Abstract
We have designed, synthesized, crystallized, and performed x-ray analysis of several hydrophobic tripeptides that show an extended near alpha-helical structure in the crystalline state. All of the tripeptides that show this remarkably stable helix crystallize with two or three water molecules; they all have glycine at the N terminus and have increasing hydrophobicity as one moves from the N to C terminus. Even though three residues in the oligomer are not sufficient to complete a turn, one of the water molecules acts as an added residue and links up adjacent tripeptide segments along the helix axis so that in the crystal, the helix appears effectively as one long continuous helix. Two of these tripeptides are stabilized by two water molecules that enable the peptides to complete a turn of the helix and extend the helical structure throughout the crystal by linking translationally related peptides by hydrogen bonds. In two other peptides, these roles are played by three rather than two water molecules. Though these tripeptides have different crystal symmetry, they all show the basic pattern of hydrated helix and packing, indicating the strong conformational preference for a stable structure even for these tripeptides. Such conformationally stable hydrated structures for short specific related sequences illustrate their possible importance in nucleating protein folding and in the role water molecules play in such events.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Anfinsen C. B., Scheraga H. A. Experimental and theoretical aspects of protein folding. Adv Protein Chem. 1975;29:205–300. doi: 10.1016/s0065-3233(08)60413-1. [DOI] [PubMed] [Google Scholar]
- Bierzynski A., Kim P. S., Baldwin R. L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2470–2474. doi: 10.1073/pnas.79.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creighton T. E. Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol. 1978;33(3):231–297. doi: 10.1016/0079-6107(79)90030-0. [DOI] [PubMed] [Google Scholar]
- Creighton T. E. Protein structure. Stability of alpha-helices. Nature. 1987 Apr 9;326(6113):547–548. doi: 10.1038/326547a0. [DOI] [PubMed] [Google Scholar]
- DeGrado W. F., Wasserman Z. R., Lear J. D. Protein design, a minimalist approach. Science. 1989 Feb 3;243(4891):622–628. doi: 10.1126/science.2464850. [DOI] [PubMed] [Google Scholar]
- Dyson H. J., Cross K. J., Houghten R. A., Wilson I. A., Wright P. E., Lerner R. A. The immunodominant site of a synthetic immunogen has a conformational preference in water for a type-II reverse turn. Nature. 1985 Dec 5;318(6045):480–483. doi: 10.1038/318480a0. [DOI] [PubMed] [Google Scholar]
- Epand R. M., Scheraga H. A. The influence of long-range interactions on the structure of myoglobin. Biochemistry. 1968 Aug;7(8):2864–2872. doi: 10.1021/bi00848a024. [DOI] [PubMed] [Google Scholar]
- Fairman R., Shoemaker K. R., York E. J., Stewart J. M., Baldwin R. L. Further studies of the helix dipole model: effects of a free alpha-NH3+ or alpha-COO- group on helix stability. Proteins. 1989;5(1):1–7. doi: 10.1002/prot.340050102. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. On the use of sequence homologies to predict protein structure: identical pentapeptides can have completely different conformations. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1075–1078. doi: 10.1073/pnas.81.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J. L., Uma K., Balaram P. Solvated helical backbones: x-ray diffraction study of Boc-Ala-Leu-Aib-Ala-Leu-Aib-OMe.H2O. Biopolymers. 1989 Mar;28(3):773–781. doi: 10.1002/bip.360280307. [DOI] [PubMed] [Google Scholar]
- Karle I. L., Flippen-Anderson J., Uma K., Balaram P. Aqueous channels within apolar peptide aggregates: solvated helix of the alpha-aminoisobutyric acid (Aib)-containing peptide Boc-(Aib-Ala-Leu)3-Aib-OMe.2H2O.CH3OH in crystals. Proc Natl Acad Sci U S A. 1988 Jan;85(2):299–303. doi: 10.1073/pnas.85.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lalitha V., Subramanian E., Bordner J. Structure and conformation of linear peptides. III. Structure of glycyl-glycyl-L-valine. Int J Pept Protein Res. 1984 Nov;24(5):437–441. doi: 10.1111/j.1399-3011.1984.tb03142.x. [DOI] [PubMed] [Google Scholar]
- Marqusee S., Baldwin R. L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8898–8902. doi: 10.1073/pnas.84.24.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
- Ramasubbu N., Parthasarathy R. Role of water molecules in the crystal structure of Gly-L-Ala-L-Phe: a possible sequence preference for nucleation of alpha-helix? Biopolymers. 1989 Jul;28(7):1259–1269. doi: 10.1002/bip.360280707. [DOI] [PubMed] [Google Scholar]
- Regan L., DeGrado W. F. Characterization of a helical protein designed from first principles. Science. 1988 Aug 19;241(4868):976–978. doi: 10.1126/science.3043666. [DOI] [PubMed] [Google Scholar]
- Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
- Sachs D. H., Schechter A. N., Eastlake A., Anfinsen C. B. An immunologic approach to the conformational equilibria of polypeptides. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3790–3794. doi: 10.1073/pnas.69.12.3790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shoemaker K. R., Kim P. S., York E. J., Stewart J. M., Baldwin R. L. Tests of the helix dipole model for stabilization of alpha-helices. Nature. 1987 Apr 9;326(6113):563–567. doi: 10.1038/326563a0. [DOI] [PubMed] [Google Scholar]
- Sundaralingam M., Drendel W., Greaser M. Stabilization of the long central helix of troponin C by intrahelical salt bridges between charged amino acid side chains. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7944–7947. doi: 10.1073/pnas.82.23.7944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundaralingam M., Sekharudu Y. C. Water-inserted alpha-helical segments implicate reverse turns as folding intermediates. Science. 1989 Jun 16;244(4910):1333–1337. doi: 10.1126/science.2734612. [DOI] [PubMed] [Google Scholar]
- Taniuchi H., Anfinsen C. B. An experimental approach to the study of the folding of staphylococcal nuclease. J Biol Chem. 1969 Jul 25;244(14):3864–3875. [PubMed] [Google Scholar]
- Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]