Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1969 May;63(1):93–97. doi: 10.1073/pnas.63.1.93

RELEASE OF TRANSFER RNA DURING PEPTIDE CHAIN ELONGATION*

Jean Lucas-Lenard 1, Anne-Lise Haenni 1,
PMCID: PMC534040  PMID: 4897025

Abstract

In amino acid polymerization, the tRNA donating its peptidyl moiety to the neighboring aminoacyl-tRNA must be released from the ribosome for further growth of the polypeptide chain. It was not known at what stage of peptide elongation this tRNA is released. To study this question, we prepared ac-C14-Phe-H3-tRNA using H3-tRNA isolated from E. coli strain 15THU grown in the presence of H3-uracil, and followed the fate of the H3-tRNA during chain growth. Our results indicate that donor tRNA is released during the translocation step, mediated by the soluble factor G and GTP.

Full text

PDF
93

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Erbe R. W., Leder P. Initiation and protein synthesis: translation of di- and tri-codon messengers. Biochem Biophys Res Commun. 1968 Jun 10;31(5):798–803. doi: 10.1016/0006-291x(68)90633-5. [DOI] [PubMed] [Google Scholar]
  2. Ertel R., Redfield B., Brot N., Weissbach H. Role of GTP in protein synthesis: interaction of GTP with soluble transfer factors from E. coli. Arch Biochem Biophys. 1968 Nov;128(2):331–338. doi: 10.1016/0003-9861(68)90039-8. [DOI] [PubMed] [Google Scholar]
  3. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  4. Haenni A. L., Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hershey J. W., Monro R. E. A competitive inhibitor of the GTP reaction in protein synthesis. J Mol Biol. 1966 Jun;18(1):68–76. doi: 10.1016/s0022-2836(66)80077-3. [DOI] [PubMed] [Google Scholar]
  6. Kuriki Y., Kaji A. Factor- and guanosine 5'-triphosphate-dependent release of deacylated transfer RNA from 70S ribosomes. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1399–1405. doi: 10.1073/pnas.61.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
  8. Lucas-Lenard J., Haenni A. L. Requirement of granosine 5'-triphosphate for ribosomal binding of aminoacyl-SRNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):554–560. doi: 10.1073/pnas.59.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lucas-Lenard J., Lipmann F. Separation of three microbial amino acid polymerization factors. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1562–1566. doi: 10.1073/pnas.55.6.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  11. Nishizuka Y., Lipmann F. Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proc Natl Acad Sci U S A. 1966 Jan;55(1):212–219. doi: 10.1073/pnas.55.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
  13. Pestka S. Studies on the formation of trensfer ribonucleic acid-ribosome complexes. V. On the function of a soluble transfer factor in protein synthesis. Proc Natl Acad Sci U S A. 1968 Oct;61(2):726–733. doi: 10.1073/pnas.61.2.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ravel J. M., Shorey R. L., Shive W. The composition of the active intermediate in the transfer of aminoacyl-RNA to ribosomes. Biochem Biophys Res Commun. 1968 Jul 11;32(1):9–14. doi: 10.1016/0006-291x(68)90418-x. [DOI] [PubMed] [Google Scholar]
  15. Seeds N. W., Conway T. W. Reversal by GTP of soluble RNA inhibition of polyphenylalanine synthesis. Biochem Biophys Res Commun. 1966 Apr 19;23(2):111–116. doi: 10.1016/0006-291x(66)90513-4. [DOI] [PubMed] [Google Scholar]
  16. Skoultchi A., Ono Y., Moon H. M., Lengyel P. On three complementary amino acid polymerization factors from Bacillus stearothermophilus: separation of a complex containing two of the factors, guanosine-5'-triphosphate and aminoacyl-transfer RNA. Proc Natl Acad Sci U S A. 1968 Jun;60(2):675–682. doi: 10.1073/pnas.60.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wimmer E., Maxwell I. H., Tener G. M. A simple method for isolating highly purified yeast phenylalanine transfer ribonucleic acid. Biochemistry. 1968 Jul;7(7):2623–2628. doi: 10.1021/bi00847a026. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES