Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Feb;87(3):1247–1251. doi: 10.1073/pnas.87.3.1247

Activation of the Na+, K(+)-ATPase in Narcine brasiliensis.

H Blum 1, S Nioka 1, R G Johnson Jr 1
PMCID: PMC53448  PMID: 2153976

Abstract

The in vivo activation and turnover rates of the sodium pump (Na+, K(+)-ATPase) were investigated in the electrocytes of the electric organ of the elasmobranch Narcine brasiliensis. The Narcine electric organ appears to be an excellent model for the study of sodium pump activation in an excitable tissue. The sodium transmembrane gradient and high-energy phosphagens were concurrently measured by 23Na and 31P NMR spectroscopy. The resting electric organ, which depends primarily on anaerobic metabolism, displays a high concentration of phosphocreatine (PCr). It has an intracellular sodium concentration ([Na+]i) of 20 +/- 10 milliequivalents/liter as estimated by NMR. Electrical stimulation of the nerves innervating the electric organ results in an increase in [Na+]i in the electrolyte and rapid depletion of PCr. Ouabain causes an 85% decrease in utilization of high-energy phosphagens, indicating that rapid PCr turnover in this tissue is mainly due to Na+, K(+)-ATPase activity. From these data we can determine that the rate of sodium pump turnover increases by greater than 3 orders of magnitude within several hundred milliseconds. In excised unstimulated electric organ slices, changes in [Na+]i equivalent to those occurring with stimulation, but induced by hyperosmolar conditions, do not result in increased PCr hydrolysis. We conclude that cholinergic stimulation of the electric organ causes a rapid and extremely large increase in sodium pump turnover, which is regulated predominantly by factors other than [Na+]i.

Full text

PDF
1247

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Gramicidin channels. Annu Rev Physiol. 1984;46:531–548. doi: 10.1146/annurev.ph.46.030184.002531. [DOI] [PubMed] [Google Scholar]
  2. Barnola F. V., Sevcik C., Delgado D. Isolation of membrane fractions with sodium channels sensitive to veratridine and tetrodotoxin from the electric organ of the eel Electrophorus electricus. J Neurochem. 1987 Mar;48(3):846–852. doi: 10.1111/j.1471-4159.1987.tb05594.x. [DOI] [PubMed] [Google Scholar]
  3. Bittl J. A., DeLayre J., Ingwall J. S. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat. Biochemistry. 1987 Sep 22;26(19):6083–6090. doi: 10.1021/bi00393a021. [DOI] [PubMed] [Google Scholar]
  4. Cartaud J., Benedetti E. L., Cohen J. B., Meunier J. C., Changeux J. P. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 1973 Jun 15;33(1):109–113. doi: 10.1016/0014-5793(73)80171-1. [DOI] [PubMed] [Google Scholar]
  5. Clausen T., Everts M. E. Regulation of the Na,K-pump in skeletal muscle. Kidney Int. 1989 Jan;35(1):1–13. doi: 10.1038/ki.1989.1. [DOI] [PubMed] [Google Scholar]
  6. Clausen T. Regulation of active Na+-K+ transport in skeletal muscle. Physiol Rev. 1986 Jul;66(3):542–580. doi: 10.1152/physrev.1986.66.3.542. [DOI] [PubMed] [Google Scholar]
  7. Esmann M. ATPase and phosphatase activity of Na+,K+-ATPase: molar and specific activity, protein determination. Methods Enzymol. 1988;156:105–115. doi: 10.1016/0076-6879(88)56013-5. [DOI] [PubMed] [Google Scholar]
  8. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  9. Goldshlegger R., Karlish S. J., Rephaeli A., Stein W. D. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles. J Physiol. 1987 Jun;387:331–355. doi: 10.1113/jphysiol.1987.sp016576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greene D. A., Lattimer S. A., Sima A. A. Are disturbances of sorbitol, phosphoinositide, and Na+-K+-ATPase regulation involved in pathogenesis of diabetic neuropathy? Diabetes. 1988 Jun;37(6):688–693. doi: 10.2337/diab.37.6.688. [DOI] [PubMed] [Google Scholar]
  11. Kawakami K., Ohta T., Nojima H., Nagano K. Primary structure of the alpha-subunit of human Na,K-ATPase deduced from cDNA sequence. J Biochem. 1986 Aug;100(2):389–397. doi: 10.1093/oxfordjournals.jbchem.a121726. [DOI] [PubMed] [Google Scholar]
  12. Lynch C. J., Wilson P. B., Blackmore P. F., Exton J. H. The hormone-sensitive hepatic Na+-pump. Evidence for regulation by diacylglycerol and tumor promoters. J Biol Chem. 1986 Nov 5;261(31):14551–14556. [PubMed] [Google Scholar]
  13. Lytton J. Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase. J Biol Chem. 1985 Aug 25;260(18):10075–10080. [PubMed] [Google Scholar]
  14. Lytton J., Lin J. C., Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem. 1985 Jan 25;260(2):1177–1184. [PubMed] [Google Scholar]
  15. Marver D., Lear S., Marver L. T., Silva P., Epstein F. H. Cyclic AMP-dependent stimulation of Na,K-ATPase in shark rectal gland. J Membr Biol. 1986;94(3):205–215. doi: 10.1007/BF01869716. [DOI] [PubMed] [Google Scholar]
  16. Mercer R. W., Schneider J. W., Savitz A., Emanuel J., Benz E. J., Jr, Levenson R. Rat-brain Na,K-ATPase beta-chain gene: primary structure, tissue-specific expression, and amplification in ouabain-resistant HeLa C+ cells. Mol Cell Biol. 1986 Nov;6(11):3884–3890. doi: 10.1128/mcb.6.11.3884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Narita K., Kita H., van der Kloot W. Elevated tonicity increases miniature end-plate potential frequency during tetanic stimulation at frog neuromuscular junction in low calcium and in manganese saline solutions. Brain Res. 1983 Dec 19;289(1-2):79–85. doi: 10.1016/0006-8993(83)90008-2. [DOI] [PubMed] [Google Scholar]
  18. ROBIN E. D., MURDAUGH H. V., Jr, WEISS E. ACID-BASE, FLUID AND ELECTROLYTE METABOLISM IN THE ELASMOBRANCH. I. IONIC COMPOSITION OF ERYTHROCYTES, MUSCLE AND BRAIN. J Cell Physiol. 1964 Dec;64:409–418. doi: 10.1002/jcp.1030640312. [DOI] [PubMed] [Google Scholar]
  19. Simmons D. A., Kern E. F., Winegrad A. I., Martin D. B. Basal phosphatidylinositol turnover controls aortic Na+/K+ ATPase activity. J Clin Invest. 1986 Feb;77(2):503–513. doi: 10.1172/JCI112330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sweadner K. J., Goldin S. M. Active transport of sodium and potassium ions: mechanism, function, and regulation. N Engl J Med. 1980 Apr 3;302(14):777–783. doi: 10.1056/NEJM198004033021404. [DOI] [PubMed] [Google Scholar]
  21. Winegrad A. I. Banting lecture 1986. Does a common mechanism induce the diverse complications of diabetes? Diabetes. 1987 Mar;36(3):396–406. doi: 10.2337/diab.36.3.396. [DOI] [PubMed] [Google Scholar]
  22. Zubler-Faivre L., Dunant Y. Sodium- and potassium-dependent adenosine triphosphatase of electric organ: interaction with ouabain in situ, in a membrane fraction, and in the solubilized form. Mol Pharmacol. 1976 Nov;12(6):1007–1018. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES