A Lee 35, S C Lee 201, L Lee 1, G Lefebvre 110, M Lefebvre 220, F Legger 130, C Leggett 17, A Lehan 104, G Lehmann Miotto 44, X Lei 9, W A Leight 43, A Leisos 204, A G Leister 227, M A L Leite 34, R Leitner 168, D Lellouch 223, B Lemmer 78, K J C Leney 108, T Lenz 28, B Lenzi 44, R Leone 9, S Leone 156,157, C Leonidopoulos 68, S Leontsinis 12, G Lerner 199, C Leroy 125, A A J Lesage 182, C G Lester 42, M Levchenko 155, J Levêque 7, D Levin 119, L J Levinson 223, M Levy 20, A M Leyko 28, M Leyton 63, B Li 49, H Li 198, H L Li 45, L Li 67, L Li 52, Q Li 48, S Li 67, X Li 114, Y Li 187, Z Liang 183, H Liao 54, B Liberti 173, A Liblong 208, P Lichard 44, K Lie 217, J Liebal 28, W Liebig 16, C Limbach 28, A Limosani 200, S C Lin 201, T H Lin 113, B E Lindquist 198, E Lipeles 154, A Lipniacka 16, M Lisovyi 83, T M Liss 217, D Lissauer 35, A Lister 219, A M Litke 183, B Liu 201, D Liu 201, H Liu 119, H Liu 35, J Liu 115, J B Liu 49, K Liu 115, L Liu 217, M Liu 67, M Liu 49, Y L Liu 49, Y Liu 49, M Livan 152,153, A Lleres 79, J Llorente Merino 112, S L Lloyd 106, F Lo Sterzo 201, E Lobodzinska 64, P Loch 9, W S Lockman 183, F K Loebinger 114, A E Loevschall-Jensen 56, K M Loew 30, A Loginov 227, T Lohse 18, K Lohwasser 64, M Lokajicek 166, B A Long 29, J D Long 217, R E Long 101, L Longo 102,103, K A Looper 142, L Lopes 159, D Lopez Mateos 81, B Lopez Paredes 185, I Lopez Paz 14, A Lopez Solis 110, J Lorenz 130, N Lorenzo Martinez 89, M Losada 25, P J Lösel 130, X Lou 48, A Lounis 148, J Love 8, P A Love 101, H Lu 86, N Lu 119, H J Lubatti 184, C Luci 171,172, A Lucotte 79, C Luedtke 70, F Luehring 89, W Lukas 90, L Luminari 171, O Lundberg 195,196, B Lund-Jensen 197, D Lynn 35, R Lysak 166, E Lytken 111, V Lyubushkin 94, H Ma 35, L L Ma 51, Y Ma 51, G Maccarrone 69, A Macchiolo 131, C M Macdonald 185, B Maček 105, J Machado Miguens 154,160, D Madaffari 115, R Madar 54, H J Maddocks 216, W F Mader 66, A Madsen 64, J Maeda 96, S Maeland 16, T Maeno 35, A Maevskiy 129, E Magradze 78, J Mahlstedt 138, C Maiani 148, C Maidantchik 31, A A Maier 131, T Maier 130, A Maio 159,160,162, S Majewski 147, Y Makida 95, N Makovec 148, B Malaescu 110, Pa Malecki 61, V P Maleev 155, F Malek 79, U Mallik 91, D Malon 8, C Malone 189, S Maltezos 12, V M Malyshev 140, S Malyukov 44, J Mamuzic 64, G Mancini 69, B Mandelli 44, L Mandelli 121, I Mandić 105, J Maneira 159,160, L Manhaes de Andrade Filho 32, J Manjarres Ramos 210, A Mann 130, B Mansoulie 182, R Mantifel 117, M Mantoani 78, S Manzoni 121,122, L Mapelli 44, G Marceca 41, L March 71, G Marchiori 110, M Marcisovsky 166, M Marjanovic 15, D E Marley 119, F Marroquim 31, S P Marsden 114, Z Marshall 17, L F Marti 19, S Marti-Garcia 218, B Martin 120, T A Martin 221, V J Martin 68, B Martin dit Latour 16, M Martinez 14, S Martin-Haugh 170, V S Martoiu 37, A C Martyniuk 108, M Marx 184, F Marzano 171, A Marzin 44, L Masetti 113, T Mashimo 205, R Mashinistov 126, J Masik 114, A L Maslennikov 140, I Massa 26,27, L Massa 26,27, P Mastrandrea 7, A Mastroberardino 57,58, T Masubuchi 205, P Mättig 226, J Mattmann 113, J Maurer 37, S J Maxfield 104, D A Maximov 140, R Mazini 201, S M Mazza 121,122, N C Mc Fadden 136, G Mc Goldrick 208, S P Mc Kee 119, A McCarn 119, R L McCarthy 198, T G McCarthy 43, L I McClymont 108, K W McFarlane 1,80, J A Mcfayden 108, G Mchedlidze 78, S J McMahon 170, R A McPherson 220, M Medinnis 64, S Meehan 184, S Mehlhase 130, A Mehta 104, K Meier 82, C Meineck 130, B Meirose 63, B R Mellado Garcia 194, F Meloni 19, A Mengarelli 26,27, S Menke 131, E Meoni 212, K M Mercurio 81, S Mergelmeyer 18, P Mermod 71, L Merola 134,135, C Meroni 121, F S Merritt 45, A Messina 171,172, J Metcalfe 8, A S Mete 93, C Meyer 113, C Meyer 154, J-P Meyer 182, J Meyer 138, H Meyer Zu Theenhausen 82, R P Middleton 170, S Miglioranzi 213,215, L Mijović 28, G Mikenberg 223, M Mikestikova 166, M Mikuž 105, M Milesi 118, A Milic 44, D W Miller 45, C Mills 68, A Milov 223, D A Milstead 195,196, A A Minaenko 169, Y Minami 205, I A Minashvili 94, A I Mincer 141, B Mindur 59, M Mineev 94, Y Ming 224, L M Mir 14, K P Mistry 154, T Mitani 222, J Mitrevski 130, V A Mitsou 218, A Miucci 71, P S Miyagawa 185, J U Mjörnmark 111, T Moa 195,196, K Mochizuki 115, S Mohapatra 55, W Mohr 70, S Molander 195,196, R Moles-Valls 28, R Monden 97, M C Mondragon 120, K Mönig 64, J Monk 56, E Monnier 115, A Montalbano 198, J Montejo Berlingen 44, F Monticelli 100, S Monzani 121,122, R W Moore 3, N Morange 148, D Moreno 25, M Moreno Llácer 78, P Morettini 72, D Mori 188, T Mori 205, M Morii 81, M Morinaga 205, V Morisbak 150, S Moritz 113, A K Morley 200, G Mornacchi 44, J D Morris 106, S S Mortensen 56, L Morvaj 198, M Mosidze 75, J Moss 189, K Motohashi 207, R Mount 189, E Mountricha 35, S V Mouraviev 1,126, E J W Moyse 116, S Muanza 115, R D Mudd 20, F Mueller 131, J Mueller 158, R S P Mueller 130, T Mueller 42, D Muenstermann 101, P Mullen 77, G A Mullier 19, F J Munoz Sanchez 114, J A Murillo Quijada 20, W J Murray 170,221, A Murrone 121,122, H Musheghyan 78, M Muskinja 105, A G Myagkov 169, M Myska 167, B P Nachman 189, O Nackenhorst 71, J Nadal 78, K Nagai 151, R Nagai 95, K Nagano 95, Y Nagasaka 85, K Nagata 211, M Nagel 131, E Nagy 115, A M Nairz 44, Y Nakahama 44, K Nakamura 95, T Nakamura 205, I Nakano 143, H Namasivayam 63, R F Naranjo Garcia 64, R Narayan 45, D I Narrias Villar 82, I Naryshkin 155, T Naumann 64, G Navarro 25, R Nayyar 9, H A Neal 119, P Yu Nechaeva 126, T J Neep 114, P D Nef 189, A Negri 152,153, M Negrini 26, S Nektarijevic 137, C Nellist 148, A Nelson 93, S Nemecek 166, P Nemethy 141, A A Nepomuceno 31, M Nessi 44, M S Neubauer 217, M Neumann 226, R M Neves 141, P Nevski 35, P R Newman 20, D H Nguyen 8, R B Nickerson 151, R Nicolaidou 182, B Nicquevert 44, J Nielsen 183, A Nikiforov 18, V Nikolaenko 169, I Nikolic-Audit 110, K Nikolopoulos 20, J K Nilsen 150, P Nilsson 35, Y Ninomiya 205, A Nisati 171, R Nisius 131, T Nobe 205, L Nodulman 8, M Nomachi 149, I Nomidis 43, T Nooney 106, S Norberg 144, M Nordberg 44, N Norjoharuddeen 151, O Novgorodova 66, S Nowak 131, M Nozaki 95, L Nozka 146, K Ntekas 12, E Nurse 108, F Nuti 118, F O’grady 9, D C O’Neil 188, A A O’Rourke 64, V O’Shea 77, F G Oakham 43, H Oberlack 131, T Obermann 28, J Ocariz 110, A Ochi 96, I Ochoa 55, J P Ochoa-Ricoux 46, S Oda 99, S Odaka 95, H Ogren 89, A Oh 114, S H Oh 67, C C Ohm 17, H Ohman 216, H Oide 44, H Okawa 211, Y Okumura 45, T Okuyama 95, A Olariu 37, L F Oleiro Seabra 159, S A Olivares Pino 68, D Oliveira Damazio 35, A Olszewski 61, J Olszowska 61, A Onofre 159,163, K Onogi 133, P U E Onyisi 45, C J Oram 209, M J Oreglia 45, Y Oren 203, D Orestano 175,176, N Orlando 87, R S Orr 208, B Osculati 72,73, R Ospanov 114, G Otero y Garzon 41, H Otono 99, M Ouchrif 180, F Ould-Saada 150, A Ouraou 182, K P Oussoren 138, Q Ouyang 48, A Ovcharova 17, M Owen 77, R E Owen 20, V E Ozcan 21, N Ozturk 10, K Pachal 188, A Pacheco Pages 14, C Padilla Aranda 14, M Pagáčová 70, S Pagan Griso 17, F Paige 35, P Pais 116, K Pajchel 150, G Palacino 210, S Palestini 44, M Palka 60, D Pallin 54, A Palma 159,160, E St Panagiotopoulou 12, C E Pandini 110, J G Panduro Vazquez 107, P Pani 195,196, S Panitkin 35, D Pantea 37, L Paolozzi 71, Th D Papadopoulou 12, K Papageorgiou 204, A Paramonov 8, D Paredes Hernandez 227, A J Parker 101, M A Parker 42, K A Parker 185, F Parodi 72,73, J A Parsons 55, U Parzefall 70, V Pascuzzi 208, E Pasqualucci 171, S Passaggio 72, F Pastore 1,175,176, Fr Pastore 107, G Pásztor 43, S Pataraia 226, N D Patel 200, J R Pater 114, T Pauly 44, J Pearce 220, B Pearson 144, L E Pedersen 56, M Pedersen 150, S Pedraza Lopez 218, R Pedro 159,160, S V Peleganchuk 140, D Pelikan 216, O Penc 166, C Peng 48, H Peng 49, J Penwell 89, B S Peralva 32, M M Perego 182, D V Perepelitsa 35, E Perez Codina 209, L Perini 121,122, H Pernegger 44, S Perrella 134,135, R Peschke 64, V D Peshekhonov 94, K Peters 44, R F Y Peters 114, B A Petersen 44, T C Petersen 56, E Petit 79, A Petridis 1, C Petridou 204, P Petroff 148, E Petrolo 171, M Petrov 151, F Petrucci 175,176, N E Pettersson 207, A Peyaud 182, R Pezoa 47, P W Phillips 170, G Piacquadio 189, E Pianori 221, A Picazio 116, E Piccaro 106, M Piccinini 26,27, M A Pickering 151, R Piegaia 41, J E Pilcher 45, A D Pilkington 114, A W J Pin 114, J Pina 159,160,162, M Pinamonti 213,215, J L Pinfold 3, A Pingel 56, S Pires 110, H Pirumov 64, M Pitt 223, L Plazak 190, M-A Pleier 35, V Pleskot 113, E Plotnikova 94, P Plucinski 195,196, D Pluth 92, R Poettgen 195,196, L Poggioli 148, D Pohl 28, G Polesello 152, A Poley 64, A Policicchio 57,58, R Polifka 208, A Polini 26, C S Pollard 77, V Polychronakos 35, K Pommès 44, L Pontecorvo 171, B G Pope 120, G A Popeneciu 38, D S Popovic 15, A Poppleton 44, S Pospisil 167, K Potamianos 17, I N Potrap 94, C J Potter 42, C T Potter 147, G Poulard 44, J Poveda 44, V Pozdnyakov 94, M E Pozo Astigarraga 44, P Pralavorio 115, A Pranko 17, S Prell 92, D Price 114, L E Price 8, M Primavera 102, S Prince 117, M Proissl 68, K Prokofiev 88, F Prokoshin 47, S Protopopescu 35, J Proudfoot 8, M Przybycien 59, D Puddu 175,176, D Puldon 198, M Purohit 35, P Puzo 148, J Qian 119, G Qin 77, Y Qin 114, A Quadt 78, W B Quayle 213,214, M Queitsch-Maitland 114, D Quilty 77, S Raddum 150, V Radeka 35, V Radescu 83, S K Radhakrishnan 198, P Radloff 147, P Rados 118, F Ragusa 121,122, G Rahal 229, J A Raine 114, S Rajagopalan 35, M Rammensee 44, C Rangel-Smith 216, M G Ratti 121,122, F Rauscher 130, S Rave 113, T Ravenscroft 77, M Raymond 44, A L Read 150, N P Readioff 104, D M Rebuzzi 152,153, A Redelbach 225, G Redlinger 35, R Reece 183, K Reeves 63, L Rehnisch 18, J Reichert 154, H Reisin 41, C Rembser 44, H Ren 48, M Rescigno 171, S Resconi 121, O L Rezanova 140, P Reznicek 168, R Rezvani 125, R Richter 131, S Richter 108, E Richter-Was 60, O Ricken 28, M Ridel 110, P Rieck 18, C J Riegel 226, J Rieger 78, O Rifki 144, M Rijssenbeek 198, A Rimoldi 152,153, L Rinaldi 26, B Ristić 71, E Ritsch 44, I Riu 14, F Rizatdinova 145, E Rizvi 106, C Rizzi 14, S H Robertson 117, A Robichaud-Veronneau 117, D Robinson 42, J E M Robinson 64, A Robson 77, C Roda 156,157, Y Rodina 115, A Rodriguez Perez 14, D Rodriguez Rodriguez 218, S Roe 44, C S Rogan 81, O Røhne 150, A Romaniouk 128, M Romano 26,27, S M Romano Saez 54, E Romero Adam 218, N Rompotis 184, M Ronzani 70, L Roos 110, E Ros 218, S Rosati 171, K Rosbach 70, P Rose 183, O Rosenthal 187, V Rossetti 195,196, E Rossi 134,135, L P Rossi 72, J H N Rosten 42, R Rosten 184, M Rotaru 37, I Roth 223, J Rothberg 184, D Rousseau 148, C R Royon 182, A Rozanov 115, Y Rozen 202, X Ruan 194, F Rubbo 189, I Rubinskiy 64, V I Rud 129, M S Rudolph 208, F Rühr 70, A Ruiz-Martinez 44, Z Rurikova 70, N A Rusakovich 94, A Ruschke 130, H L Russell 184, J P Rutherfoord 9, N Ruthmann 44, Y F Ryabov 155, M Rybar 217, G Rybkin 148, S Ryu 8, A Ryzhov 169, A F Saavedra 200, G Sabato 138, S Sacerdoti 41, H F-W Sadrozinski 183, R Sadykov 94, F Safai Tehrani 171, P Saha 139, M Sahinsoy 82, M Saimpert 182, T Saito 205, H Sakamoto 205, Y Sakurai 222, G Salamanna 175,176, A Salamon 173,174, J E Salazar Loyola 47, D Salek 138, P H Sales De Bruin 184, D Salihagic 131, A Salnikov 189, J Salt 218, D Salvatore 57,58, F Salvatore 199, A Salvucci 86, A Salzburger 44, D Sammel 70, D Sampsonidis 204, A Sanchez 134,135, J Sánchez 218, V Sanchez Martinez 218, H Sandaker 150, R L Sandbach 106, H G Sander 113, M P Sanders 130, M Sandhoff 226, C Sandoval 25, R Sandstroem 131, D P C Sankey 170, M Sannino 72,73, A Sansoni 69, C Santoni 54, R Santonico 173,174, H Santos 159, I Santoyo Castillo 199, K Sapp 158, A Sapronov 94, J G Saraiva 159,162, B Sarrazin 28, O Sasaki 95, Y Sasaki 205, K Sato 211, G Sauvage 1,7, E Sauvan 7, G Savage 107, P Savard 208, C Sawyer 170, L Sawyer 109, J Saxon 45, C Sbarra 26, A Sbrizzi 26,27, T Scanlon 108, D A Scannicchio 93, M Scarcella 200, V Scarfone 57,58, J Schaarschmidt 223, P Schacht 131, D Schaefer 44, R Schaefer 64, J Schaeffer 113, S Schaepe 28, S Schaetzel 83, U Schäfer 113, A C Schaffer 148, D Schaile 130, R D Schamberger 198, V Scharf 82, V A Schegelsky 155, D Scheirich 168, M Schernau 93, C Schiavi 72,73, C Schillo 70, M Schioppa 57,58, S Schlenker 44, K Schmieden 44, C Schmitt 113, S Schmitt 64, S Schmitz 113, B Schneider 209, Y J Schnellbach 104, U Schnoor 70, L Schoeffel 182, A Schoening 83, B D Schoenrock 120, E Schopf 28, A L S Schorlemmer 65, M Schott 113, J Schovancova 10, S Schramm 71, M Schreyer 225, N Schuh 113, M J Schultens 28, H-C Schultz-Coulon 82, H Schulz 18, M Schumacher 70, B A Schumm 183, Ph Schune 182, C Schwanenberger 114, A Schwartzman 189, T A Schwarz 119, Ph Schwegler 131, H Schweiger 114, Ph Schwemling 182, R Schwienhorst 120, J Schwindling 182, T Schwindt 28, G Sciolla 30, F Scuri 156,157, F Scutti 118, J Searcy 119, P Seema 28, S C Seidel 136, A Seiden 183, F Seifert 167, J M Seixas 31, G Sekhniaidze 134, K Sekhon 119, S J Sekula 62, D M Seliverstov 1,155, N Semprini-Cesari 26,27, C Serfon 44, L Serin 148, L Serkin 213,214, M Sessa 175,176, R Seuster 209, H Severini 144, T Sfiligoj 105, F Sforza 44, A Sfyrla 71, E Shabalina 78, N W Shaikh 195,196, L Y Shan 48, R Shang 217, J T Shank 29, M Shapiro 17, P B Shatalov 127, K Shaw 213,214, S M Shaw 114, A Shcherbakova 195,196, C Y Shehu 199, P Sherwood 108, L Shi 201, S Shimizu 96, C O Shimmin 93, M Shimojima 132, M Shiyakova 94, A Shmeleva 126, D Shoaleh Saadi 125, M J Shochet 45, S Shojaii 121,122, S Shrestha 142, E Shulga 128, M A Shupe 9, P Sicho 166, P E Sidebo 197, O Sidiropoulou 225, D Sidorov 145, A Sidoti 26,27, F Siegert 66, Dj Sijacki 15, J Silva 159,162, S B Silverstein 195, V Simak 167, O Simard 7, Lj Simic 15, S Simion 148, E Simioni 113, B Simmons 108, D Simon 54, M Simon 113, P Sinervo 208, N B Sinev 147, M Sioli 26,27, G Siragusa 225, S Yu Sivoklokov 129, J Sjölin 195,196, T B Sjursen 16, M B Skinner 101, H P Skottowe 81, P Skubic 144, M Slater 20, T Slavicek 167, M Slawinska 138, K Sliwa 212, R Slovak 168, V Smakhtin 223, B H Smart 7, L Smestad 16, S Yu Smirnov 128, Y Smirnov 128, L N Smirnova 129, O Smirnova 111, M N K Smith 55, R W Smith 55, M Smizanska 101, K Smolek 167, A A Snesarev 126, G Snidero 106, S Snyder 35, R Sobie 220, F Socher 66, A Soffer 203, D A Soh 201, G Sokhrannyi 105, C A Solans Sanchez 44, M Solar 167, E Yu Soldatov 128, U Soldevila 218, A A Solodkov 169, A Soloshenko 94, O V Solovyanov 169, V Solovyev 155, P Sommer 70, H Son 212, H Y Song 49, A Sood 17, A Sopczak 167, V Sopko 167, V Sorin 14, D Sosa 83, C L Sotiropoulou 156,157, R Soualah 213,215, A M Soukharev 140, D South 64, B C Sowden 107, S Spagnolo 102,103, M Spalla 156,157, M Spangenberg 221, F Spanò 107, D Sperlich 18, F Spettel 131, R Spighi 26, G Spigo 44, L A Spiller 118, M Spousta 168, R D St Denis 1,77, A Stabile 121, S Staerz 44, J Stahlman 154, R Stamen 82, S Stamm 18, E Stanecka 61, R W Stanek 8, C Stanescu 175, M Stanescu-Bellu 64, M M Stanitzki 64, S Stapnes 150, E A Starchenko 169, G H Stark 45, J Stark 79, P Staroba 166, P Starovoitov 82, R Staszewski 61, P Steinberg 35, B Stelzer 188, H J Stelzer 44, O Stelzer-Chilton 209, H Stenzel 76, G A Stewart 77, J A Stillings 28, M C Stockton 117, M Stoebe 117, G Stoicea 37, P Stolte 78, S Stonjek 131, A R Stradling 10, A Straessner 66, M E Stramaglia 19, J Strandberg 197, S Strandberg 195,196, A Strandlie 150, M Strauss 144, P Strizenec 191, R Ströhmer 225, D M Strom 147, R Stroynowski 62, A Strubig 137, S A Stucci 19, B Stugu 16, N A Styles 64, D Su 189, J Su 158, R Subramaniam 109, S Suchek 82, Y Sugaya 149, M Suk 167, V V Sulin 126, S Sultansoy 6, T Sumida 97, S Sun 81, X Sun 48, J E Sundermann 70, K Suruliz 199, G Susinno 57,58, M R Sutton 199, S Suzuki 95, M Svatos 166, M Swiatlowski 45, I Sykora 190, T Sykora 168, D Ta 70, C Taccini 175,176, K Tackmann 64, J Taenzer 208, A Taffard 93, R Tafirout 209, N Taiblum 203, H Takai 35, R Takashima 98, H Takeda 96, T Takeshita 186, Y Takubo 95, M Talby 115, A A Talyshev 140, J Y C Tam 225, K G Tan 118, J Tanaka 205, R Tanaka 148, S Tanaka 95, B B Tannenwald 142, S Tapia Araya 47, S Tapprogge 113, S Tarem 202, G F Tartarelli 121, P Tas 168, M Tasevsky 166, T Tashiro 97, E Tassi 57,58, A Tavares Delgado 159,160, Y Tayalati 180, A C Taylor 136, G N Taylor 118, P T E Taylor 118, W Taylor 210, F A Teischinger 44, P Teixeira-Dias 107, K K Temming 70, D Temple 188, H Ten Kate 44, P K Teng 201, J J Teoh 149, F Tepel 226, S Terada 95, K Terashi 205, J Terron 112, S Terzo 131, M Testa 69, R J Teuscher 208, T Theveneaux-Pelzer 115, J P Thomas 20, J Thomas-Wilsker 107, E N Thompson 55, P D Thompson 20, R J Thompson 114, A S Thompson 77, L A Thomsen 227, E Thomson 154, M Thomson 42, M J Tibbetts 17, R E Ticse Torres 115, V O Tikhomirov 126, Yu A Tikhonov 140, S Timoshenko 128, P Tipton 227, S Tisserant 115, K Todome 207, T Todorov 1,7, S Todorova-Nova 168, J Tojo 99, S Tokár 190, K Tokushuku 95, E Tolley 81, L Tomlinson 114, M Tomoto 133, L Tompkins 189, K Toms 136, B Tong 81, E Torrence 147, H Torres 188, E Torró Pastor 184, J Toth 115, F Touchard 115, D R Tovey 185, T Trefzger 225, L Tremblet 44, A Tricoli 44, I M Trigger 209, S Trincaz-Duvoid 110, M F Tripiana 14, W Trischuk 208, B Trocmé 79, A Trofymov 64, C Troncon 121, M Trottier-McDonald 17, M Trovatelli 220, L Truong 213,214, M Trzebinski 61, A Trzupek 61, J C-L Tseng 151, P V Tsiareshka 123, G Tsipolitis 12, N Tsirintanis 11, S Tsiskaridze 14, V Tsiskaridze 70, E G Tskhadadze 74, K M Tsui 86, I I Tsukerman 127, V Tsulaia 17, S Tsuno 95, D Tsybychev 198, A Tudorache 37, V Tudorache 37, A N Tuna 81, S A Tupputi 26,27, S Turchikhin 129, D Turecek 167, D Turgeman 223, R Turra 121,122, A J Turvey 62, P M Tuts 55, M Tyndel 170, G Ucchielli 26,27, I Ueda 205, R Ueno 43, M Ughetto 195,196, F Ukegawa 211, G Unal 44, A Undrus 35, G Unel 93, F C Ungaro 118, Y Unno 95, C Unverdorben 130, J Urban 191, P Urquijo 118, P Urrejola 113, G Usai 10, A Usanova 90, L Vacavant 115, V Vacek 167, B Vachon 117, C Valderanis 130, E Valdes Santurio 195,196, N Valencic 138, S Valentinetti 26,27, A Valero 218, L Valery 14, S Valkar 168, S Vallecorsa 71, J A Valls Ferrer 218, W Van Den Wollenberg 138, P C Van Der Deijl 138, R van der Geer 138, H van der Graaf 138, N van Eldik 202, P van Gemmeren 8, J Van Nieuwkoop 188, I van Vulpen 138, M C van Woerden 44, M Vanadia 171,172, W Vandelli 44, R Vanguri 154, A Vaniachine 8, P Vankov 138, G Vardanyan 228, R Vari 171, E W Varnes 9, T Varol 62, D Varouchas 110, A Vartapetian 10, K E Varvell 200, J G Vasquez 227, F Vazeille 54, T Vazquez Schroeder 117, J Veatch 9, L M Veloce 208, F Veloso 159,161, S Veneziano 171, A Ventura 102,103, M Venturi 220, N Venturi 208, A Venturini 30, V Vercesi 152, M Verducci 171,172, W Verkerke 138, J C Vermeulen 138, A Vest 66, M C Vetterli 188, O Viazlo 111, I Vichou 217, T Vickey 185, O E Vickey Boeriu 185, G H A Viehhauser 151, S Viel 17, L Vigani 151, R Vigne 90, M Villa 26,27, M Villaplana Perez 121,122, E Vilucchi 69, M G Vincter 43, V B Vinogradov 94, C Vittori 26,27, I Vivarelli 199, S Vlachos 12, M Vlasak 167, M Vogel 226, P Vokac 167, G Volpi 156,157, M Volpi 118, H von der Schmitt 131, E von Toerne 28, V Vorobel 168, K Vorobev 128, M Vos 218, R Voss 44, J H Vossebeld 104, N Vranjes 15, M Vranjes Milosavljevic 15, V Vrba 166, M Vreeswijk 138, R Vuillermet 44, I Vukotic 45, Z Vykydal 167, P Wagner 28, W Wagner 226, H Wahlberg 100, S Wahrmund 66, J Wakabayashi 133, J Walder 101, R Walker 130, W Walkowiak 187, V Wallangen 195,196, C Wang 201, C Wang 51,115, F Wang 224, H Wang 17, H Wang 62, J Wang 64, J Wang 200, K Wang 117, R Wang 8, S M Wang 201, T Wang 28, T Wang 55, X Wang 227, C Wanotayaroj 147, A Warburton 117, C P Ward 42, D R Wardrope 108, A Washbrook 68, P M Watkins 20, A T Watson 20, I J Watson 200, M F Watson 20, G Watts 184, S Watts 114, B M Waugh 108, S Webb 113, M S Weber 19, S W Weber 225, J S Webster 8, A R Weidberg 151, B Weinert 89, J Weingarten 78, C Weiser 70, H Weits 138, P S Wells 44, T Wenaus 35, T Wengler 44, S Wenig 44, N Wermes 28, M Werner 70, P Werner 44, M Wessels 82, J Wetter 212, K Whalen 147, N L Whallon 184, A M Wharton 101, A White 10, M J White 1, R White 47, S White 156,157, D Whiteson 93, F J Wickens 170, W Wiedenmann 224, M Wielers 170, P Wienemann 28, C Wiglesworth 56, L A M Wiik-Fuchs 28, A Wildauer 131, F Wilk 114, H G Wilkens 44, H H Williams 154, S Williams 138, C Willis 120, S Willocq 116, J A Wilson 20, I Wingerter-Seez 7, F Winklmeier 147, O J Winston 199, B T Winter 28, M Wittgen 189, J Wittkowski 130, S J Wollstadt 113, M W Wolter 61, H Wolters 159,161, B K Wosiek 61, J Wotschack 44, M J Woudstra 114, K W Wozniak 61, M Wu 79, M Wu 45, S L Wu 224, X Wu 71, Y Wu 119, T R Wyatt 114, B M Wynne 68, S Xella 56, D Xu 48, L Xu 35, B Yabsley 200, S Yacoob 192, R Yakabe 96, D Yamaguchi 207, Y Yamaguchi 149, A Yamamoto 95, S Yamamoto 205, T Yamanaka 205, K Yamauchi 133, Y Yamazaki 96, Z Yan 29, H Yang 52, H Yang 224, Y Yang 201, Z Yang 16, W-M Yao 17, Y C Yap 110, Y Yasu 95, E Yatsenko 7, K H Yau Wong 28, J Ye 62, S Ye 35, I Yeletskikh 94, A L Yen 81, E Yildirim 64, K Yorita 222, R Yoshida 8, K Yoshihara 154, C Young 189, C J S Young 44, S Youssef 29, D R Yu 17, J Yu 10, J M Yu 119, J Yu 92, L Yuan 96, S P Y Yuen 28, I Yusuff 42, B Zabinski 61, R Zaidan 51, A M Zaitsev 169, N Zakharchuk 64, J Zalieckas 16, A Zaman 198, S Zambito 81, L Zanello 171,172, D Zanzi 118, C Zeitnitz 226, M Zeman 167, A Zemla 59, J C Zeng 217, Q Zeng 189, K Zengel 30, O Zenin 169, T Ženiš 190, D Zerwas 148, D Zhang 119, F Zhang 224, G Zhang 49, H Zhang 50, J Zhang 8, L Zhang 70, R Zhang 28, R Zhang 49, X Zhang 51, Z Zhang 148, X Zhao 62, Y Zhao 51,148, Z Zhao 49, A Zhemchugov 94, J Zhong 151, B Zhou 119, C Zhou 67, L Zhou 55, L Zhou 62, M Zhou 198, N Zhou 53, C G Zhu 51, H Zhu 48, J Zhu 119, Y Zhu 49, X Zhuang 48, K Zhukov 126, A Zibell 225, D Zieminska 89, N I Zimine 94, C Zimmermann 113, S Zimmermann 70, Z Zinonos 78, M Zinser 113, M Ziolkowski 187, L Živković 15, G Zobernig 224, A Zoccoli 26,27, M zur Nedden 18, G Zurzolo 134,135, L Zwalinski 44; ATLAS Collaboration36,39,40,165,230
PMCID: PMC5335599  PMID: 28316497

Abstract

A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of τ leptons and is based on 20.3 fb-1 of proton–proton collision data at s = 8 TeV collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter d~. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter d~ is constrained to the interval (-0.11,0.05) at 68% confidence level, consistent with the Standard Model expectation of d~=0.

Introduction

The discovery of a Higgs boson by the ATLAS and CMS experiments [1, 2] at the LHC [3] offers a novel opportunity to search for new sources of CP violation in the interaction of the Higgs boson with other Standard Model (SM) particles. C and CP violation is one of the three Sakharov conditions [46] needed to explain the observed baryon asymmetry of the universe. In the SM with massless neutrinos the only source of CP violation is the complex phase in the quark mixing (CKM) matrix [7, 8]. The measured size of the complex phase and the derived magnitude of CP violation in the early universe is insufficient to explain the observed value of the baryon asymmetry [9] within the SM [10, 11] and, most probably, new sources of CP violation beyond the SM need to be introduced. No observable effect of CP violation is expected in the production or decay of the SM Higgs boson. Hence any observation of CP violation involving the observed Higgs boson would be an unequivocal sign of physics beyond the SM.

The measured Higgs boson production cross sections, branching ratios and derived constraints on coupling-strength modifiers, assuming the tensor structure of the SM, agree with the SM predictions [12, 13]. Investigations of spin and CP quantum numbers in bosonic decay modes and measurements of anomalous couplings including CP-violating ones in the decay into a pair of massive electroweak gauge bosons show no hints of deviations from the tensor structure of the SM Higgs boson [14, 15]. Differential cross-section measurements in the decay Hγγ have been used to set limits on couplings including CP-violating ones in vector-boson fusion production in an effective field theory [16]. However, the observables, including absolute event rates, used in that analysis were CP-even and hence not sensitive to the possible interference between the SM and CP-odd couplings and did not directly test CP invariance. The observables used in this analysis are CP-odd and therefore sensitive to this interference and the measurement is designed as a direct test of CP invariance.

In this paper, a first direct test of CP invariance in Higgs boson production via vector-boson fusion (VBF) is presented, based on proton–proton collision data corresponding to an integrated luminosity of 20.3 fb-1  collected with the ATLAS detector at s = 8 TeV in 2012. A CP-odd Optimal Observable [1719] is employed. The Optimal Observable combines the information from the multi-dimensional phase space in a single quantity calculated from leading-order matrix elements for VBF production. Hence it does not depend on the decay mode of the Higgs boson. A direct test of CP invariance is possible measuring the mean value of the CP-odd Optimal Observable. Moreover, as described in Sect. 2, an ansatz in the framework of an effective field theory is utilised, in which all CP-violating effects corresponding to operators with dimensions up to six in the couplings between a Higgs boson and an electroweak gauge boson can be described in terms of a single parameter d~. Limits on d~ are derived by analysing the shape of spectra of the Optimal Observable measured in Hττ candidate events that also have two jets tagging VBF production. The event selection, estimation of background contributions and of systematic uncertainties follows the analysis used to establish 4.5σ evidence for the Hττ decay [20]. Only events selected in the VBF category are analysed, and only fully leptonic τlepτlep or semileptonic τlepτhad decays of the τ-lepton pair are considered.

The theoretical framework in the context of effective field theories is discussed in Sect. 2 and the methodology of testing CP invariance and the concept of the Optimal Observable are introduced in Sect. 3. After a brief description of the ATLAS detector in Sect. 4, the simulated samples used are summarised in Sect. 5. The experimental analysis is presented in Sect. 6, followed by a description of the statistical method used to determine confidence intervals for d~ in Sect. 7. The results are discussed in Sect. 8, following which conclusions are given.

Effective Lagrangian framework

The effective Lagrangian considered is the SM Lagrangian augmented by CP-violating operators of mass dimension six, which can be constructed from the Higgs doublet Φ and the U(1)Y and SU(2)IW,L electroweak gauge fields Bμ and Wa,μ (a=1,2,3), respectively. No CP-conserving dimension-six operators built from these fields are taken into account. All interactions between the Higgs boson and other SM particles (fermions and gluons) are assumed to be as predicted in the SM; i.e. the coupling structure in gluon fusion production and in the decay into a pair of τ-leptons is considered to be the same as in the SM.

The effective U(1)Y- and SU(2)IW,L-invariant Lagrangian is then given by (following Ref. [21, 22]):

Leff=LSM+fB~BΛ2OB~B+fW~WΛ2OW~W+fB~Λ2OB~ 1

with the three dimension-six operators

OB~B=Φ+B~^μνB^μνΦOW~W=Φ+W~^μνW^μνΦOB~=(DμΦ)+B~^μνDνΦ. 2

and three dimensionless Wilson coefficients fB~B, fW~W and fB~; Λ is the scale of new physics.

Here Dμ denotes the covariant derivative Dμ=μ+i2gBμ+igσa2Wμa, V^μν (V=B,Wa) the field-strength tensors and V~μν=12ϵμνρσVρσ the dual field-strength tensors, with B^μν+W^μν=ig2Bμν+ig2σaWμνa.

The last operator OB~ contributes to the CP-violating charged triple gauge-boson couplings κ~γ and κ~Z via the relation κ~γ=-cot2θWκ~Z=mW22Λ2fB~. These CP-violating charged triple gauge boson couplings are constrained by the LEP experiments [2325] and the contribution from OB~ is neglected in the following; i.e. only contributions from OB~B and OW~W are taken into account.

After electroweak symmetry breaking in the unitary gauge the effective Lagrangian in the mass basis of Higgs boson H, photon A and weak gauge bosons Z and W± can be written, e.g. as in Ref. [26]:

Leff=LSM+g~HAAHA~μνAμν+g~HAZHA~μνZμν+g~HZZHZ~μνZμν+g~HWWHW~μν+W-μν. 3

Only two of the four couplings g~HVV (V=W±,Z,γ) are independent due to constraints imposed by U(1)Y and SU(2)IW,L invariance. They can be expressed in terms of two dimensionless couplings d~ and d~B as:

g~HAA=g2mW(d~sin2θW+d~Bcos2θW)g~HAZ=g2mWsin2θW(d~-d~B) 4
g~HZZ=g2mW(d~cos2θW+d~Bsin2θW)g~HWW=gmWd~. 5

Hence in general WW, ZZ, Zγ and γγ fusion contribute to VBF production. The relations between d~ and fW~W, and d~B and fB~B are given by:

d~=-mW2Λ2fW~Wd~B=-mW2Λ2tan2θWfB~B. 6

As the different contributions from the various electroweak gauge-boson fusion processes cannot be distinguished experimentally with the current available dataset, the arbitrary choice d~=d~B is adopted. This yields the following relation for the g~HVV:

g~HAA=g~HZZ=12g~HWW=g2mWd~andg~HAZ=0. 7

The parameter d~ is related to the parameter κ^W=κ~W/κSMtanα used in the investigation of CP properties in the decay HWW [15] via d~=-κ^W. The choice d~=d~B yields κ^W=κ^Z as assumed in the combination of the HWW and HZZ decay analyses [15].

The effective Lagrangian yields the following Lorentz structure for each vertex in the Higgs bosons coupling to two identical or charge-conjugated electroweak gauge bosons HV(p1)V(p2) (V=W±,Z,γ), with p1,2 denoting the momenta of the gauge bosons:

Tμν(p1,p2)=V=W,Z2mV2vgμν+V=W,Z,γ2gmWd~εμνρσp1ρp2σ. 8

The first terms (gμν) are CP-even and describe the SM coupling structure, while the second terms (εμνρσp1ρp2σ) are CP-odd and arise from the CP-odd dimension-six operators. The choice d~=d~B gives the same coefficients multiplying the CP-odd structure for HW+W-, HZZ and Hγγ vertices and a vanishing coupling for the HZγ vertex.

The matrix element M for VBF production is the sum of a CP-even contribution MSM from the SM and a CP-odd contribution MCP-odd from the dimension-six operators considered:

M=MSM+d~·MCP-odd. 9

The differential cross section or squared matrix element has three contributions:

|M|2=|MSM|2+d~·2Re(MSMMCP-odd)+d~2·|MCP-odd|2. 10

The first term |MSM|2 and third term d~2·|MCP-odd|2 are both CP-even and hence do not yield a source of CP violation. The second term d~·2Re(MSMMCP-odd), stemming from the interference of the two contributions to the matrix element, is CP-odd and is a possible new source of CP violation in the Higgs sector. The interference term integrated over a CP-symmetric part of phase space vanishes and therefore does not contribute to the total cross section and observed event yield after applying CP-symmetric selection criteria. The third term increases the total cross section by an amount quadratic in d~, but this is not exploited in the analysis presented here.

Test of CP invariance and Optimal Observable

Tests of CP invariance can be performed in a completely model-independent way by measuring the mean value of a CP-odd observable OCP. If CP invariance holds, the mean value has to vanish OCP=0. An observation of a non-vanishing mean value would be a clear sign of CP violation. A simple CP-odd observable for Higgs boson production in VBF, the “signed” difference in the azimuthal angle between the two tagging jets Δϕjj, was suggested in Ref. [22] and is formally defined as:

ϵμνρσb+μp+νb-ρp-σ=2pT+pT-sin(ϕ+-ϕ-)=2pT+pT-sinΔϕjj. 11

Here b+μ and b-μ denote the normalised four-momenta of the two proton beams, circulating clockwise and anti-clockwise, and p+μ (ϕ+) and p-μ (ϕ-) denote the four-momenta (azimuthal angles) of the two tagging jets, where p+ (p-) points into the same detector hemisphere as b+μ (b-μ). This ordering of the tagging jets by hemispheres removes the sign ambiguity in the standard definition of Δϕjj.

The final state consisting of the Higgs boson and the two tagging jets can be characterised by seven phase-space variables while assuming the mass of the Higgs boson, neglecting jet masses and exploiting momentum conservation in the plane transverse to the beam line. The concept of the Optimal Observable combines the information of the high-dimensional phase space in a single observable, which can be shown to have the highest sensitivity for small values of the parameter of interest and neglects contributions proportional to d~2 in the matrix element. The method was first suggested for the estimation of a single parameter using the mean value only [17] and via a maximum-likelihood fit to the full distribution [18] using the so-called Optimal Observable of first order. The extension to several parameters and also exploiting the matrix-element contributions quadratic in the parameters by adding an Optimal Observable of second order was introduced in Refs. [19, 27, 28]. The technique has been applied in various experimental analyses, e.g. Refs. [15, 2939].

The analysis presented here uses only the first-order Optimal Observable OO (called Optimal Observable below) for the measurement of d~ via a maximum-likelihood fit to the full distribution. It is defined as the ratio of the interference term in the matrix element to the SM contribution:

OO=2Re(MSMMCP-odd)|MSM|2. 12

Figure 1 shows the distribution of the Optimal Observable, at parton level both for the SM case and for two non-zero d~ values, which introduce an asymmetry into the distribution and yield a non-vanishing mean value.

Fig. 1.

Fig. 1

Distribution of the Optimal Observable at parton-level for two arbitrary d~ values. The SM sample was generated using MadGraph5_aMC@NLO [40] (see Sect. 5) at leading order, and then reweighted to different d~ values. Events are chosen such that there are at least two outgoing partons with pT>25GeV, |η|<4.5, large invariant mass (m(p1,p2)>500GeV) and large pseudorapidity gap (Δη(p1,p2)>2.8 )

The values of the leading-order matrix elements needed for the calculation of the Optimal Observable are extracted from HAWK [4143]. The evaluation requires the four-momenta of the Higgs boson and the two tagging jets. The momentum fraction x1 (x2) of the initial-state parton from the proton moving in the positive (negative) z-direction can be derived by exploiting energy–momentum conservation from the Higgs boson and tagging jet four-momenta as:

x1/2reco=mHjjse±yHjj 13

where mHjj (yHjj) is the invariant mass (rapidity) obtained from the vectorially summed four-momenta of the tagging jets and the Higgs boson. Since the flavour of the initial- and final-state partons cannot be determined experimentally, the sum over all possible flavour configurations ijklH weighted by the CT10 leading-order parton distribution functions (PDFs) [44] is calculated separately for the matrix elements in the numerator and denominator:

2Re(MSMMCP-odd)=i,j,k,lfi(x1)fj(x2)2Re((MSMijklH)MCP-oddijklH) 14
|MSM|2=i,j,k,lfi(x1)fj(x2)|MSMijklH|2. 15

The ATLAS detector

The ATLAS detector [45] is a multi-purpose detector with a cylindrical geometry.1 It comprises an inner detector (ID) surrounded by a thin superconducting solenoid, a calorimeter system and an extensive muon spectrometer in a toroidal magnetic field. The ID tracking system consists of a silicon pixel detector, a silicon microstrip detector, and a transition radiation tracker. It provides precise position and momentum measurements for charged particles and allows efficient identification of jets containing b-hadrons (b-jets) in the pseudorapidity range |η|<2.5. The ID is immersed in a 2 T axial magnetic field and is surrounded by high-granularity lead/liquid-argon sampling electromagnetic calorimeters which cover the pseudorapidity range |η|<3.2. A steel/scintillator tile calorimeter provides hadronic energy measurements in the central pseudorapidity range (|η|<1.7). In the forward regions (1.5<|η|<4.9), the system is complemented by two end-cap calorimeters using liquid argon as active material and copper or tungsten as absorbers. The muon spectrometer surrounds the calorimeters and consists of three large superconducting eight-coil toroids, a system of tracking chambers, and detectors for triggering. The deflection of muons is measured in the region |η|<2.7 by three layers of precision drift tubes, and cathode strip chambers in the innermost layer for |η|>2.0. The trigger chambers consist of resistive plate chambers in the barrel (|η|<1.05) and thin-gap chambers in the end-cap regions (1.05<|η|<2.4).

A three-level trigger system [46] is used to select events. A hardware-based Level-1 trigger uses a subset of detector information to reduce the event rate to 75 kHz or less. The rate of accepted events is then reduced to about 400 Hz by two software-based trigger levels, named Level-2 and the Event Filter.

Simulated samples

Background and signal events are simulated using various Monte Carlo (MC) event generators, as summarised in Table 1. The generators used for the simulation of the hard-scattering process and the model used for the simulation of the parton shower, hadronisation and underlying-event activity are listed. In addition, the cross-section values to which the simulation is normalised and the perturbative order in QCD of the respective calculations are provided.

Table 1.

MC event generators used to model the signal and the background processes at s=8TeV

Signal MC generator σ×B [pb]
s=8TeV
VBF, Hττ Powheg-Box [4750] Pythia8 [51] 0.100 (N)NLO [41, 42, 5254]
VBF, HWW same as for Hττ signal 0.34 (N)NLO [41, 42, 5254]
Background MC generator σ×B [pb]
s=8TeV
W(ν), (=e,μ,τ) Alpgen [55] + Pythia8 36,800 NNLO [56, 57]
Z/γ(), Alpgen + Pythia8 3910 NNLO [56, 57]
60 GeV <m<2 TeV
Z/γ(), Alpgen + Herwig [58] 13,000 NNLO [56, 57]
10 GeV <m<60 GeV
VBF Z/γ() Sherpa [59] 1.1 LO [59]
tt¯ Powheg-Box + Pythia8 253 NNLO + NNLL [6065]
Single top : Wt Powheg-Box + Pythia8 22 NNLO [66]
Single top : s-channel Powheg-Box + Pythia8 5.6 NNLO [67]
Single top : t-channel AcerMC [68] + Pythia6 [69] 87.8 NNLO [70]
qq¯WW Alpgen+Herwig 54 NLO [71]
ggWW gg2WW [72] + Herwig 1.4 NLO [72]
WZZZ Herwig 30 NLO [71]
ggF, Hττ HJ MINLO [73, 74] + Pythia8 1.22 NNLO + NNLL [54, 7580]
ggF, HWW Powheg-Box [81] + Pythia8 4.16 NNLO + NNLL [54, 7580]

All Higgs boson events are generated assuming mH=125GeV. The cross sections times branching fractions (σ×B) used for the normalisation of some processes (many of these are subsequently normalised to data) are included in the last column together with the perturbative order of the QCD calculation. For the signal processes the Hττ and HWW SM branching ratios are included, and for the W and Z/γ background processes the branching ratios for leptonic decays (=e,μ,τ) of the bosons are included. For all other background processes, inclusive cross sections are quoted (marked with a )

All the background samples used in this analysis are the same as those employed in Ref. [20], except the ones used to simulate events with the Higgs boson produced via gluon fusion and decaying into the ττ final state. The Higgs-plus-one-jet process is simulated at NLO accuracy in QCD with Powheg-Box [4749, 73], with the MINLO feature  [74] applied to include Higgs-plus-zero-jet events at NLO accuracy. This sample is referred to as HJ MINLO. The Powheg-Box event generator is interfaced to Pythia8 [51], and the CT10 [44] parameterisation of the PDFs is used. Higgs boson events produced via gluon fusion and decaying into the W+W- final state, which are a small component of the background, are simulated, as in Ref. [20], with Powheg [4749, 81] interfaced to Pythia8 [51]. For these simulated events, the shape of the generated pT distribution is matched to a NNLO + NNLL calculation HRes2.1 [82, 83] in the inclusive phase space. Simultaneously, for events with two or more jets, the Higgs boson pT spectrum is reweighted to match the MINLO HJJ predictions [84]. The overall normalisation of the gluon fusion process (ggF) is taken from a calculation at next-to-next-to-leading order (NNLO) [7580] in QCD, including soft-gluon resummation up to next-to-next-to-leading logarithm terms (NNLL) [85]. Next-to-leading-order (NLO) electroweak (EW) corrections are also included [86, 87]. Higgs boson events produced via VBF, with SM couplings, are also simulated with Powheg interfaced with Pythia8 (see Table 1 and Ref. [20]).

Production by VBF is normalised to a cross section calculated with full NLO QCD and EW corrections [41, 42, 52] with an approximate NNLO QCD correction applied [53]. The NLO EW corrections for VBF production depend on the pT of the Higgs boson, and vary from a few percent at low pT to 20% at pT = 300 GeV  [88]. The pT spectrum of the VBF-produced Higgs boson is therefore reweighted, based on the difference between the Powheg-Box+Pythia calculation and the Hawk [4143] calculation which includes these corrections.

In the case of VBF-produced Higgs boson events in the presence of anomalous couplings in the HVV vertex, the simulated samples are obtained by applying a matrix element (ME) reweighting method to the VBF SM signal sample. The weight is defined as the ratio of the squared ME value for the VBF process associated with a specific amount of CP mixing (measured in terms of d~) to the SM one. The inputs needed for the ME evaluation are the flavour of the incoming partons, the four-momenta and the flavour of the two or three final-state partons and the four-momentum of the Higgs boson. The Bjorken x values of the initial-state partons can be calculated from energy–momentum conservation. The leading-order ME from HAWK [4143] is used for the 22+H or 23+H process separately. This reweighting procedure is validated against samples generated with MadGraph5_aMC@NLO [40]. As described in Ref. [89], MadGraph5_aMC@NLO can simulate VBF production with anomalous couplings at next-to-leading order. The reweighting procedure proves to be a good approximation to a full next-to-Leading description of the BSM process.

In the case of the HWW sample, if CP violation exists in the HVV coupling, it would affect both the VBF production and the HWW decay vertex. It was verified that the shape of the Optimal Observable distribution is independent of any possible CP violation in the HWW decay vertex and that it is identical for HWW and Hττ decays. Hence the same reweighting is applied for VBF-produced events with HWW and Hττ decays.

For all samples, a full simulation of the ATLAS detector response [90] using the Geant4 program [91] was performed. In addition, multiple simultaneous minimum-bias interactions are simulated using the AU2 [92] parameter tuning of Pythia8. They are overlaid on the simulated signal and background events according to the luminosity profile of the recorded data. The contributions from these pile-up interactions are simulated both within the same bunch crossing as the hard-scattering process and in neighbouring bunch crossings. Finally, the resulting simulated events are processed through the same reconstruction programs as the data.

Analysis

After data quality requirements, the integrated luminosity of the s=8TeV dataset used is 20.3 fb-1. The triggers, event selection, estimation of background contributions and systematic uncertainties closely follow the analysis in Ref. [20]. In the following a short description of the analysis strategy is given; more details are given in that reference.

Depending on the reconstructed decay modes of the two τ leptons (leptonic or hadronic), events are separated into the dileptonic (τlepτlep) and semileptonic (τlepτhad) channels. Following a channel-specific preselection, a VBF region is selected by requiring at least two jets with pTj1> 40 GeV (50 GeV) and pTj2>30 GeV and a pseudorapidity separation Δη(j1,j2)>2.2 (3.0) in the τlepτlep (τlepτhad) channel. Events with b-tagged jets are removed to suppress top-quark backgrounds.

Inside the VBF region, boosted decision trees (BDT)2 are utilised for separating Higgs boson events produced via VBF from the background (including other Higgs boson production modes). The final signal region in each channel is defined by the events with a BDTscore value above a threshold of 0.68 for τlepτlep and 0.3 for τlepτhad. The efficiency of this selection, with respect to the full VBF region, is 49% (51%) for the signal and 3.6% (2.1%) for the sum of background processes for the τlepτlep (τlepτhad) channel. A non-negligible number of events from VBF-produced HWW events survive the τlepτlep selection: they amount to 17% of the overall VBF signal in the signal region. Their contribution is entirely negligible in the τlepτhad selection. Inside each signal region, the Optimal Observable is then used as the variable with which to probe for CP violation. The BDTscore does not affect the mean of the Optimal Observable, as can be seen in Fig. 2.

Fig. 2.

Fig. 2

Mean of the Optimal Observable as a function of the BDTscore for the SM signal (black dots with error bars) and for the sum of all background processes (filled red area), for the a τlepτlep and b τlepτhad channel. The signal and background model is in agreement with the hypothesis of no bias from the BDT score

The modelling of the Optimal Observable distribution for various background processes is validated in dedicated control regions. The top-quark control regions are defined by the same cuts as the corresponding signal region, but inverting the veto on b-tagged jets and not applying the selection on the BDTscore (in the τlepτhad channel a requirement of the transverse mass3 mT>40 GeV is also applied). In the τlepτlep channel a Z control region is obtained by requiring two same-flavour opposite-charge leptons, the invariant mass of the two leptons to be 80<m<100GeV, and no BDTscore requirement, but otherwise applying the same requirements as for the signal region. These regions are also used to normalise the respective background estimates using a global fit described in the next section. Finally, an additional region is defined for each channel, called the low-BDTscore control region, where a background-dominated region orthogonal to the signal region is selected by requiring the BDTscore to be less than 0.05 for τlepτlep and less than 0.3 for τlepτhad. The distribution of the Optimal Observable in these regions is shown in Figs. 3 and  4, demonstrating the good description of the data by the background estimates.

Fig. 3.

Fig. 3

Distributions of the Optimal Observable for the τlepτlep channel in the a top-quark control region (CR), b Z CR, and c low-BDTscore CR. The CR definitions are given in the text. These figures use background predictions before the global fit defined in Sect. 7. The “Other” backgrounds include diboson and Z. Only statistical uncertainties are shown

Fig. 4.

Fig. 4

Distributions of the Optimal Observable for the τlepτhad channel in the a top-quark control region (CR) and b low-BDTscore CR. The CR definitions are given in the text. These figures use background predictions before the global fit defined in Sect. 7. The “Other” backgrounds include diboson and Z. Only statistical uncertainties are shown

The effect of systematic uncertainties on the yields in signal region and on the shape of the Optimal Observable is evaluated following the procedures and prescriptions described in Ref. [20]. An additional theoretical uncertainty in the shape of the Optimal Observable is included to account for the signal reweighting procedure described in Sect. 5. This is obtained from the small difference between the Optimal Observable distribution in reweighted samples, compared to samples with anomalous couplings directly generated with MadGraph5_aMC@NLO. While the analysis is statistically limited, the most important systematic uncertainties are found to arise from effects on the jet, hadronically decaying τ and electron energy scales; the most important theoretical uncertainty is due to the description of the underlying event and parton shower in the VBF signal sample.

Fitting procedure

The best estimate of d~ is obtained using a maximum-likelihood fit performed on the Optimal Observable distribution in the signal region for each decay channel simultaneously, with information from different control regions included to constrain background normalisations and nuisance parameters. The normalisation of the VBF Hττ and HWW signal sample is left free in the fit, i.e. this analysis only exploits the shape of the Optimal Observable and does not depend on any possibly model-dependent information about the cross section of CP-mixing scenarios. The relative proportion of the two Higgs boson decay modes is assumed to be as in the SM. All other Higgs boson production modes are treated as background in this study and normalised to their SM expectation, accounting for the corresponding theoretical uncertainties.

A binned likelihood function L(x;μ,θ) is employed, which is a function of the data x, the free-floating signal strength μ, defined as the ratio of the measured cross section times branching ratio to the Standard Model prediction, and further nuisance parameters θ. It relies on an underlying model of signal plus background, and it is defined as the product of Poisson probability terms for each bin in the distribution of the Optimal Observable. A set of signal templates corresponding to different values of the CP-mixing parameter d~ is created by reweighting the SM VBF Hττ and HWW signal samples, as described in Sect. 5. The likelihood function is then evaluated for each d~ hypothesis using the corresponding signal template, while keeping the same background model. The calculation profiles the nuisance parameters to the best-fit values θ^, including information about systematic uncertainties and normalisation factors, both of which affect the expected numbers of signal and background events.

After constructing the negative log-likelihood (NLL) curve by calculating the NLL value for each d~ hypothesis, the approximate central confidence interval at 68% confidence level (CL) is determined from the best estimator d~^, at which the NLL curve has its minimum value, by reading off the points at which ΔNLL=NLL−NLLmin=0.5. The expected sensitivity is determined using an Asimov dataset, i.e. a pseudo-data distribution equal to the signal-plus-background expectation for given values of d~ and the parameters of the fit, in particular the signal strength μ, and not including statistical fluctuations [93].

In both channels, a region of low BDTscore is obtained as described in the preceding section. The distribution of the BDTscore itself is fitted in this region, which has a much larger number of background events than the signal region, allowing the nuisance parameters to be constrained by the data. This region provides the main constraint on the Zττ normalisation, which is free to float in the fit. The event yields from the top-quark (in τlepτlep and τlepτhad) and Z (in τlepτlep only) control regions defined in the previous section are also included in the fit, to constrain the respective background normalisations, which are also left free in the fit.

The distributions of the Optimal Observable in each channel are shown in Fig. 5, with the nuisance parameters, background and signal normalisation adjusted by the global fit performed for the d~=0 hypothesis. Table 2 provides the fitted yields of signal and background events, split into the various contributions, in each channel. The number of events observed in data is also provided.

Fig. 5.

Fig. 5

Distributions of the Optimal Observable in the signal region for the a τlepτlep and b τlepτhad channel, after the global fit performed for the d~=0 hypothesis. The best-fit signal strength is μ=1.55-0.76+0.87. The “Other” backgrounds include diboson and Z. The error bands include all uncertainties

Table 2.

Event yields in the signal region, after the global fit performed for the d~=0 hypothesis. The errors include systematic uncertainties

Process τlepτlep τlepτhad
Data 54 68
VBF Hττ/WW 9.8±2.1 16.7±4.1
Zττ 19.6±1.0 19.1±2.2
Fake lepton/τ 2.3±0.3 24.1±1.5
tt¯ +single-top 3.8±1.0 4.8±0.7
Others 11.5±1.7 5.3±1.6
ggH / VH, Hττ/WW 1.6±0.2 2.5±0.7
Sum of backgrounds 38.9±2.3 55.8±3.3

Results

The mean value of the Optimal Observable for the signal is expected to be zero for a CP-even case, while there may be deviations in case of CP-violating effects. A mean value of zero is also expected for the background, as has been demonstrated. Hence, the mean value in data should also be consistent with zero if there are no CP-violating effects within the precision of this measurement. The observed values for the mean value in data inside the signal regions are 0.3±0.5 for τlepτlep and -0.3±0.4 for τlepτhad, fully consistent with zero within statistical uncertainties and thus showing no hint of CP violation.

As described in the previous section, the observed limit on CP-odd couplings is estimated using a global maximum-likelihood fit to the Optimal Observable distributions in data. The observed distribution of ΔNLL as a function of the CP-mixing parameter d~ for the individual channels separately, and for their combination, is shown in Fig. 6. The τlepτlep and τlepτhad curves use the best-fit values of all nuisance parameters from the combined fit at each d~ point. The expected curve is calculated assuming no CP-odd coupling, with the Hττ signal scaled to the signal-strength value (μ=1.55-0.76+0.87) determined from the fit for d~=0. In the absence of CP violation the curve is expected to have a minimum at d~=0. Since the first-order Optimal Observable used in the present analysis is only sensitive to small variations in the considered variable, for large d~ values there is no further discrimination power and thus the ΔNLL curve is expected to flatten out. The observed curve follows this behaviour and is consistent with no CP violation. The regions d~<-0.11 and d~>0.05 are excluded at 68% CL. The expected confidence intervals are [-0.08,0.08]([-0.18,0.18]) for an assumed signal strength of μ= 1.55 (1.0). The constraints on the CP-mixing parameter d~ based on VBF production can be directly compared to those obtained by studying the Higgs boson decays into vector bosons, as the same relation between the HWW and HZZ couplings as in Ref. [14, 15] is assumed. The 68% CL interval presented in this work is a factor 10 better than the one obtained in Ref. [15].

Fig. 6.

Fig. 6

Observed and expected ΔNLL as a function of the d~ values defining the underlying signal hypothesis, for τlepτlep (green), τlepτhad (red) and their combination (black). The best-fit values of all nuisance parameters from the combined fit at each d~ point were used in all cases. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal (d~=0), scaled to the best-fit signal-strength value, was used to calculate the expected values, shown in blue. The markers indicate the points where an evaluation was made – the lines are only meant to guide the eye

As a comparison, the same procedure for extracting the CP-mixing parameter d~ was applied using the Δϕjjsign observable, previously proposed for this measurement and defined in Eq. 11, rather than the Optimal Observable. The expected ΔNLL curves for a SM Higgs boson signal from the combination of both channels for the two CP-odd observables are shown in Fig. 7, allowing a direct comparison, and clearly indicate the better sensitivity of the Optimal Observable. The observed ΔNLL curve derived from the Δϕjjsign distribution is also consistent with d~=0, as shown in Fig. 8, along with the expectation for a signal with d~=0 scaled to the best-fit signal-strength value (μ=2.02-0.77+0.87).

Fig. 7.

Fig. 7

Expected ΔNLL for the combination of both channels as a function of the d~ values defining the underlying signal hypothesis when using the Optimal Observable (black) or the Δϕjjsign parameter (blue) as the final discriminating variable. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal (d~=0) scaled to the SM expectation was used to calculate the expected values in both cases. The markers indicate the points where an evaluation was made – the lines are only meant to guide the eye

Fig. 8.

Fig. 8

Observed (black) and expected (red) ΔNLL for the combination of both channels as a function of the d~ values defining the underlying signal hypothesis when using the Δϕjjsign parameter as the final discriminating variable. An Asimov dataset with SM backgrounds plus pure CP-even VBF signal (d~=0), scaled to the best-fit value of the signal strength in the combined fit when using the Δϕjjsign parameter (μ=2.02-0.77+0.87) was used to calculate the expected values. The markers indicate the points where an evaluation was made – the lines are only meant to guide the eye

Conclusions

A test of CP invariance in the Higgs boson coupling to vector bosons has been performed using the vector-boson fusion production mode and the Hττ decay. The dataset corresponds to 20.3 fb-1of s = 8 TeV proton–proton collisions recorded by the ATLAS detector at the LHC. Event selection, background estimation and evaluation of systematic uncertainties are all very similar to the ATLAS analysis that provided evidence of the Hττ decay. An Optimal Observable is constructed and utilised, and is shown to provide a substantially better sensitivity than the variable traditionally proposed for this kind of study, Δϕjjsign. No sign of CP violation is observed. Using only the dileptonic and semileptonic Hττ channels, and under the assumption d~=d~B, values of d~ less than -0.11 and greater than 0.05 are excluded at 68% CL.

This 68% CL interval is a factor of 10 better than the one previously obtained by the ATLAS experiment from Higgs boson decays into vector bosons. In contrast, the present analysis has no sensitivity to constrain a 95% CL interval with the dataset currently available – however larger data samples in the future and consideration of additional Higgs boson decay channels should make this approach highly competitive.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2).

2

The same BDTs trained in the context of the analysis in Ref. [20] are used here, unchanged.

3

The transverse mass is defined as mT=2pTETmiss·(1-cosΔϕ), where Δϕ is the azimuthal separation between the directions of the lepton and the missing transverse momentum.

References

  • 1.ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]
  • 2.CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]
  • 3.Evans L, Bryant P, Machine LHC. JINST. 2008;3:S08001. doi: 10.1088/1748-0221/3/08/S08001. [DOI] [Google Scholar]
  • 4.A.D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). [Usp. Fiz. Nauk161,61(1991)]
  • 5.A. D. Sakharov, Baryonic asymmetry of the universe. Sov. Phys. JETP. 49, 594–599 (1979). [Zh. Eksp. Teor. Fiz.76,1172(1979)]
  • 6.Sakharov AD. Baryon asymmetry of the universe. Sov. Phys. Usp. 1991;34:417–421. doi: 10.1070/PU1991v034n05ABEH002504. [DOI] [Google Scholar]
  • 7.Cabibbo N. Unitary symmetry and leptonic decays. Phys. Rev. Lett. 1963;10:531–533. doi: 10.1103/PhysRevLett.10.531. [DOI] [Google Scholar]
  • 8.Kobayashi M, Maskawa T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 1973;49:652–657. doi: 10.1143/PTP.49.652. [DOI] [Google Scholar]
  • 9.P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, (2015). arXiv:1502.01589 [astro-ph.CO]
  • 10.P. Huet, E. Sather, Electroweak baryogenesis and standard model CP violation. Phys. Rev. D. 51, 379–394 (1995). arXiv:hep-ph/9404302 [hep-ph] [DOI] [PubMed]
  • 11.M.B. Gavela et al., Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A. 9, 795–810 (1994). arXiv:hep-ph/9312215 [hep-ph]
  • 12.Collaboration CMS. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C. 2015;75:212. doi: 10.1140/epjc/s10052-015-3351-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.ATLAS Collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at s=7 and 8 TeV in the ATLAS experiment. Eur. Phys. J. C. 76, 6 (2016). arXiv:1507.04548 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 14.Collaboration CMS. Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D. 2015;92:012004. doi: 10.1103/PhysRevD.92.012004. [DOI] [Google Scholar]
  • 15.ATLAS Collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C. 75, 476 (2015). arXiv:1506.05669 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 16.ATLAS Collaboration, Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the Hγγ decay channel at s=8 TeV with the ATLAS detector. Phys. Lett. B 753, 69–85 (2016). arXiv:1508.02507 [hep-ex]
  • 17.D. Atwood, A. Soni, Analysis for magnetic moment and electric dipole moment, form-factors of the top quark via e+e-tt¯. Phys. Rev. D 45, 2405–2413 (1992) [DOI] [PubMed]
  • 18.Davier M, et al. The optimal method for the measurement of tau polarization. Phys. Lett. B. 1993;306:411–417. doi: 10.1016/0370-2693(93)90101-M. [DOI] [Google Scholar]
  • 19.M. Diehl, O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e+e-W+W-. Z. Phys. C 62, 397–412 (1994)
  • 20.ATLAS Collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector. JHEP 04, 117 (2015). arXiv:1501.04943 [hep-ex]
  • 21.Buchmuller W, Wyler D. Effective Lagrangian Analysis of new interactions and flavor conservation. Nucl. Phys. B. 1986;268:621–653. doi: 10.1016/0550-3213(86)90262-2. [DOI] [Google Scholar]
  • 22.Hankele V, et al. Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC. Phys. Rev. D. 2006;74:095001. doi: 10.1103/PhysRevD.74.095001. [DOI] [Google Scholar]
  • 23.OPAL Collaboration, G. Abbiendi et al., Measurement of W boson polarizations and CP violating triple gauge couplings from W+W- production at LEP. Eur. Phys. J. C. 19, 229–240 (2001). arXiv:hep-ex/0009021 [hep-ex]
  • 24.ALEPH Collaboration, S. Schael et al., Improved measurement of the triple gauge-boson couplings gamma WW and ZWW in e+e- collisions. Phys. Lett. B 614, 7–26 (2005)
  • 25.DELPHI Collaboration, J. Abdallah et al., Study of W boson polarisations and Triple Gauge boson Couplings in the reaction e+e-W+W- at LEP 2. Eur. Phys. J. C 54, 345–364 (2008). arXiv:0801.1235 [hep-ex]
  • 26.L3 Collaboration, P. Achard et al., Search for anomalous couplings in the Higgs sector at LEP. Phys. Lett. B 589, 89–102 (2004). arXiv:hep-ex/0403037 [hep-ex]
  • 27.M. Diehl, O. Nachtmann, Anomalous three gauge couplings in e+e-tt¯ and ‘optimal’ strategies for their measurement. Eur. Phys. J. C 1, 177–190 (1998). arXiv:hep-ph/9702208 [hep-ph]
  • 28.M. Diehl, O. Nachtmann, F. Nagel, Triple gauge couplings in polarized e+e-tt¯ and their measurement using optimal observables. Eur. Phys. J. C 27, 375–397 (2003). arXiv:hep-ph/0209229 [hep-ph]
  • 29.ALEPH Collaboration, D. Buskulic et al., Measurement of the tau polarization at the Z resonance. Z. Phys. C 59, 369–386 (1993)
  • 30.DELPHI Collaboration, P. Abreu et al., Measurements of the tau polarization in Z0 decays. Z. Phys. C 67, 183–202 (1995)
  • 31.L3 Collaboration, M. Acciarri et al., Measurement of tau polarization at LEP. Phys. Lett. B 429, 387–398 (1998)
  • 32.OPAL Collaboration, G. Abbiendi et al., Precision neutral current asymmetry parameter measurements from the tau polarization at LEP. Eur. Phys. J. C 21 1–21 (2001). arXiv:hep-ex/0103045 [hep-ex]
  • 33.OPAL Collaboration, R. Akers et al., A test of CP invariance in Z0τ+τ- using optimal observables. Z. Phys. C 66, 31–44 (1995)
  • 34.OPAL Collaboration, G. Abbiendi et al., Search for CP violation in Z0τ+τ- and an upper limit on the weak dipole moment of the tau lepton. Z. Phys. C 74, 403–412 (1997)
  • 35.ALEPH Collaboration, R. Barate et al., Measurement of triple gauge boson couplings at 172-GeV. Phys. Lett. B 422, 369–383 (1998)
  • 36.DELPHI Collaboration, P. Abreu et al., Measurements of the trilinear gauge boson couplings WWV(V=gamma,Z)ine+e- collisions at 183-GeV. Phys. Lett. B 459, 382–396 (1999)
  • 37.L3 Collaboration, M. Acciarri et al., Measurement of triple gauge boson couplings of the W boson at LEP. Phys. Lett. B 467, 171–184 (1999). arXiv:hep-ex/9910008 [hep-ex]
  • 38.OPAL Collaboration, G. Abbiendi et al., W+W- production and triple gauge boson couplings at LEP energies up to 183-GeV. Eur. Phys. J. C 8, 191–215 (1999). arXiv:hep-ex/9811028 [hep-ex]
  • 39.M. Schumacher, Determination of the CP quantum numbers of the Higgs boson and test of CP invariance in the Higgs-strahlung process at a future e+e- linear collider. LC-PHSM-2001-003 (2001)
  • 40.Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:79. doi: 10.1007/JHEP07(2014)079. [DOI] [Google Scholar]
  • 41.Ciccolini M, Denner A, Dittmaier S. Strong and electroweak corrections to the production of Higgs + 2-jets via weak interactions at the LHC. Phys. Rev. Lett. 2007;99:161803. doi: 10.1103/PhysRevLett.99.161803. [DOI] [PubMed] [Google Scholar]
  • 42.Ciccolini M, Denner A, Dittmaier S. Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC. Phys. Rev. D. 2008;77:013002. doi: 10.1103/PhysRevD.77.013002. [DOI] [Google Scholar]
  • 43.Denner A, Dittmaier S, Kallweit S, Möck A. HAWK 2.0: a Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders. Comput. Phys. Commun. 2015;195:161–171. doi: 10.1016/j.cpc.2015.04.021. [DOI] [Google Scholar]
  • 44.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 45.ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST. 3 S08003 (2008)
  • 46.ATLAS Collaboration, Performance of the ATLAS Trigger System in 2010, Eur. Phys. J. C. 72, 1849 (2012). arXiv:1110.1530 [hep-ex]
  • 47.Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [Google Scholar]
  • 48.Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the Powheg method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 49.Alioli S, et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the Powheg BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
  • 50.P. Nason, C. Oleari, Higgs boson production in vector boson fusion. JHEP 02 (037 2010). arXiv:0911.5299 [hep-ph]
  • 51.Sjöstrand T, Mrenna S, Skands P. A brief introduction to Pythia 8.1. Comput. Phys. Commun. 2008;178:852. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 52.Arnold K, et al. VBFNLO: a parton level Monte Carlo for processes with electroweak bosons. Comput. Phys. Commun. 2009;180:1661. doi: 10.1016/j.cpc.2009.03.006. [DOI] [Google Scholar]
  • 53.Bolzoni P, et al. Higgs production via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett. 2010;105:011801. doi: 10.1103/PhysRevLett.105.011801. [DOI] [PubMed] [Google Scholar]
  • 54.S. Heinemeyer, C. Mariotti, G. Passarino, R. Tanaka (Eds.) (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN-2013-004 (CERN, Geneva, 2013). arXiv:1307.1347 [hep-ph]
  • 55.Mangano M, et al. Alpgen, a generator for hard multiparton processes in hadronic collisions. JHEP. 2003;07:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 56.Catani S, et al. Vector boson production at hadron colliders: a fully exclusive QCD calculation at next-to-next-to-leading order. Phys. Rev. Lett. 2009;103:082001. doi: 10.1103/PhysRevLett.103.082001. [DOI] [PubMed] [Google Scholar]
  • 57.Catani S, Grazzini M. Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the Large Hadron Collider. Phys. Rev. Lett. 2007;98:222002. doi: 10.1103/PhysRevLett.98.222002. [DOI] [PubMed] [Google Scholar]
  • 58.G. Corcella et al., Herwig 6.5 release note (2002). arXiv:hep-ph/0210213 [hep-ph]
  • 59.T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02, 007 (2009).arXiv:0811.4622 [hep-ph]
  • 60.Cacciari M, et al. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys. Lett. B. 2012;710:612. doi: 10.1016/j.physletb.2012.03.013. [DOI] [Google Scholar]
  • 61.Bärnreuther P, Czakon M, Mitov A. Percent level precision physics at the tevatron: first genuine NNLO QCD corrections to qq¯tt¯+X. Phys. Rev. Lett. 2012;109:132001. doi: 10.1103/PhysRevLett.109.132001. [DOI] [PubMed] [Google Scholar]
  • 62.Czakon M, Mitov A. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP. 2012;12:054. doi: 10.1007/JHEP12(2012)054. [DOI] [Google Scholar]
  • 63.Czakon M, Mitov A. NNLO corrections to top pair production at hadron colliders: the quark–gluon reaction. JHEP. 2013;01:080. doi: 10.1007/JHEP01(2013)080. [DOI] [Google Scholar]
  • 64.M. Czakon, P. Fiedler, A. Mitov, The total top quark pair production cross-section at hadron colliders through O(αS4). Phys. Rev. Lett. 110, 252004 (2013). arXiv:1303.6254 [hep-ph] [DOI] [PubMed]
  • 65.Czakon M, Mitov A. Top++: a program for the calculation of the top-pair cross-section at Hadron colliders. Comput. Phys. Commun. 2014;185:2930. doi: 10.1016/j.cpc.2014.06.021. [DOI] [Google Scholar]
  • 66.Kidonakis N. Two-loop soft anomalous dimensions for single top quark associated production with a W- or H- Phys. Rev. D. 2010;82:054018. doi: 10.1103/PhysRevD.82.054018. [DOI] [Google Scholar]
  • 67.Kidonakis N. Next-to-next-to-leading logarithm resummation for s-channel single top quark production. Phys. Rev. D. 2010;81:054028. doi: 10.1103/PhysRevD.81.054028. [DOI] [PubMed] [Google Scholar]
  • 68.Kersevan BP, Richter-Was E. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun. 2013;184:919. doi: 10.1016/j.cpc.2012.10.032. [DOI] [Google Scholar]
  • 69.T. Sjöstrand, S. Mrenna, P. Skands, Pythia 6.4 physics and manual. JHEP 05, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]
  • 70.Kidonakis N. Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D. 2011;83:091503. doi: 10.1103/PhysRevD.83.091503. [DOI] [Google Scholar]
  • 71.Campbell JM, Ellis KR, Williams C. Vector boson pair production at the LHC. JHEP. 2011;07:018. doi: 10.1007/JHEP07(2011)018. [DOI] [Google Scholar]
  • 72.Binoth T, et al. Gluon-induced W-boson pair production at the LHC. JHEP. 2006;12:046. doi: 10.1088/1126-6708/2006/12/046. [DOI] [Google Scholar]
  • 73.Campbell J, et al. NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM. JHEP. 2012;12:92. doi: 10.1007/JHEP07(2012)092. [DOI] [Google Scholar]
  • 74.Hamilton K, Nason P, Zanderighi G. MINLO: multi-scale improved NLO. JHEP. 2012;10:155. doi: 10.1007/JHEP10(2012)155. [DOI] [Google Scholar]
  • 75.Djouadi A, Spira M, Zerwas P. Production of Higgs bosons in proton colliders: QCD corrections. Phys. Lett. B. 1991;264:440. doi: 10.1016/0370-2693(91)90375-Z. [DOI] [PubMed] [Google Scholar]
  • 76.Dawson S. Radiative corrections to Higgs boson production. Nucl. Phys. B. 1991;359:283. doi: 10.1016/0550-3213(91)90061-2. [DOI] [Google Scholar]
  • 77.Spira M, et al. Higgs boson production at the LHC. Nucl. Phys. B. 1995;453:17. doi: 10.1016/0550-3213(95)00379-7. [DOI] [Google Scholar]
  • 78.Harlander RV, Kilgore WB. Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 2002;88:201801. doi: 10.1103/PhysRevLett.88.201801. [DOI] [PubMed] [Google Scholar]
  • 79.Anastasiou C, Melnikov K. Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B. 2002;646:220. doi: 10.1016/S0550-3213(02)00837-4. [DOI] [PubMed] [Google Scholar]
  • 80.Ravindran V, Smith J, van Neerven WL. NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions. Nucl. Phys. B. 2003;665:325. doi: 10.1016/S0550-3213(03)00457-7. [DOI] [Google Scholar]
  • 81.Bagnaschi E, et al. Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM. JHEP. 2012;02:088. doi: 10.1007/JHEP02(2012)088. [DOI] [Google Scholar]
  • 82.D. de Florian et al., Higgs boson production at the LHC: transverse momentum resummation effects in the H2γ,HWWνν and HZZ4 decay modes. JHEP 06, 132 (2012). arXiv:1203.6321 [hep-ph]
  • 83.Grazzini M, Sargsyan H. Heavy-quark mass effects in Higgs boson production at the LHC. JHEP. 2013;09:129. doi: 10.1007/JHEP09(2013)129. [DOI] [Google Scholar]
  • 84.Campbell JM, Ellis RK, Zanderighi G. Next-to-Leading order Higgs + 2 jet production via gluon fusion. JHEP. 2006;10:028. doi: 10.1088/1126-6708/2006/10/028. [DOI] [Google Scholar]
  • 85.Catani S, et al. Soft gluon resummation for Higgs boson production at hadron colliders. JHEP. 2003;07:028. doi: 10.1088/1126-6708/2003/07/028. [DOI] [Google Scholar]
  • 86.Aglietti U, et al. Two loop light fermion contribution to Higgs production and decays. Phys. Lett. B. 2004;595:432. doi: 10.1016/j.physletb.2004.06.063. [DOI] [Google Scholar]
  • 87.Actis S, et al. NLO electroweak corrections to Higgs boson production at hadron colliders. Phys. Lett. B. 2008;670:12. doi: 10.1016/j.physletb.2008.10.018. [DOI] [Google Scholar]
  • 88.S. Dittmaier et al. (LHC Higgs Cross Section Working Group), Handbook of LHC Higgs cross sections: 2. Differential distributions, CERN-2012-002 (CERN, Geneva, 2012). arXiv:1201.3084 [hep-ph]
  • 89.Maltoni F, et al. Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects. Eur. Phys. J. C. 2014;74:2710. doi: 10.1140/epjc/s10052-013-2710-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). arXiv:1005.4568 [hep-ex]
  • 91.GEANT4 Collaboration, S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A. 506, 250 (2003)
  • 92.Summary of ATLAS Pythia 8 tunes, ATL-PHYS-PUB-2012-003 (2012). http://cds.cern.ch/record/1474107. Accessed 22 Aug 2012
  • 93.G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011). [Erratum: Eur. Phys. J. C. 73 (2013) 2501]. arXiv:1007.1727 [physics.data-an]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES