Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1954 May;40(5):263–270. doi: 10.1073/pnas.40.5.263

NUCLEIC ACID PRECURSORS AND PROTEIN SYNTHESIS

Arthur B Pardee 1
PMCID: PMC534118  PMID: 16589470

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CERIOTTI G. A microchemical determination of desoxyribonucleic acid. J Biol Chem. 1952 Sep;198(1):297–303. [PubMed] [Google Scholar]
  2. DOUNCE A. L. [Duplicating mechanism for peptide chain and nucleic acid synthesis]. Enzymologia. 1952 Sep 1;15(5):251–258. [PubMed] [Google Scholar]
  3. GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XIV. Nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):483–492. doi: 10.1042/bj0530483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HALVORSON H. O., SPIEGELMAN S. The inhibition of enzyme formation by amino acid analogues. J Bacteriol. 1952 Aug;64(2):207–221. doi: 10.1128/jb.64.2.207-221.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HERRIOTT R. M., BARLOW J. L. Nucleic acid synthesis in mustard gas-treated E. coli B. J Gen Physiol. 1951 Jul;34(6):761–764. doi: 10.1085/jgp.34.6.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HERSHEY A. D. Nucleic acid economy in bacteria infected with bacteriophage T2. J Gen Physiol. 1953 Sep;37(1):1–23. doi: 10.1085/jgp.37.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KELNER A. Growth, respiration, and nucleic acid synthesis in ultraviolet-irradiated and in photoreactivated Escherichia coli. J Bacteriol. 1953 Mar;65(3):252–262. doi: 10.1128/jb.65.3.252-262.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KOCH A. L., PUTNAM F. W., EVANS E. A., Jr The purine metabolism of Escherichia coli. J Biol Chem. 1952 May;197(1):105–112. [PubMed] [Google Scholar]
  9. KOPPEL J. L., PORTER C. J., CROCKER B. F. The mechanism of the synthesis of enzymes. I. Development of a system suitable for studying this phenomenon. J Gen Physiol. 1953 May;36(5):703–722. doi: 10.1085/jgp.36.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KOZLOFF L. M., KNOWLTON K., PUTNAM F. W., EVANS E. A., Jr Biochemical studies of virus reproduction. V. The origin of bacteriophage nitrogen. J Biol Chem. 1951 Jan;188(1):101–116. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MANSON L. A. The metabolism of ribonucleic acid in normal and bacteriophage infected Escherichia coli. J Bacteriol. 1953 Dec;66(6):703–711. doi: 10.1128/jb.66.6.703-711.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MONOD J., PAPPENHEIMER A. M., Jr, COHEN-BAZIRE G. La cinétique de la biosynthèse de la beta-galactosidase chez E. coli considérée comme fonction de la croissance. Biochim Biophys Acta. 1952 Dec;9(6):648–660. doi: 10.1016/0006-3002(52)90227-8. [DOI] [PubMed] [Google Scholar]
  14. PARDEE A. B., KUNKEE R. E. Enzyme activity and bacteriophage infection. II. Activities before and after virus infection. J Biol Chem. 1952 Nov;199(1):9–24. [PubMed] [Google Scholar]
  15. SIMINOVITCH L. Biochemical modifications of the bacterial host during bacteriophage development. Ann Inst Pasteur (Paris) 1953 Jan;84(1):265–272. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES