Abstract
The life span of neonatal rat cerebellar granule cells, grown in basal minimal Eagle's medium containing 10% (vol/vol) fetal calf serum, was extended to 21-30 days by weekly supplementation with glucose. Addition of 1% fetal calf serum to the culture at 14 days killed 85% of the cells within 1 hr. This lethal effect could be prevented by the N-methyl-D-aspartate (NMDA) receptor antagonists dibenzocyclohepteneimine (MK-801) and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP). These findings suggested that the glutamate in the serum caused the dramatic neuronal death through action on the NMDA receptor. Indeed, a 5-min incubation in a Locke physiological salt solution containing 20 microM glutamate and 5 microM glycine killed 55-90% of the cells. This acute toxicity could be prevented by a lyso-GM1 ganglioside with N-acetylated sphingosine. The relatively low glutamate content of the sera analyzed suggests that factors in addition to glycine potentiate serum neurotoxicity. The above noted antagonists of the NMDA receptor also greatly reduced the lethal effect of depolarization by 90 mM KCl or 10 microM veratridine. Therefore, it is likely that the toxicity of the depolarizing agents is mediated by glutamate released from the cells. It is concluded that survival of cerebellar neurons in primary culture may be strongly affected by unsuspected neurotoxic phenomena elicited by brief action of a rather low glutamate concentration.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aloisi F., Ciotti M. T., Levi G. Characterization of GABAergic neurons in cerebellar primary cultures and selective neurotoxic effects of a serum fraction. J Neurosci. 1985 Aug;5(8):2001–2008. doi: 10.1523/JNEUROSCI.05-08-02001.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benveniste H., Jørgensen M. B., Diemer N. H., Hansen A. J. Calcium accumulation by glutamate receptor activation is involved in hippocampal cell damage after ischemia. Acta Neurol Scand. 1988 Dec;78(6):529–536. doi: 10.1111/j.1600-0404.1988.tb03697.x. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988 Oct;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
- Choi D. W. Ionic dependence of glutamate neurotoxicity. J Neurosci. 1987 Feb;7(2):369–379. doi: 10.1523/JNEUROSCI.07-02-00369.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark G. D., Rothman S. M. Blockade of excitatory amino acid receptors protects anoxic hippocampal slices. Neuroscience. 1987 Jun;21(3):665–671. doi: 10.1016/0306-4522(87)90027-3. [DOI] [PubMed] [Google Scholar]
- Connor J. A., Wadman W. J., Hockberger P. E., Wong R. K. Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science. 1988 Apr 29;240(4852):649–653. doi: 10.1126/science.2452481. [DOI] [PubMed] [Google Scholar]
- Crowder J. M., Croucher M. J., Bradford H. F., Collins J. F. Excitatory amino acid receptors and depolarization-induced Ca2+ influx into hippocampal slices. J Neurochem. 1987 Jun;48(6):1917–1924. doi: 10.1111/j.1471-4159.1987.tb05756.x. [DOI] [PubMed] [Google Scholar]
- Dutton G. R., Currie D. N., Tear K. An improved method for the bulk isolation of viable perikarya from postnatal cerebellum. J Neurosci Methods. 1981 Apr;3(4):421–427. doi: 10.1016/0165-0270(81)90029-7. [DOI] [PubMed] [Google Scholar]
- Engelsen B. Neurotransmitter glutamate: its clinical importance. Acta Neurol Scand. 1986 Nov;74(5):337–355. doi: 10.1111/j.1600-0404.1986.tb03524.x. [DOI] [PubMed] [Google Scholar]
- Favaron M., Manev H., Alho H., Bertolino M., Ferret B., Guidotti A., Costa E. Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7351–7355. doi: 10.1073/pnas.85.19.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster A. C., Kemp J. A. Neurobiology. Glycine maintains excitement. Nature. 1989 Mar 30;338(6214):377–378. doi: 10.1038/338377a0. [DOI] [PubMed] [Google Scholar]
- Furshpan E. J., Potter D. D. Seizure-like activity and cellular damage in rat hippocampal neurons in cell culture. Neuron. 1989 Aug;3(2):199–207. doi: 10.1016/0896-6273(89)90033-0. [DOI] [PubMed] [Google Scholar]
- Gallo V., Ciotti M. T., Coletti A., Aloisi F., Levi G. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7919–7923. doi: 10.1073/pnas.79.24.7919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo V., Kingsbury A., Balázs R., Jørgensen O. S. The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci. 1987 Jul;7(7):2203–2213. doi: 10.1523/JNEUROSCI.07-07-02203.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garthwaite G., Garthwaite J. Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Lett. 1986 May 15;66(2):193–198. doi: 10.1016/0304-3940(86)90189-8. [DOI] [PubMed] [Google Scholar]
- Garthwaite G., Hajós F., Garthwaite J. Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices. Neuroscience. 1986 Jun;18(2):437–447. doi: 10.1016/0306-4522(86)90164-8. [DOI] [PubMed] [Google Scholar]
- Jones K. H., Senft J. A. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem. 1985 Jan;33(1):77–79. doi: 10.1177/33.1.2578146. [DOI] [PubMed] [Google Scholar]
- Levi G., Aloisi F., Ciotti M. T., Gallo V. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res. 1984 Jan 2;290(1):77–86. doi: 10.1016/0006-8993(84)90737-6. [DOI] [PubMed] [Google Scholar]
- Manev H., Favaron M., Guidotti A., Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989 Jul;36(1):106–112. [PubMed] [Google Scholar]
- Nicoletti F., Wroblewski J. T., Novelli A., Alho H., Guidotti A., Costa E. The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J Neurosci. 1986 Jul;6(7):1905–1911. doi: 10.1523/JNEUROSCI.06-07-01905.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogura A., Miyamoto M., Kudo Y. Neuronal death in vitro: parallelism between survivability of hippocampal neurones and sustained elevation of cytosolic Ca2+ after exposure to glutamate receptor agonist. Exp Brain Res. 1988;73(3):447–458. doi: 10.1007/BF00406601. [DOI] [PubMed] [Google Scholar]
- Olney J. W., Price M. T., Samson L., Labruyere J. The role of specific ions in glutamate neurotoxicity. Neurosci Lett. 1986 Mar 28;65(1):65–71. doi: 10.1016/0304-3940(86)90121-7. [DOI] [PubMed] [Google Scholar]
- Rothman S. M. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J Neurosci. 1985 Jun;5(6):1483–1489. doi: 10.1523/JNEUROSCI.05-06-01483.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman S. M., Thurston J. H., Hauhart R. E. Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience. 1987 Aug;22(2):471–480. doi: 10.1016/0306-4522(87)90347-2. [DOI] [PubMed] [Google Scholar]
- Siesjö B. K., Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab. 1989 Apr;9(2):127–140. doi: 10.1038/jcbfm.1989.20. [DOI] [PubMed] [Google Scholar]
- Sladeczek F., Récasens M., Bockaert J. A new mechanism for glutamate receptor action: phosphoinositide hydrolysis. Trends Neurosci. 1988 Dec;11(12):545–549. doi: 10.1016/0166-2236(88)90183-x. [DOI] [PubMed] [Google Scholar]
- Tecoma E. S., Monyer H., Goldberg M. P., Choi D. W. Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron. 1989 Jun;2(6):1541–1545. doi: 10.1016/0896-6273(89)90042-1. [DOI] [PubMed] [Google Scholar]
- Wong E. H., Kemp J. A., Priestley T., Knight A. R., Woodruff G. N., Iversen L. L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7104–7108. doi: 10.1073/pnas.83.18.7104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wroblewski J. T., Danysz W. Modulation of glutamate receptors: molecular mechanisms and functional implications. Annu Rev Pharmacol Toxicol. 1989;29:441–474. doi: 10.1146/annurev.pa.29.040189.002301. [DOI] [PubMed] [Google Scholar]
- Wroblewski J. T., Fadda E., Mazzetta J., Lazarewicz J. W., Costa E. Glycine and D-serine act as positive modulators of signal transduction at N-methyl-D-aspartate sensitive glutamate receptors in cultured cerebellar granule cells. Neuropharmacology. 1989 May;28(5):447–452. doi: 10.1016/0028-3908(89)90077-4. [DOI] [PubMed] [Google Scholar]