Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Feb;87(3):919–922. doi: 10.1073/pnas.87.3.919

Isolation of a functional antigen-Ia complex.

M Srinivasan 1, S K Pierce 1
PMCID: PMC53380  PMID: 2153978

Abstract

The helper T-cell recognition of globular protein antigens requires that the antigen be processed and presented by an I-region associated (Ia)-expressing antigen-presenting cell (APC). Processing involves the uptake of antigen into an intracellular, proteolytic, acidic compartment; release of peptide fragments containing the T-cell antigenic determinant; association of these peptides with Ia; and presentation of these complexes on the cell surface for recognition by the specific T cells. The molecular mechanisms by which processed antigenic peptides associate with Ia within the APC are poorly understood. To date, functional antigen-Ia complexes have not been isolated from cells that have processed native antigens, although the resolution of the structure of a major histocompatibility complex (MHC) class I protein indicates that peptide is bound in a groove between two alpha-helical regions of the molecule and synthetic peptides have been demonstrated to bind purified MHC both in detergent solution and incorporated into planar membranes, where the MHC-peptide complexes function to activate specific T cells. Here we demonstrate that Ia purified from APCs that have processed the native globular protein antigen cytochrome c, when incorporated into lipid membranes, stimulates cytochrome c-specific T cells in the absence of exogenous antigenic peptide. The T-cell response to Ia purified from cytochrome c-pulsed APCs shows the same MHC restriction and antigen fine specificity as the response to antigen-pulsed APCs. Indeed, T-cell recognition of pigeon cytochrome c (Pc) shows a well documented high-affinity heteroclitic cross-reaction to insect cytochromes c-namely, those of Drosophila melanogaster (DMc) and tobacco hornworm moth (THMc). The same heteroclitic response is observed when purified Ia from unpulsed cells, incorporated into lipid membranes, is used to present antigenic peptides of Pc and of THMc. Significantly, Ia purified from APCs that have processed DMc is approximately 50-fold more active in stimulating specific T cells compared to Ia purified from APCs that have processed Pc. The peptide-Ia complex isolated here may provide the necessary material for analysis of the physiochemical properties of the processed form of the antigen that is produced by the APC and associates with Ia.

Full text

PDF
919

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babbitt B. P., Allen P. M., Matsueda G., Haber E., Unanue E. R. Binding of immunogenic peptides to Ia histocompatibility molecules. 1985 Sep 26-Oct 2Nature. 317(6035):359–361. doi: 10.1038/317359a0. [DOI] [PubMed] [Google Scholar]
  2. Babbitt B. P., Matsueda G., Haber E., Unanue E. R., Allen P. M. Antigenic competition at the level of peptide-Ia binding. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4509–4513. doi: 10.1073/pnas.83.12.4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature. 1987 Oct 8;329(6139):506–512. doi: 10.1038/329506a0. [DOI] [PubMed] [Google Scholar]
  4. Bjorkman P. J., Saper M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature. 1987 Oct 8;329(6139):512–518. doi: 10.1038/329512a0. [DOI] [PubMed] [Google Scholar]
  5. Brautigan D. L., Ferguson-Miller S., Margoliash E. Mitochondrial cytochrome c: preparation and activity of native and chemically modified cytochromes c. Methods Enzymol. 1978;53:128–164. doi: 10.1016/s0076-6879(78)53021-8. [DOI] [PubMed] [Google Scholar]
  6. Brown J. H., Jardetzky T., Saper M. A., Samraoui B., Bjorkman P. J., Wiley D. C. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature. 1988 Apr 28;332(6167):845–850. doi: 10.1038/332845a0. [DOI] [PubMed] [Google Scholar]
  7. Buus S., Sette A., Colon S. M., Jenis D. M., Grey H. M. Isolation and characterization of antigen-Ia complexes involved in T cell recognition. Cell. 1986 Dec 26;47(6):1071–1077. doi: 10.1016/0092-8674(86)90822-6. [DOI] [PubMed] [Google Scholar]
  8. Buus S., Sette A., Colon S. M., Miles C., Grey H. M. The relation between major histocompatibility complex (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science. 1987 Mar 13;235(4794):1353–1358. doi: 10.1126/science.2435001. [DOI] [PubMed] [Google Scholar]
  9. Casten L. A., Lakey E. K., Jelachich M. L., Margoliash E., Pierce S. K. Anti-immunoglobulin augments the B-cell antigen-presentation function independently of internalization of receptor-antigen complex. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5890–5894. doi: 10.1073/pnas.82.17.5890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen B. P., Parham P. Direct binding of influenza peptides to class I HLA molecules. Nature. 1989 Feb 23;337(6209):743–745. doi: 10.1038/337743a0. [DOI] [PubMed] [Google Scholar]
  11. Corradin G., Harbury H. A. Cleavage of cytochrome c with cyanogen bromide. Biochim Biophys Acta. 1970 Dec 22;221(3):489–496. doi: 10.1016/0005-2795(70)90219-9. [DOI] [PubMed] [Google Scholar]
  12. Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
  13. Haughton G., Arnold L. W., Bishop G. A., Mercolino T. J. The CH series of murine B cell lymphomas: neoplastic analogues of Ly-1+ normal B cells. Immunol Rev. 1986 Oct;93:35–51. doi: 10.1111/j.1600-065x.1986.tb01501.x. [DOI] [PubMed] [Google Scholar]
  14. Lakey E. K., Margoliash E., Fitch F. W., Pierce S. K. Role of L3T4 and Ia in the heteroclitic response of T cells to cytochrome c. J Immunol. 1986 Jun 1;136(11):3933–3938. [PubMed] [Google Scholar]
  15. Marrack P., Skidmore B., Kappler J. W. Binding of antigen-specific, H-2-restricted T cell hybridomas to antigen-pulsed adherent cell monolayers. J Immunol. 1983 May;130(5):2088–2092. [PubMed] [Google Scholar]
  16. Merrifield R. B. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:221–296. doi: 10.1002/9780470122778.ch6. [DOI] [PubMed] [Google Scholar]
  17. Morrison M. The determination of the exposed proteins on membranes by the use of lactoperoxidase. Methods Enzymol. 1974;32:103–109. doi: 10.1016/0076-6879(74)32013-7. [DOI] [PubMed] [Google Scholar]
  18. Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. Curr Top Microbiol Immunol. 1978;81:115–120. doi: 10.1007/978-3-642-67448-8_18. [DOI] [PubMed] [Google Scholar]
  19. Ozato K., Mayer N., Sachs D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J Immunol. 1980 Feb;124(2):533–540. [PubMed] [Google Scholar]
  20. Shimonkevitz R., Kappler J., Marrack P., Grey H. Antigen recognition by H-2-restricted T cells. I. Cell-free antigen processing. J Exp Med. 1983 Aug 1;158(2):303–316. doi: 10.1084/jem.158.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Solinger A. M., Ultee M. E., Margoliash E., Schwartz R. H. T-lymphocyte response to cytochrome c. I. Demonstration of a T-cell heteroclitic proliferative response and identification of a topographic antigenic determinant on pigeon cytochrome c whose immune recognition requires two complementing major histocompatibility complex-linked immune response genes. J Exp Med. 1979 Oct 1;150(4):830–848. doi: 10.1084/jem.150.4.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Townsend A., Ohlén C., Bastin J., Ljunggren H. G., Foster L., Kärre K. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature. 1989 Aug 10;340(6233):443–448. doi: 10.1038/340443a0. [DOI] [PubMed] [Google Scholar]
  23. Turkewitz A. P., Sullivan C. P., Mescher M. F. Large-scale purification of murine I-Ak and I-Ek antigens and characterization of the purified proteins. Mol Immunol. 1983 Nov;20(11):1139–1147. doi: 10.1016/0161-5890(83)90137-2. [DOI] [PubMed] [Google Scholar]
  24. Watts T. H., Brian A. A., Kappler J. W., Marrack P., McConnell H. M. Antigen presentation by supported planar membranes containing affinity-purified I-Ad. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7564–7568. doi: 10.1073/pnas.81.23.7564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Watts T. H., McConnell H. M. High-affinity fluorescent peptide binding to I-Ad in lipid membranes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9660–9664. doi: 10.1073/pnas.83.24.9660. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES