Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Feb;87(3):1218–1222. doi: 10.1073/pnas.87.3.1218

Various regulatory sequences are deprived of their uniqueness by the universal rule of TA/CG deficiency and TG/CT excess.

S Ohno 1, T Yomo 1
PMCID: PMC53442  PMID: 2137247

Abstract

The universal rule of TA/CG deficiency-TG/CT excess endures the extremely high mutation rate of a retrovirus (human immunodeficiency virus type 1) as well as methylation of CAG rather than CG in a plant (maize). Among the consistently abundant nucleotide oligomers, there are two complementary pairs of palindromic nucleotide pentamers containing TG and CA. Out of the CAGTG and CACTG pair emerged the heptameric pair for the long-distance recombination of immunoglobulin genes, CACAGTG and CACTGTG. Reflecting their origin, these heptamers are found everywhere in all DNA, and a substantial fraction of them are accompanied by nonameric components properly spaced from them. It appears that, were the recombination event not confined to B cells, results of illegitimate recombinations might be disastrous. The other pentameric pair is TGCAT and ATGCA. Out of this pair emerged the complementary pair of transcription enhancer decamers: TNATTTGCAT for immunoglobulin light chains and ATGCAAATNA for immunoglobulin heavy chains. Again reflecting their origin, these decamers are found everywhere in all DNA and some genes--for example, in the 3' flanking region of immunoglobulin heavy chain constant region--are accompanied by a downstream "TATA box." It seems that even with regard to the productively recombined immunoglobulin genes, misinitiation of enhanced transcription is a real possibility.

Full text

PDF
1218

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Early P., Huang H., Davis M., Calame K., Hood L. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell. 1980 Apr;19(4):981–992. doi: 10.1016/0092-8674(80)90089-6. [DOI] [PubMed] [Google Scholar]
  2. Falkner F. G., Mocikat R., Zachau H. G. Sequences closely related to an immunoglobulin gene promoter/enhancer element occur also upstream of other eukaryotic and of prokaryotic genes. Nucleic Acids Res. 1986 Nov 25;14(22):8819–8827. doi: 10.1093/nar/14.22.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Givol D., Zakut R., Effron K., Rechavi G., Ram D., Cohen J. B. Diversity of germ-line immunoglobulin VH genes. Nature. 1981 Jul 30;292(5822):426–430. doi: 10.1038/292426a0. [DOI] [PubMed] [Google Scholar]
  4. Gojobori T., Yokoyama S. Rates of evolution of the retroviral oncogene of Moloney murine sarcoma virus and of its cellular homologues. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4198–4201. doi: 10.1073/pnas.82.12.4198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gruenbaum Y., Naveh-Many T., Cedar H., Razin A. Sequence specificity of methylation in higher plant DNA. Nature. 1981 Aug 27;292(5826):860–862. doi: 10.1038/292860a0. [DOI] [PubMed] [Google Scholar]
  6. Ichihara Y., Matsuoka H., Kurosawa Y. Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J. 1988 Dec 20;7(13):4141–4150. doi: 10.1002/j.1460-2075.1988.tb03309.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ishiguro H., Ichihara Y., Namikawa T., Nagatsu T., Kurosawa Y. Nucleotide sequence of Suncus murinus immunoglobulin mu gene and comparison with mouse and human mu genes. FEBS Lett. 1989 Apr 24;247(2):317–322. doi: 10.1016/0014-5793(89)81360-2. [DOI] [PubMed] [Google Scholar]
  8. Ohno S. Universal rule for coding sequence construction: TA/CG deficiency-TG/CT excess. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9630–9634. doi: 10.1073/pnas.85.24.9630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Parslow T. G., Blair D. L., Murphy W. J., Granner D. K. Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence. Proc Natl Acad Sci U S A. 1984 May;81(9):2650–2654. doi: 10.1073/pnas.81.9.2650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rabson A. B., Daugherty D. F., Venkatesan S., Boulukos K. E., Benn S. I., Folks T. M., Feorino P., Martin M. A. Transcription of novel open reading frames of AIDS retrovirus during infection of lymphocytes. Science. 1985 Sep 27;229(4720):1388–1390. doi: 10.1126/science.2994220. [DOI] [PubMed] [Google Scholar]
  11. Sakano H., Hüppi K., Heinrich G., Tonegawa S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature. 1979 Jul 26;280(5720):288–294. doi: 10.1038/280288a0. [DOI] [PubMed] [Google Scholar]
  12. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
  13. Werr W., Frommer W. B., Maas C., Starlinger P. Structure of the sucrose synthase gene on chromosome 9 of Zea mays L. EMBO J. 1985 Jun;4(6):1373–1380. doi: 10.1002/j.1460-2075.1985.tb03789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yomo T., Ohno S. Concordant evolution of coding and noncoding regions of DNA made possible by the universal rule of TA/CG deficiency-TG/CT excess. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8452–8456. doi: 10.1073/pnas.86.21.8452. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES