Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Feb;87(3):988–992. doi: 10.1073/pnas.87.3.988

Synchronous neural networks of nonlinear threshold elements with hysteresis.

L Wang 1, J Ross 1
PMCID: PMC53395  PMID: 2300589

Abstract

We use Hoffmann's suggestion [Hoffmann, G. W. (1986) J. Theor. Biol. 122, 33-67] of hysteresis in a single neuron level and determine its consequences in a synchronous network made of such neurons. We show that the overall retrieval ability in the presence of noise and the memory capacity of the network in the present model are better than in conventional models without such hysteresis. Second-order interaction further improves the retrieval ability of the network and causes hysteresis in the retrieval-noise curve for any arbitrary width of the bistable region. The convergence rate is increased by the hysteresis at high noise levels but is reduced by the hysteresis at low noise levels. Explicit formulae are given for calculations of average final convergence and noise threshold as functions of the width of the bistable region. There is neurophysiological evidence for hysteresis in single neurons, and we propose optical implementations of the present model by using ZnSe interference filters to test the predictions of the theory.

Full text

PDF
988

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartels-Bernal E., Rosenberry T. L., Daly J. W. Effect of batrachotoxin on the electroplax of electric eel: evidence for voltage-dependent interaction with sodium channels. Proc Natl Acad Sci U S A. 1977 Mar;74(3):951–955. doi: 10.1073/pnas.74.3.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper L. N., Liberman F., Oja E. A theory for the acquisition and loss of neuron specificity in visual cortex. Biol Cybern. 1979 Jun 29;33(1):9–28. doi: 10.1007/BF00337414. [DOI] [PubMed] [Google Scholar]
  3. Crick F. The recent excitement about neural networks. Nature. 1989 Jan 12;337(6203):129–132. doi: 10.1038/337129a0. [DOI] [PubMed] [Google Scholar]
  4. Crone C., Hultborn H., Kiehn O., Mazieres L., Wigström H. Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat. J Physiol. 1988 Nov;405:321–343. doi: 10.1113/jphysiol.1988.sp017335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guttman R., Lewis S., Rinzel J. Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol. 1980 Aug;305:377–395. doi: 10.1113/jphysiol.1980.sp013370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoffmann G. W. A neural network model based on the analogy with the immune system. J Theor Biol. 1986 Sep 7;122(1):33–67. doi: 10.1016/s0022-5193(86)80224-7. [DOI] [PubMed] [Google Scholar]
  7. Hopfield J. J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554–2558. doi: 10.1073/pnas.79.8.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hopfield J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci U S A. 1984 May;81(10):3088–3092. doi: 10.1073/pnas.81.10.3088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hounsgaard J., Hultborn H., Jespersen B., Kiehn O. Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J Physiol. 1988 Nov;405:345–367. doi: 10.1113/jphysiol.1988.sp017336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hounsgaard J., Hultborn H., Jespersen B., Kiehn O. Intrinsic membrane properties causing a bistable behaviour of alpha-motoneurones. Exp Brain Res. 1984;55(2):391–394. doi: 10.1007/BF00237290. [DOI] [PubMed] [Google Scholar]
  11. Kandel E. R., Tauc L. Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans. J Physiol. 1965 Nov;181(1):1–27. doi: 10.1113/jphysiol.1965.sp007742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keeler J. D., Pichler E. E., Ross J. Noise in neural networks: thresholds, hysteresis, and neuromodulation of signal-to-noise. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1712–1716. doi: 10.1073/pnas.86.5.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keifer J., Houk J. C. An in vitro preparation for studying motor pattern generation in the cerebellorubrospinal circuit of the turtle. Neurosci Lett. 1989 Feb 13;97(1-2):123–128. doi: 10.1016/0304-3940(89)90150-x. [DOI] [PubMed] [Google Scholar]
  14. Peretto P. Collective properties of neural networks: a statistical physics approach. Biol Cybern. 1984;50(1):51–62. doi: 10.1007/BF00317939. [DOI] [PubMed] [Google Scholar]
  15. Peretto P., Niez J. J. Long term memory storage capacity of multiconnected neural networks. Biol Cybern. 1986;54(1):53–63. doi: 10.1007/BF00337115. [DOI] [PubMed] [Google Scholar]
  16. Roney K. J., Scheibel A. B., Shaw G. L. Dendritic bundles: survey of anatomical experiments and physiological theories. Brain Res. 1979;180(2):225–271. doi: 10.1016/0165-0173(79)90006-7. [DOI] [PubMed] [Google Scholar]
  17. Shaw G. L., Harth E., Scheibel A. B. Cooperativity in brain function: assemblies of approximately 30 neurons. Exp Neurol. 1982 Aug;77(2):324–358. doi: 10.1016/0014-4886(82)90249-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES