Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Feb 3;73(Pt 3):318–321. doi: 10.1107/S2056989017001360

Crystal structure of a CoII coordination polymer: catena-poly[[μ-aqua-bis­(μ-2-methyl­propano­ato)-κ2 O:O′;κ2 O:O-cobalt(II)] monohydrate]

Andrei I Fischer a,*, Vladislav V Gurzhiy b,*, Julia V Aleksandrova a, Maria I Pakina a
PMCID: PMC5347044  PMID: 28316799

The present paper describes the synthesis and crystal structure of a cobalt(II) isobutyrate dihydrate, based on a slightly distorted CoO6 repeat unit comprising four bridging carboxyl­ate O-atom donors and two bridging water donors, giving one-dimensional polymeric chains with composition {[Co{(CH3)2CHCO2}2(H2O)]·H2O}n. Hydrogen bonding through the water mol­ecules gives two-dimensional sheets lying parallel to (100).

Keywords: crystal structure, polynuclear complexes, coordination polymer, cobalt carboxyl­ates, cobalt(II) isobutyrate dihydrate

Abstract

In the title cobalt(II) coordination polymer with isobutyrate ligands, {[Co{CH(CH3)2CO2}2(H2O)]·H2O}n, the Co2+ ion is hexa­coordinated in a slightly distorted octa­hedral coordination environment defined by two O atoms from two bridging water mol­ecules and four O atoms from four bridging carboxyl­ate ligands. The carboxyl­ates adopt two different coordination modes, μ-(κ2 O:O′) and μ-(κ2 O:O), forming a one-dimensional polymeric chain extending along [010]. The intra-chain cobalt⋯cobalt separation is 3.2029 (2) Å. The polymeric chains are linked by hydrogen bonds involving the water mol­ecules of solvation, giving a two-dimensional network structure lying parallel to (100).

Chemical context  

Carboxyl­ate anions still remain a popular choice as bridging ligands because of their ability to form diverse oligo- and polynuclear structures. Oligo- and polynuclear cobalt carboxyl­ates in turn have attracted great attention because of their utilization in homogeneous oxidation catalysis (Gates, 1992; Parshall & Ittel, 1992; Partenheimer, 1995; Ward et al., 2013a ), and their inter­esting magnetic properties (Ward et al., 2013b ; Eremenko et al., 2009). Recently, we have reported on the crystal structures of the hydrated polymeric cobalt(II) propionate (Fischer et al., 2010) and butyrate (Fischer et al., 2011), which were prepared by the reaction of cobalt(II) carbonate hydrate with the corresponding aqueous carb­oxy­lic acid. The aim of these studies was to investigate the influence of the steric features of the carboxyl­ate anion on the structure of the resulting compounds. Cobalt(II) carboxyl­ates are of inter­est for our group as starting materials for the synthesis of mixed-valence cobalt carboxyl­ates (Fischer, Kuznetsov & Belyaev, 2012; Fischer, Kuznetsov, Shchukarev & Belyaev, 2012). In addition, we intend to examine the catalytic activity of the cobalt(II) carboxyl­ates obtained, which will be used for introduction into the sodalite cages of synthetic NaY zeolites, modified by deca­tionation and dealuminizing methods.

As a part of our ongoing studies on these compounds, we describe here synthesis and crystal structure of the title compound, {[Co{CH(CH3)2CO2}2(H2O)]·H2O}n, (I).

Structural commentary  

The structure of (I) contains one independent Co2+ cation coordinated by four O atoms from four bridging isobutyrate ligands and two O atoms from two bridging water mol­ecules (O1W) in a distorted octa­hedral coordination. A water mol­ecule of solvation (O2W) is also present (Fig. 1). The Co—O bond lengths are in the range 2.0142 (6)–2.1777 (6) Å (Table 1) and the cis-angles about the Co2+ atom vary in the range 78.99 (3)–110.31 (2)°. This data correlates with the angles and the distances in cobalt(II) acetate dihydrate which has a similar structure (Jiao et al., 2000), as well as with the closely related cobalt(II) propionate dihydrate (Fischer et al., 2010) and cobalt(II) butyrate 1.7-hydrate (Fischer et al., 2011).graphic file with name e-73-00318-scheme1.jpg

Figure 1.

Figure 1

The coordination mode and atom-numbering scheme for (I). Displacement ellipsoids of the non H-atoms are drawn at the 50% probability level, with H atoms shown as spheres of arbitrary radius. [Symmetry codes: (i) −x + 1, y + Inline graphic, −z + Inline graphic; (ii) −x + 1, y − Inline graphic, −z + Inline graphic.

Table 1. Selected geometric parameters (Å, °).

Co1—O1A 2.0449 (6) Co1—O1B i 2.1198 (6)
Co1—O2A i 2.0142 (6) Co1—O1W 2.1768 (6)
Co1—O1B 2.1100 (6) Co1—O1W i 2.1777 (6)
       
O1A—Co1—O1B 88.13 (3) O2A i—Co1—O1W i 88.33 (3)
O1A—Co1—O1B i 89.41 (3) O1B—Co1—O1B i 170.29 (2)
O1A—Co1—O1W 92.18 (3) O1B—Co1—O1W 79.22 (2)
O1A—Co1—O1W i 88.29 (3) O1B i—Co1—O1W 91.49 (2)
O2A i—Co1—O1A 175.30 (3) O1B—Co1—O1W i 110.31 (2)
O2A i—Co1—O1B 89.99 (3) O1B i—Co1—O1W i 78.99 (2)
O2A i—Co1—O1B i 93.14 (3) O1W—Co1—O1W i 170.46 (2)
O2A i—Co1—O1W 91.70 (3)    

Symmetry code: (i) Inline graphic.

The structure of (I) is based on infinite chains with [Co(H2O)((CH3)2CHCOO)2] composition, extending along [010] (Fig. 2). The Co⋯Co distance within the chain is 3.2029 (2) Å. The formation of polymeric chains may be a plausible reason for the crystal growth being predominantly along the b axis. The bridging carboxyl­ate groups adopt two coordination modes, μ-(κ2 O:O′) and μ-(κ2 O:O). The C—O bond lengths of the first group (involving O1A and O2A) have close values [1.2755 (10) and 1.2533 (10) Å], whereas those of the second group (involving O1B and O2B) have a more striking difference [1.2878 (9) and 1.2510 (11) Å]. The carboxyl­ate O2B atom of the second group forms an inter-unit hydrogen bond with the bridging water mol­ecule [O1W—H⋯O2B i = 2.6206 (9) Å] (Fig. 2, Table 2).

Figure 2.

Figure 2

The one-dimensional polymeric structure of (I) extending along [010], with the intra­molecular hydrogen bond shown as a dashed line. The carbon-bound H atoms and the water mol­ecule of solvation have been omitted.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2W 0.79 (2) 1.91 (2) 2.6638 (10) 161 (2)
O1W—H1W2⋯O2B i 0.88 (2) 1.79 (2) 2.6206 (9) 158 (2)
O2W—H2W1⋯O1A ii 0.86 (1) 2.01 (1) 2.7967 (9) 151 (1)
O2W—H2W2⋯O2B iii 0.88 (1) 1.95 (1) 2.8087 (9) 163 (1)
C2B—H2B⋯O2A i 0.98 2.47 3.3094 (11) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

Metal–organic chain polymers are linked together through the water mol­ecule of solvation (O2W) by a system of hydrogen bonds, forming a sheet structure arranged parallel to (100) (Table 2, Fig. 3). Only weak van der Waals inter­actions link neighboring sheets in the crystal structure.

Figure 3.

Figure 3

The packing diagram of (I), showing the inter­actions between the coordination polymer chains. Hydrogen bonds are shown as dashed lines. The carbon-bound H atoms are omitted for clarity.

Database survey  

A survey of the Cambridge Structural Database (Groom et al., 2016) reveals only the following related one-dimensional polymeric structures of cobalt(II) carboxyl­ates with composition [Co(RCOO)2(H2O)]: acetate (Jiao et al., 2000), propionate (Fischer et al., 2010) and butyrate (Fischer et al., 2011).

Synthesis and crystallization  

The title compound was synthesized using a similar procedure as for the synthesis of the analogous carboxyl­ates cobalt(II) propionate dihydrate (Fischer et al., 2010) and cobalt(II) butyrate 1.7-hydrate (Fischer et al., 2011). To a mixture of isobutyric acid (8.8 g, 100 mmol) and water (100 ml), an excess of fresh cobalt(II) carbonate hexa­hydrate, CoCO3·6H2O, (13.6 g, 60 mmol) was added. The reaction mixture was period­ically stirred in an ultrasonic bath at room temperature until the liberation of carbon dioxide ceased. The unreacted CoCO3·6H2O was removed by filtration, and the filtrate was allowed to stand at room temperature for slow evaporation. Red single crystals of (I) suitable for X-ray diffraction were obtained after several days. The yield was 81%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms of the water mol­ecules were located from differenc maps and refined in an isotropic approximation with U iso(H) set to 1.5U eq(O). Other hydrogen atoms were placed in calculated positions and refined using a riding model with d(C—H) = 0.98 Å, U iso(H) = 1.2U eq(C) for the tertiary carbon atoms and d(C—H) = 0.96 Å, U iso(H) = 1.5U eq(C) for the methyl groups.

Table 3. Experimental details.

Crystal data
Chemical formula [Co(C4H7O2)2(H2O)]·H2O
M r 269.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.9999 (4), 6.3815 (2), 16.1374 (6)
β (°) 109.540 (2)
V3) 1164.59 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.48
Crystal size (mm) 0.35 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.304, 0.417
No. of measured, independent and observed [I > 2σ(I)] reflections 25308, 5082, 4459
R int 0.070
(sin θ/λ)max−1) 0.807
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.068, 1.03
No. of reflections 5082
No. of parameters 152
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.25, −0.51

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2015), DIAMOND (Brandenburg, 2012) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017001360/zs2371sup1.cif

e-73-00318-sup1.cif (23.8KB, cif)

CCDC reference: 1529830

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Research Center of X-ray Diffraction Studies at St Petersburg State University for the data collection. The work was supported financially within the state contract No. 14.Z50.31.0013 of March 19, 2014.

supplementary crystallographic information

Crystal data

[Co(C4H7O2)2(H2O)]·H2O F(000) = 564
Mr = 269.15 Dx = 1.535 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.9999 (4) Å Cell parameters from 9959 reflections
b = 6.3815 (2) Å θ = 3.5–49.6°
c = 16.1374 (6) Å µ = 1.48 mm1
β = 109.540 (2)° T = 100 K
V = 1164.59 (7) Å3 Prism, red
Z = 4 0.35 × 0.15 × 0.1 mm

Data collection

Bruker APEXII CCD diffractometer 5082 independent reflections
Radiation source: fine-focus sealed tube 4459 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.070
φ and ω scans θmax = 35.0°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −17→19
Tmin = 0.304, Tmax = 0.417 k = −10→4
25308 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0362P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5082 reflections Δρmax = 1.25 e Å3
152 parameters Δρmin = −0.51 e Å3
4 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.49462 (2) 0.68360 (2) 0.24090 (2) 0.00839 (4)
O1A 0.66165 (5) 0.60756 (10) 0.24434 (4) 0.01230 (11)
O2A 0.67317 (6) 0.26293 (11) 0.27311 (4) 0.01275 (11)
O1B 0.43294 (5) 0.41595 (10) 0.16212 (4) 0.01065 (11)
O2B 0.34759 (6) 0.20179 (10) 0.05000 (4) 0.01437 (12)
O1W 0.49903 (6) 0.45171 (10) 0.34088 (4) 0.01116 (11)
H1W1 0.4417 (17) 0.463 (3) 0.3540 (16) 0.017*
H1W2 0.5573 (18) 0.505 (3) 0.3843 (15) 0.017*
O2W 0.29615 (6) 0.39794 (11) 0.37156 (4) 0.01612 (12)
H2W1 0.2869 (13) 0.290 (2) 0.3380 (10) 0.024*
H2W2 0.3027 (13) 0.344 (2) 0.4235 (8) 0.024*
C1A 0.71817 (7) 0.43527 (13) 0.26448 (5) 0.01045 (14)
C2A 0.85034 (8) 0.44468 (14) 0.28101 (6) 0.01530 (15)
H2A 0.8621 0.5188 0.2314 0.018*
C3A 0.90702 (9) 0.2299 (2) 0.28691 (9) 0.0292 (2)
H3A1 0.9021 0.1576 0.3377 0.044*
H3A2 0.9885 0.2457 0.2917 0.044*
H3A3 0.8663 0.1508 0.2350 0.044*
C4A 0.90875 (11) 0.5731 (2) 0.36327 (11) 0.0409 (4)
H4A1 0.8738 0.7102 0.3563 0.061*
H4A2 0.9918 0.5855 0.3726 0.061*
H4A3 0.8976 0.5050 0.4130 0.061*
C1B 0.36124 (7) 0.38036 (14) 0.08390 (5) 0.01115 (14)
C2B 0.29432 (9) 0.56464 (14) 0.03069 (6) 0.01593 (16)
H2B 0.2944 0.6787 0.0714 0.019*
C3B 0.16552 (9) 0.50628 (19) −0.02026 (7) 0.0238 (2)
H3B1 0.1637 0.3970 −0.0616 0.036*
H3B2 0.1245 0.6271 −0.0512 0.036*
H3B3 0.1278 0.4583 0.0201 0.036*
C4B 0.35856 (10) 0.64054 (17) −0.03141 (6) 0.02213 (19)
H4B1 0.4358 0.6907 0.0025 0.033*
H4B2 0.3142 0.7519 −0.0676 0.033*
H4B3 0.3660 0.5265 −0.0680 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.00921 (6) 0.00625 (7) 0.00890 (5) 0.00009 (3) 0.00197 (4) −0.00013 (3)
O1A 0.0120 (3) 0.0092 (3) 0.0155 (3) 0.0012 (2) 0.0043 (2) 0.0020 (2)
O2A 0.0116 (3) 0.0097 (3) 0.0164 (3) 0.0002 (2) 0.0040 (2) 0.0016 (2)
O1B 0.0120 (3) 0.0083 (3) 0.0091 (2) 0.00017 (19) 0.00020 (19) −0.00006 (17)
O2B 0.0182 (3) 0.0100 (3) 0.0114 (3) 0.0011 (2) 0.0003 (2) −0.00154 (19)
O1W 0.0129 (3) 0.0097 (3) 0.0104 (2) −0.0009 (2) 0.0032 (2) −0.00094 (18)
O2W 0.0229 (3) 0.0121 (3) 0.0144 (3) −0.0006 (2) 0.0076 (2) −0.0006 (2)
C1A 0.0106 (3) 0.0103 (4) 0.0103 (3) 0.0002 (2) 0.0032 (2) 0.0001 (2)
C2A 0.0105 (3) 0.0139 (4) 0.0217 (4) −0.0002 (3) 0.0057 (3) 0.0017 (3)
C3A 0.0138 (4) 0.0223 (6) 0.0489 (7) 0.0050 (4) 0.0071 (4) −0.0045 (5)
C4A 0.0179 (5) 0.0483 (9) 0.0492 (8) −0.0048 (5) 0.0013 (5) −0.0285 (6)
C1B 0.0123 (3) 0.0107 (4) 0.0093 (3) 0.0010 (3) 0.0022 (2) 0.0000 (2)
C2B 0.0209 (4) 0.0117 (4) 0.0114 (3) 0.0047 (3) 0.0004 (3) 0.0006 (3)
C3B 0.0187 (4) 0.0263 (6) 0.0210 (4) 0.0078 (4) −0.0005 (3) 0.0026 (3)
C4B 0.0326 (5) 0.0146 (4) 0.0179 (4) −0.0008 (4) 0.0067 (4) 0.0039 (3)

Geometric parameters (Å, º)

Co1—O1A 2.0449 (6) C2A—C4A 1.5176 (16)
Co1—O2Ai 2.0142 (6) C3A—H3A1 0.9600
Co1—O1B 2.1100 (6) C3A—H3A2 0.9600
Co1—O1Bi 2.1198 (6) C3A—H3A3 0.9600
Co1—O1W 2.1768 (6) C4A—H4A1 0.9600
Co1—O1Wi 2.1777 (6) C4A—H4A2 0.9600
O1A—C1A 1.2755 (10) C4A—H4A3 0.9600
O2A—C1A 1.2533 (10) C1B—C2B 1.5179 (12)
O1B—C1B 1.2878 (9) C2B—H2B 0.9800
O2B—C1B 1.2510 (11) C2B—C3B 1.5340 (14)
O1W—H1W1 0.79 (2) C2B—C4B 1.5329 (14)
O1W—H1W2 0.88 (2) C3B—H3B1 0.9600
O2W—H2W1 0.861 (12) C3B—H3B2 0.9600
O2W—H2W2 0.884 (11) C3B—H3B3 0.9600
C1A—C2A 1.5191 (12) C4B—H4B1 0.9600
C2A—H2A 0.9800 C4B—H4B2 0.9600
C2A—C3A 1.5187 (15) C4B—H4B3 0.9600
O1A—Co1—O1B 88.13 (3) C4A—C2A—C3A 111.50 (9)
O1A—Co1—O1Bi 89.41 (3) C2A—C3A—H3A1 109.5
O1A—Co1—O1W 92.18 (3) C2A—C3A—H3A2 109.5
O1A—Co1—O1Wi 88.29 (3) C2A—C3A—H3A3 109.5
O2Ai—Co1—O1A 175.30 (3) H3A1—C3A—H3A2 109.5
O2Ai—Co1—O1B 89.99 (3) H3A1—C3A—H3A3 109.5
O2Ai—Co1—O1Bi 93.14 (3) H3A2—C3A—H3A3 109.5
O2Ai—Co1—O1W 91.70 (3) C2A—C4A—H4A1 109.5
O2Ai—Co1—O1Wi 88.33 (3) C2A—C4A—H4A2 109.5
O1B—Co1—O1Bi 170.29 (2) C2A—C4A—H4A3 109.5
O1B—Co1—O1W 79.22 (2) H4A1—C4A—H4A2 109.5
O1Bi—Co1—O1W 91.49 (2) H4A1—C4A—H4A3 109.5
O1B—Co1—O1Wi 110.31 (2) H4A2—C4A—H4A3 109.5
O1Bi—Co1—O1Wi 78.99 (2) O1B—C1B—C2B 118.13 (8)
O1W—Co1—O1Wi 170.46 (2) O2B—C1B—O1B 122.42 (8)
C1A—O1A—Co1 130.11 (6) O2B—C1B—C2B 119.42 (7)
C1A—O2A—Co1ii 131.28 (6) C1B—C2B—H2B 108.3
Co1—O1B—Co1ii 98.44 (2) C1B—C2B—C3B 111.27 (8)
C1B—O1B—Co1 135.89 (6) C1B—C2B—C4B 109.15 (8)
C1B—O1B—Co1ii 125.09 (6) C3B—C2B—H2B 108.3
Co1—O1W—Co1ii 94.70 (2) C4B—C2B—H2B 108.3
Co1—O1W—H1W1 109.1 (16) C4B—C2B—C3B 111.30 (8)
Co1ii—O1W—H1W1 116.6 (14) C2B—C3B—H3B1 109.5
Co1—O1W—H1W2 98.2 (15) C2B—C3B—H3B2 109.5
Co1ii—O1W—H1W2 127.6 (14) C2B—C3B—H3B3 109.5
H1W1—O1W—H1W2 106 (2) H3B1—C3B—H3B2 109.5
H2W1—O2W—H2W2 103.8 (14) H3B1—C3B—H3B3 109.5
O2A—C1A—O1A 124.94 (8) H3B2—C3B—H3B3 109.5
O2A—C1A—C2A 118.59 (7) C2B—C4B—H4B1 109.5
O1A—C1A—C2A 116.46 (7) C2B—C4B—H4B2 109.5
C1A—C2A—H2A 107.6 C2B—C4B—H4B3 109.5
C3A—C2A—C1A 113.25 (8) H4B1—C4B—H4B2 109.5
C3A—C2A—H2A 107.6 H4B1—C4B—H4B3 109.5
C4A—C2A—C1A 108.94 (8) H4B2—C4B—H4B3 109.5
C4A—C2A—H2A 107.6
Co1—O1A—C1A—C2A −166.13 (6) Co1ii—O1B—C1B—O2B −16.84 (12)
Co1—O1A—C1A—O2A 12.38 (12) Co1—O1B—C1B—C2B −4.15 (12)
O1A—C1A—C2A—C3A −168.74 (8) Co1ii—O1B—C1B—C2B 165.09 (6)
O1A—C1A—C2A—C4A 66.57 (12) O1B—C1B—C2B—C3B −138.98 (8)
O2A—C1A—C2A—C3A 12.65 (12) O1B—C1B—C2B—C4B 97.80 (9)
O2A—C1A—C2A—C4A −112.03 (11) O2B—C1B—C2B—C3B 42.89 (11)
Co1—O1B—C1B—O2B 173.93 (6) O2B—C1B—C2B—C4B −80.33 (10)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···O2W 0.79 (2) 1.91 (2) 2.6638 (10) 161 (2)
O1W—H1W2···O2Bi 0.88 (2) 1.79 (2) 2.6206 (9) 158 (2)
O2W—H2W1···O1Aii 0.86 (1) 2.01 (1) 2.7967 (9) 151 (1)
O2W—H2W2···O2Biii 0.88 (1) 1.95 (1) 2.8087 (9) 163 (1)
C2B—H2B···O2Ai 0.98 2.47 3.3094 (11) 144

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z+1/2.

References

  1. Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker, (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Eremenko, I. L., Sidorov, A. A. & Kiskin, M. A. (2009). Magnetic Nanoparticles, edited by S. P. Gubin, pp. 349–391. Weinheim: Wiley-VCH.
  5. Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2010). Acta Cryst. E66, m1498. [DOI] [PMC free article] [PubMed]
  6. Fischer, A. I., Gurzhiy, V. V. & Belyaev, A. N. (2011). Acta Cryst. E67, m807–m808. [DOI] [PMC free article] [PubMed]
  7. Fischer, A. I., Kuznetsov, V. A. & Belyaev, A. N. (2012). Russ. J. Gen. Chem. 82, 508–509.
  8. Fischer, A. I., Kuznetsov, V. A., Shchukarev, A. V. & Belyaev, A. N. (2012). Russ. Chem. Bull. 61, 821–827.
  9. Gates, B. C. (1992). In Catalytic Chemistry, New York: Wiley Interscience.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Jiao, X.-D., Guzei, I. A. & Espenson, J. H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 173–174.
  12. Parshall, G. W. & Ittel, S. D. (1992). In Homogenous Catalysis. New York: Wiley Interscience.
  13. Partenheimer, W. (1995). Catal. Today, 23, 69–158.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Ward, A. J., Masters, A. F. & Maschmeyer, T. (2013a). Comprehensive Inorganic Chemistry II, ch. 6.23, pp. 665–684. Amsterdam: Elsevier.
  17. Ward, A. J., Masters, A. F. & Maschmeyer, T. (2013b). Comprehensive Inorganic Chemistry II, ch. 8.05, pp. 191–228. Amsterdam: Elsevier.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989017001360/zs2371sup1.cif

e-73-00318-sup1.cif (23.8KB, cif)

CCDC reference: 1529830

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES