Skip to main content
Springer logoLink to Springer
. 2017 Mar 4;2017(1):55. doi: 10.1186/s13660-017-1318-y

Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals

Praveen Agarwal 1,, Mohamed Jleli 2, Muharrem Tomar 3
PMCID: PMC5337245  PMID: 28316453

Abstract

Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named (k,s)-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.

Keywords: Hermite-Hadamard inequality; generalized k-fractional integral; (k,s)-fractional integral; (k,s)-Riemann-Liouville fractional integral

Introduction

Let f:IRR be a convex function defined on the interval I of real numbers and a,bI with a<b. The following inequality

f(a+b2)1baabf(x)dxf(a)+f(b)2 1.1

holds. This double inequality is known in the literature as a Hermite-Hadamard integral inequality for convex functions [1].

Sarikaya et al. established the following results for Riemann-Liouville fractional integrals.

Theorem 1.1

see Theorem 2 in [2]

Let f:[a,b]R be a positive function with 0a<b and fL1[a,b]. If f is a convex function on [a,b], then the following inequality for fractional integrals holds:

f(a+b2)Γ(1+α)2(ba)α[Ja+αf(b)+Jbαf(a)]f(a)+f(b)2 1.2

with α>0, where the symbols Ja+α and Jbα denote the left-sided and right-sided Riemann-Liouville fractional integrals of the order αR+ that are defined by

Ja+αf(x)=1Γ(α)axf(t)(xt)α1dt(0a<xb)

and

Jbαf(x)=1Γ(α)xbf(t)(tx)α1dt(0ax<b)

respectively. Here Γ() denotes the classical gamma function [3], Chapter 6.

Theorem 1.2

see Theorem 3 in [2]

Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If fL[a,b], then the following inequality for Riemann-Liouville fractional integrals holds:

|f(a)+f(b)2Γ(α+1)2(ba)α[Ja+αf(b)+Jbαf(a)]|ba2(α+1)(112α)(|f(a)|+|f(b)|) 1.3

with α>0.

The Pochhammer k-symbol (x)n,k and the k-gamma function Γk are defined as follows (see [4]):

(x)n,k:=x(x+k)(x+2k)(x+(n1)k)(nN;k>0) 1.4

and

Γk(x):=limnn!kn(nk)xk1(x)n,k(k>0;xCkZ0), 1.5

where kZ0:={kn:nZ0}. It is noted that the case k=1 of (1.4) and (1.5) reduces to the familiar Pochhammer symbol (x)n and the gamma function Γ. The function Γk is given by the following integral:

Γk(x)=0tx1etkkdt((x)>0). 1.6

The function Γk defined on R+ is characterized by the following three properties: (i) Γk(x+k)=xΓk(x); (ii) Γk(k)=1; (iii) Γk(x) is logarithmically convex. It is easy to see that

Γk(x)=kxk1Γ(xk)((x)>0;k>0). 1.7

We want to recall the preliminaries and notations of some well-known fractional integral operators that will be used to obtain some remarks and corollaries.

The (k,s)-Riemann-Liouville fractional integral operator Jaαks of order α>0 for a real-valued continuous function f(t) is defined as (see [5], p.79, 2.1. Definition):

Jaαksf(x)=(s+1)1αkkΓk(α)ax(xs+1ts+1)αk1tsf(t)dt, 1.8

where k>0, β>0 and sR{1}.

The most important feature of (k,s)-fractional integrals is that they generalize some types of fractional integrals (Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, generalized fractional integral and Hadamard fractional integral). These important special cases of the integral operator Jaαks are mentioned below.

  1. For k=1, the operator in (1.8) yields the following generalized fractional integrals defined by Katugompola in [6]:
    Jtαarf(x)=(r+1)1αΓ(α)ax(xr+1tr+1)α1trf(t)dt. 1.9
  2. Firstly by taking k=1, after that by taking limit r1+ and using L’Hôpital’s rule, the operator in (1.8) leads to the Hadamard fractional integral operator [1, 7]. That is,
    limr1+arJtαf(x)=limr1+(r+1)1αΓ(α)axf(t)tr(xr+1tr+1)1αdt=1Γ(α)axlimr1+f(t)tr(r+1xr+1tr+1)1αdt=1Γ(α)axf(t)limr1+(r+1xr+1tr+1)1αdtt=1Γ(α)axf(t)(limr1+r+1xr+1tr+1)1αdtt=1Γ(α)ax(logxt)f(t)dtt=JαH[f(t)] 1.10
    (see [8], p.569, eq. (3.13)).
  3. If we take s=0 in (1.8), operator (1.8), reduces to the k-Riemann-Liouville fractional integral operator, which has been firstly defined by Mubeen and Habibullah in [9]. This relation is as follows:
    Ja,kαf(x)=1kΓk(α)ax(xt)αk1f(t)dt. 1.11
  4. Again, taking s=0 and k=1, operator (1.8) gives us the Riemann-Liouville fractional integration operator
    Ja+αf(x)=1Γ(α)ax(xt)α1f(t)dt. 1.12

In recent years, these fractional operators have been studied and used to extend especially Grüss, Chebychev-Grüss and Pólya-Szegö type inequalities. For more details, one may refer to the recent works and books [7, 1021].

Main results

Let f:IR be a given function, where a,bI and 0<a<b<. We suppose that fL(a,b) such that Ja+αksf(x) and Jbαksf(x) are well defined. We define functions

f˜(x):=f(a+bx),x[a,b]

and

F(x):=f(x)+f˜(x),x[a,b].

Hermite-Hadamard’s inequality for convex functions can be represented in a (k,s)-fractional integral form as follows by using the change of variables u=taxa; we have from (1.8)

Jaαksf(x)=(xa)(s+1)1αkkΓk(α)01(ux+(1u)a)s((ux+(1u)a)s+1ts+1)αk1×f(ux+(1u)a)ds, 2.1

where x>a.

Theorem 2.1

Let α,k>0 and sR{1}. If f is a convex function on [a,b], then we have

f(a+b2)(s+1)αkΓk(α+k)4(bs+1as+1)αk[ksJa+αF(b)+ksJbαF(a)]f(a)+f(b)2. 2.2

Proof

For u[0,1], let ξ=au+(1u)b and η=(1u)a+bu. Using the convexity of f, we get

f(a+b2)=f(ξ+η2)12f(ξ)+12f(η).

That is,

f(a+b2)12f(au+(1u)b)+12f((1u)a+bu). 2.3

Now, multiplying both sides of (2.3) by

(ba)(s+1)1αkkΓk(α)(ub+(1u)a)s[bs+1(ub+(1u)a)s+1]1αk

and integrating over (0,1) with respect to u, we get

(ba)(s+1)1αkkΓk(α)f(a+b2)01(ub+(1u)a)sdu[bs+1(ub+(1u)a)s+1]1αk12(ba)(s+1)1αkkΓk(α)01(ub+(1u)a)sf(au+(1u)b)du[bs+1(ub+(1u)a)s+1]1αk+12(ba)(s+1)1αkkΓk(α)01(ub+(1u)a)sf((1u)a+bu)du[bs+1(ub+(1u)a)s+1]1αk.

Note that we have

01(ub+(1u)a)sdu[bs+1(ub+(1u)a)s+1]1αk=k(bs+1as+1)αkα(s+1)(ba).

Using the identity

f˜((1u)a+bu)=f(au+(1u)b),

and from (2.1), we obtain

(ba)(s+1)1αkkΓk(α)01(ub+(1u)a)sf(au+(1u)b)du[bs+1(ub+(1u)a)s+1]1αk=ksJa+αf˜(b)

and

(ba)(s+1)1αkkΓk(α)01(ub+(1u)a)sf((1u)a+bu)du[bs+1(ub+(1u)a)s+1]1αk=ksJa+αf(b).

Accordingly, we have

(bs+1as+1)αk(s+1)αkΓk(α+k)f(a+b2)Ja+αksF(b)2. 2.4

Similarly, multiplying both sides of (2.3) by

(ba)(s+1)1αkkΓk(α)(ub+(1u)a)s[(bu+(1u)a)s+1as+1]1αk,

integrating over (0,1) with respect to u, and from (2.1), we also get

(bs+1as+1)αk(s+1)αkΓk(α+k)f(a+b2)JbαksF(a)2. 2.5

By adding inequalities (2.4) and (2.5), we get

f(a+b2)(s+1)αkΓk(α+k)4(bs+1as+1)αk[ksJa+αF(b)+ksJbαF(a)],

which is the left-hand side of inequality (2.2).

Since f is convex, for u[0,1], we have

f(au+(1u)b)+f((1u)a+bu)f(a)+f(b). 2.6

Multiplying both sides of (2.6) by

(ba)(s+1)1αkkΓk(α)(ub+(1u)a)s[bs+1(ub+(1u)a)s+1]1αk

and integrating over (0,1) with respect to u, we get

(ba)(s+1)1αkkΓk(α)01(ub+(1u)a)sf(au+(1u)b)du[bs+1(ub+(1u)a)s+1]1αk+(ba)(s+1)1αkkΓk(α)01(ub+(1u)a)sf((1u)a+bu)du[bs+1(ub+(1u)a)s+1]1αk(ba)(s+1)1αkkΓk(α)[f(a)+f(b)]01(ub+(1u)a)sdu[bs+1(ub+(1u)a)s+1]1αk.

That is,

Ja+αksF(b)(bs+1as+1)αk(s+1)αkΓk(α+k)[f(a)+f(b)]. 2.7

Similarly, multiplying both sides of (2.6) by

(ba)(s+1)1αkkΓk(α)(ub+(1u)a)s[(ub+(1u)a)s+1as+1]1αk

and integrating over (0,1) with respect to u, we also get

JbαksF(a)(bs+1as+1)αk(s+1)αkΓk(α+k)[f(a)+f(b)]. 2.8

Adding inequalities (2.7) and (2.8), we obtain

(s+1)αkΓk(α+k)4(bs+1as+1)αk[ksJa+αF(b)+ksJbαF(a)]f(a)+f(b)2,

which is the right-hand side of inequality (2.2). So the proof is complete. □

We want to give the following function that we will use later: For α,k>0 and sR{1}, let α,s:[0,1]R be the function defined by

α,s(t):=((ta+(1t)b)s+1as+1)αk((bt+(1t)a)s+1as+1)αk+(bs+1(tb+(1t)a)s+1)αk(bs+1(ta+(1t)b)s+1)αk.

In order to prove our main result, we need the following identity.

Lemma 2.1

Let α,k>0 and sRI. If f is a differentiable function on I such that fL[a,b] with a<b, then we have the following identity:

f(a)+f(b)2(s+1)αkΓk(α+k)4(bs+1as+1)αk[ksJa+αF(b)+ksJbαF(a)]=(ba)4(bs+1as+1)αk01α,s(t)f(ta+(1t)b)dt. 2.9

Proof

Using integration by parts, we obtain

Ja+αksF(b)=(bs+1as+1)αk(s+1)αkΓk(α+k)F(a)+(ba)(s+1)αkΓk(α+k)×01[(bs+1(bu+(1u)a)s+1)]αkF(bu+(1u)a)du. 2.10

Similarly, we get

JbαksF(a)=(bs+1as+1)αk(s+1)αkΓk(α+k)F(b)(ba)(s+1)αkΓk(α+k)×01[(bu+(1u)a)s+1as+1]αkF(bu+(1u)a)du. 2.11

Using the fact that F(x)=f(x)+f˜(x) and by simple computation, from equalities (2.10) and (2.11), we get

4(bs+1as+1)αk(ba)(f(a)+f(b)2(s+1)αkΓk(α+k)4(bs+1as+1)αk[ksJa+αF(b)+ksJbαF(a)])=01[((bu+(1u)a)s+1as+1)αk(bs+1(bu+(1u)a)s+1)αk]×F(bu+(1u)a)du. 2.12

Note that we have

F(bu+(1u)a)=f(bu+(1u)a)f(au+(1u)b),u[0,1].

Then we can easily obtain

01((bu+(1u)a)s+1as+1)αkF(bu+(1u)a)du=01((ta+(1t)b)s+1as+1)αkf(ta+(1t)b)dt01((bt+(1t)a)s+1as+1)αkf(ta+(1t)b)dt 2.13

and

01(bs+1(bu+(1u)a)s+1)αkF(bu+(1u)a)du=01(bs+1(ta+(1t)b)s+1)αkf(ta+(1t)b)dt01(bs+1(bt+(1t)a)s+1)αkf(ta+(1t)b)dt. 2.14

Thus, the desired inequality (2.9) follows from inequalities (2.12), (2.13) and (2.14). □

For α,k>0, we introduce the following operator:

(s,x,y):=aa+b2|xu||ys+1us+1|αkdua+b2b|xu||ys+1us+1|αkdu,

sR{1}, x,y[a,b].

Using Lemma 2.1, we can obtain the following (k,s)-fractional integral inequality.

Theorem 2.2

Let α,k>0 and sR{1}. If f is a differentiable function on I such that fL[a,b] with a<b and |f| is convex on [a,b], then

|f(a)+f(b)2(s+1)αkΓk(α+k)4(bs+1as+1)αk[ksJa+αF(b)+ksJbαF(a)]|Ψ(s,α,a,b)4(bs+1as+1)αk(ba)(|f(a)|+|f(b)|), 2.15

where

Ψ(s,α,a,b)=(s,b,b)+(s,a,b)(s,b,a)(s,a,a).

Proof

Using Lemma 2.1 and the convexity of |f|, we obtain

|f(a)+f(b)2(s+1)αkΓk(α+k)4(bs+1as+1)αk[ksJa+αF(b)+ksJbαF(a)]|(ba)4(bs+1as+1)αk01|α,s(t)||f(ta+(1t)b)|dt(ba)4(bs+1as+1)αk(|f(a)|01t|α,s(t)|dt+|f(b)|01(1t)|α,s(t)|dt). 2.16

Note that

01t|α,s(t)|dt=1(ba)2ab|(u)|(bu)du,

where

(u)=(us+1as+1)αk((b+au)s+1as+1)αk+(bs+1(b+au)s+1)αk(bs+1us+1)αk,u[a,b].

Observe that ℘ is a non-decreasing function on [a,b]. Moreover, we have (a)=2(bs+1as+1)αk<0 and (a+b2)=0. Thus, we have

{(u)0if aua+b2,(u)>0if a+b2<ub.

So, we obtain

(ba)201t|α,s(t)|dt=ζ1+ζ2+ζ3+ζ4,

where

ζ1=aa+b2(bu)(bs+1us+1)αkdua+b2b(bu)(bs+1us+1)αkdu,ζ2=aa+b2(bu)(us+1as+1)αkdu+a+b2b(bu)(us+1as+1)αkdu,ζ3=aa+b2(bu)((b+au)s+1as+1)αkdua+b2b(bu)((b+au)s+1as+1)αkdu,ζ4=aa+b2(bu)(bs+1(b+au)s+1)αkdu+a+b2b(bu)(bs+1(b+au)s+1)αkdu.

Observe that ζ1=(s,b,b) and ζ2=(s,b,a). Using the change of variable v=a+bu, we get ζ3=(s,a,a) and ζ4=(s,a,b). Thus, we obtain

01t|α,s(t)|dt=(s,b,b)+(s,a,b)(s,b,a)(s,a,a)(ba)2. 2.17

Similarly,

01(1t)|α,s(t)|dt=(s,b,b)+(s,a,b)(s,b,a)(s,a,a)(ba)2. 2.18

So, the desired inequality (2.15) follows from inequalities (2.16), (2.17) and (2.18). □

Conclusions

Lastly, we conclude this paper by remarking that we have obtained a Hermite-Hadamard inequality, an identity and a Hermite-Hadamard type inequality for a generalized k-fractional integral operator. Therefore, by suitably choosing the parameters, one can further easily obtain additional integral inequalities involving the various types of fractional integral operators from our main results.

Acknowledgements

The authors would like to express profound gratitude to referees for deeper review of this paper and for their useful suggestions that led to an improved presentation of the paper. Mohamed Jleli extends his sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this Prolific Research group (PRG-1436-20).

Footnotes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript. All authors read and approved the final manuscript.

Contributor Information

Praveen Agarwal, Email: goyal.praveen2011@gmail.com.

Mohamed Jleli, Email: jleli@ksu.edu.sa.

Muharrem Tomar, Email: muharremtomar@gmail.com.

References

  • 1.Hadamard J. Étude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893;9:171–216. [Google Scholar]
  • 2.Sarıkaya MZ, Set E, Yaldiz H, Başak N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013;57(9):2403–2407. doi: 10.1016/j.mcm.2011.12.048. [DOI] [Google Scholar]
  • 3.Abramowitz M, Stegun IA. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Washington: United States Department of Commerce; 1972. [Google Scholar]
  • 4.Diaz R, Pariguan E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007;15(2):179–192. [Google Scholar]
  • 5.Sarikaya MZ, Dahmani Z, Kiris ME, Ahmad F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016;45(1):77–89. [Google Scholar]
  • 6.Katugompola UN. New approach generalized fractional integral. Appl. Math. Comput. 2011;218:860–865. [Google Scholar]
  • 7.Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier; 2006. [Google Scholar]
  • 8.Katugompola UN. Mellin transforms of generalized fractional integrals and derivatives. Appl. Math. Comput. 2015;257:566–580. [Google Scholar]
  • 9.Mubeen S, Habibullah GM. k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 2012;7(2):89–94. [Google Scholar]
  • 10.Agarwal P. Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 2017 [Google Scholar]
  • 11.Aldhaifallah M, Tomar M, Nisar KS, Purohit SD. Some new inequalities for (k,s)-fractional integrals. J. Nonlinear Sci. Appl. 2016;9:5374–5381. [Google Scholar]
  • 12.Anastassiou GA. Fractional Differentiation Inequalities. New York: Springer; 2009. [Google Scholar]
  • 13.Belarbi S, Dahmani Z. On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 2009;10(3):1–12. [Google Scholar]
  • 14.Dahmani Z, Mechouar O, Brahami S. Certain inequalities related to the Chebyshev’s functional involving a Riemann-Liouville operator. Bull. Math. Anal. Appl. 2011;3(4):38–44. [Google Scholar]
  • 15.Jleli M, Regan DO, Samet B. On Hermite-Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 2016;40:1221–1230. doi: 10.3906/mat-1507-79. [DOI] [Google Scholar]
  • 16.Liu WJ, Ngo QA, Huy VN. Several interesting integral inequalities. J. Math. Inequal. 2009;3(2):201–212. doi: 10.7153/jmi-03-20. [DOI] [Google Scholar]
  • 17.Ntouyas SK, Purohit SD, Tariboon J. Certain Chebyshev type integral inequalities involving the Hadamard’s fractional operators. Abstr. Appl. Anal. 2014;2014 doi: 10.1155/2014/249091. [DOI] [Google Scholar]
  • 18.Ntouyas SK, Agarwal P, Tariboon J. On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 2016;10(2):491–504. doi: 10.7153/jmi-10-38. [DOI] [Google Scholar]
  • 19.Miller KS, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley; 1993. [Google Scholar]
  • 20.Set E, Tomar M, Sarikaya MZ. On generalized Grüss type inequalities via k-Riemann-Liouville fractional integral. Appl. Math. Comput. 2015;269:29–34. [Google Scholar]
  • 21.Tomar M, Mubeen S, Choi J. Certain inequalities associated with Hadamard k-fractional integral operators. J. Inequal. Appl. 2016;2016 doi: 10.1186/s13660-016-1178-x. [DOI] [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES