The crystal structure of the low-temperature monoclinic phase of (Me4N)2[CuCl4] was determined at 120 K. The asymmetric unit consists of a discrete tetrahedral [CuCl4]2− anion and two crystallographically independent tetramethylammonium cations.
Keywords: crystal structure, tetrahedral tetrachloridocuprate ion, tetramethylammonium ion
Abstract
The crystal structure of the low-temperature monoclinic phase of the title compound, [(CH3)4N]2[CuCl4], was determined at 120 K. The structure of the room-temperature phase has been determined in the orthorhombic space group Pmcm [Morosin & Lingafelter (1961 ▸). J. Phys. Chem. 50–51; Clay et al. (1975 ▸). Acta Cryst. B31 289–290]. The asymmetric unit consists of one discrete tetrachloridocuprate anion with a distorted tetrahedral geometry and two tetramethylammonium cations. In the crystal, the cations and the anions are linked via weak C—H⋯Cl hydrogen bonds.
Chemical context
The title compound undergoes successive phase transitions at 297, 291 and 263 K (Sugiyama et al., 1980 ▸). The room temperature phase (phase I) crystallizes in the orthorhombic space group Pmcm with Z = 4 (Morosin & Lingafelter, 1961 ▸; Clay et al., 1975 ▸). Three low-temperature phases, named phases II, III and IV in the order of decreasing temperature, show incommensurate, ferroelastic commensurate monoclinic and monoclinic structures, respectively (Sugiyama et al., 1980 ▸; Gesi & Iizumi, 1980 ▸). We allowed [(CH3)4N]Cl, CuCl2 and thioacetamide to react in ethanol. The expected mixed ligand complex was not crystallized but instead the title compound was obtained accidentally. The crystal structure of phase IV of the title compound was determined at 120 K and is reported herein.
Structural commentary
The asymmetric unit of the title compound consists of a discrete [CuCl4]2− anion and two crystallographically tetramethylammonium cations (Fig. 1 ▸). In the anion, the four Cl atoms are inequivalent with Cu—Cl distances ranging from 2.2313 (15) to 2.2538 (16) Å. The Cl—Cu—Cl angles vary from 98.44 (7) to 133.69 (7)°, indicating a distorted tetrahedral geometry around the CuII atom. Using Houser’s τ4 metric [τ4 = 360 − (α + β)/141], where α and β are the largest angles about the metal atom (Yang et al., 2007 ▸), we obtain a value of 0.658 for phase IV and 0.792 for the orthorhombic phase I. This indicates a greater deviation from an ideal tetrahedron in phase IV compared with phase I, tending towards a ‘see-saw’ geometry.
Figure 1.
The asymmetric unit of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are depicted as spheres of an arbitrary radius.
Supramolecular features
In the crystal, the cations and the anions are linked via weak C—H⋯Cl hydrogen bonds (Table 1 ▸ and Fig. 2 ▸), forming a three-dimensional network.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1C⋯Cl2i | 0.98 | 2.69 | 3.585 (7) | 153 |
| C2—H2A⋯Cl1ii | 0.98 | 2.79 | 3.675 (7) | 151 |
| C2—H2A⋯Cl3ii | 0.98 | 2.80 | 3.555 (7) | 134 |
| C2—H2B⋯Cl1i | 0.98 | 2.79 | 3.674 (7) | 150 |
| C3—H3B⋯Cl4 | 0.98 | 2.74 | 3.670 (7) | 159 |
| C4—H4A⋯Cl3iii | 0.98 | 2.59 | 3.555 (7) | 166 |
| C5—H5A⋯Cl2iv | 0.98 | 2.68 | 3.635 (7) | 165 |
| C5—H5B⋯Cl3v | 0.98 | 2.81 | 3.587 (6) | 137 |
| C5—H5C⋯Cl4i | 0.98 | 2.63 | 3.610 (6) | 173 |
| C8—H8B⋯Cl1iii | 0.98 | 2.76 | 3.650 (6) | 151 |
| C8—H8C⋯Cl2v | 0.98 | 2.82 | 3.763 (7) | 162 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 2.
A packing diagram of the title compound, viewed along the a axis, showing the C—H⋯Cl hydrogen bonds (blue dashed lines).
Database survey
A substructure search for compounds that incorporate a tetramethylammonium ion and a copper tetrachloride species reveals thirteen structures (CSD November 2016; Groom et al., 2016 ▸). Of these, three are structures of (Me4N)2[CuCl4] with a discrete [CuCl4]2− anion (Morosin & Lingafelter, 1961 ▸; Clay et al., 1975 ▸; Hlel et al., 2008 ▸).
Synthesis and crystallization
On mixing [(CH3)4N]Cl (0.465 g, 4.2 mmol) in ethanol (10 ml) with CuCl2·2H2O (0.365 g, 2.1 mmol) in ethanol (10 ml) and thioacetamide (0.160 g, 2.1 mmol) in ethanol (10 ml), a clear solution is obtained. Slow evaporation at room temperature (301 K) yielded pale-green crystals of [(CH3)4N]2[CuCl4] suitable for X-ray determination.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. H atoms were included in idealized geometries and allowed to rotate to minimize their electron-density contribution with C—H = 0.98 Å and U iso(H) = 1.5U eq(C). The crystal used was found to be twinned through a 180° rotation about the reciprocal a axis with a twin component ratio of 0.76:0.24 (matrix: [1.000 −0.003 0.004 0.001 −1.000 −0.003 −0.093 0.005 −1.000]) . The diffraction data were integrated routinely applying this matrix and were scaled for absorption effects using TWINABS (Krause et al., 2015 ▸). In the final model, incorporation of the twinned data did not significantly alter the model, thus the final model was refined using the majority component data.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | (C4H12N)2[CuCl4] |
| M r | 353.63 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 120 |
| a, b, c (Å) | 8.9901 (5), 12.0059 (7), 14.9570 (9) |
| β (°) | 91.719 (3) |
| V (Å3) | 1613.65 (16) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.99 |
| Crystal size (mm) | 0.15 × 0.12 × 0.11 |
| Data collection | |
| Diffractometer | Bruker APEXII |
| Absorption correction | Multi-scan (TWINABS; Krause et al., 2015 ▸) |
| T min, T max | 0.659, 0.746 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 7842, 4019, 2862 |
| R int | 0.057 |
| (sin θ/λ)max (Å−1) | 0.669 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.066, 0.141, 1.12 |
| No. of reflections | 4019 |
| No. of parameters | 144 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.16, −1.03 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002146/is5469sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002146/is5469Isup2.hkl
CCDC reference: 1531866
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) and the University of Notre Dame (USA) for equipment support.
supplementary crystallographic information
Crystal data
| (C4H12N)2[CuCl4] | F(000) = 732 |
| Mr = 353.63 | Dx = 1.456 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 8.9901 (5) Å | Cell parameters from 6598 reflections |
| b = 12.0059 (7) Å | θ = 2.6–24.7° |
| c = 14.9570 (9) Å | µ = 1.99 mm−1 |
| β = 91.719 (3)° | T = 120 K |
| V = 1613.65 (16) Å3 | Block, pale green |
| Z = 4 | 0.15 × 0.12 × 0.11 mm |
Data collection
| Bruker APEXII diffractometer | 4019 independent reflections |
| Radiation source: fine-focus sealed tube | 2862 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.057 |
| Detector resolution: 8.33 pixels mm-1 | θmax = 28.4°, θmin = 2.2° |
| combination of ω and φ–scans | h = −12→12 |
| Absorption correction: multi-scan (TWINABS; Krause et al., 2015) | k = −16→16 |
| Tmin = 0.659, Tmax = 0.746 | l = 0→19 |
| 7842 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: real-space vector search |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.141 | H-atom parameters constrained |
| S = 1.12 | w = 1/[σ2(Fo2) + 15.8242P] where P = (Fo2 + 2Fc2)/3 |
| 4019 reflections | (Δ/σ)max < 0.001 |
| 144 parameters | Δρmax = 1.16 e Å−3 |
| 0 restraints | Δρmin = −1.03 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.77037 (7) | 0.71890 (6) | 0.60734 (5) | 0.01762 (17) | |
| Cl1 | 0.78370 (15) | 0.53786 (11) | 0.64164 (10) | 0.0211 (3) | |
| Cl2 | 0.79189 (17) | 0.81507 (13) | 0.47896 (10) | 0.0275 (3) | |
| Cl3 | 0.97801 (15) | 0.77628 (13) | 0.67958 (10) | 0.0267 (3) | |
| Cl4 | 0.52836 (16) | 0.74708 (14) | 0.62755 (13) | 0.0363 (4) | |
| N1 | 0.2548 (5) | 0.4839 (4) | 0.6659 (3) | 0.0183 (10) | |
| C1 | 0.1601 (7) | 0.3893 (5) | 0.6925 (5) | 0.0322 (15) | |
| H1A | 0.0671 | 0.4177 | 0.7162 | 0.048* | |
| H1B | 0.2128 | 0.3452 | 0.7386 | 0.048* | |
| H1C | 0.1378 | 0.3422 | 0.6403 | 0.048* | |
| C2 | 0.1815 (7) | 0.5491 (6) | 0.5923 (4) | 0.0328 (15) | |
| H2A | 0.0840 | 0.5750 | 0.6113 | 0.049* | |
| H2B | 0.1685 | 0.5017 | 0.5392 | 0.049* | |
| H2C | 0.2436 | 0.6133 | 0.5779 | 0.049* | |
| C3 | 0.2801 (7) | 0.5574 (6) | 0.7446 (5) | 0.0344 (16) | |
| H3A | 0.1846 | 0.5868 | 0.7639 | 0.052* | |
| H3B | 0.3451 | 0.6192 | 0.7284 | 0.052* | |
| H3C | 0.3273 | 0.5146 | 0.7935 | 0.052* | |
| C4 | 0.4008 (6) | 0.4411 (6) | 0.6347 (5) | 0.0296 (14) | |
| H4A | 0.4516 | 0.4002 | 0.6834 | 0.044* | |
| H4B | 0.4629 | 0.5038 | 0.6167 | 0.044* | |
| H4C | 0.3836 | 0.3912 | 0.5836 | 0.044* | |
| N2 | 0.7505 (5) | 0.1309 (4) | 0.5840 (3) | 0.0198 (10) | |
| C5 | 0.7809 (7) | 0.1175 (6) | 0.4871 (4) | 0.0279 (14) | |
| H5A | 0.7882 | 0.0381 | 0.4727 | 0.042* | |
| H5B | 0.8748 | 0.1545 | 0.4738 | 0.042* | |
| H5C | 0.6998 | 0.1511 | 0.4512 | 0.042* | |
| C6 | 0.6058 (7) | 0.0788 (6) | 0.6059 (5) | 0.0334 (16) | |
| H6A | 0.6112 | −0.0018 | 0.5957 | 0.050* | |
| H6B | 0.5264 | 0.1106 | 0.5675 | 0.050* | |
| H6C | 0.5846 | 0.0931 | 0.6687 | 0.050* | |
| C7 | 0.7444 (8) | 0.2520 (5) | 0.6048 (5) | 0.0347 (16) | |
| H7A | 0.7225 | 0.2622 | 0.6681 | 0.052* | |
| H7B | 0.6661 | 0.2872 | 0.5676 | 0.052* | |
| H7C | 0.8405 | 0.2863 | 0.5925 | 0.052* | |
| C8 | 0.8722 (7) | 0.0776 (6) | 0.6381 (4) | 0.0304 (15) | |
| H8A | 0.8733 | −0.0026 | 0.6260 | 0.046* | |
| H8B | 0.8558 | 0.0901 | 0.7018 | 0.046* | |
| H8C | 0.9678 | 0.1102 | 0.6222 | 0.046* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0169 (3) | 0.0172 (3) | 0.0188 (3) | 0.0000 (3) | 0.0018 (2) | 0.0003 (3) |
| Cl1 | 0.0216 (7) | 0.0157 (6) | 0.0261 (7) | 0.0009 (5) | 0.0031 (5) | 0.0006 (5) |
| Cl2 | 0.0355 (8) | 0.0277 (8) | 0.0195 (7) | −0.0040 (6) | 0.0024 (6) | 0.0043 (6) |
| Cl3 | 0.0227 (7) | 0.0268 (8) | 0.0304 (8) | −0.0034 (6) | −0.0019 (6) | −0.0028 (6) |
| Cl4 | 0.0169 (7) | 0.0303 (8) | 0.0621 (12) | 0.0049 (6) | 0.0097 (7) | 0.0129 (8) |
| N1 | 0.014 (2) | 0.018 (2) | 0.022 (3) | 0.0001 (18) | −0.0003 (18) | 0.0018 (19) |
| C1 | 0.028 (3) | 0.022 (3) | 0.047 (4) | −0.010 (3) | 0.012 (3) | −0.005 (3) |
| C2 | 0.030 (3) | 0.048 (4) | 0.020 (3) | 0.013 (3) | −0.004 (3) | 0.007 (3) |
| C3 | 0.038 (4) | 0.037 (4) | 0.028 (4) | −0.016 (3) | −0.001 (3) | −0.001 (3) |
| C4 | 0.020 (3) | 0.030 (4) | 0.038 (4) | 0.006 (3) | 0.008 (3) | 0.007 (3) |
| N2 | 0.020 (2) | 0.020 (2) | 0.019 (3) | 0.0022 (19) | 0.0043 (19) | 0.0018 (19) |
| C5 | 0.036 (4) | 0.031 (3) | 0.016 (3) | 0.009 (3) | 0.002 (3) | 0.001 (3) |
| C6 | 0.021 (3) | 0.031 (4) | 0.048 (4) | −0.006 (3) | 0.007 (3) | 0.005 (3) |
| C7 | 0.051 (4) | 0.022 (3) | 0.032 (4) | 0.001 (3) | 0.009 (3) | −0.002 (3) |
| C8 | 0.025 (3) | 0.043 (4) | 0.023 (3) | 0.009 (3) | 0.001 (2) | 0.010 (3) |
Geometric parameters (Å, º)
| Cu1—Cl4 | 2.2313 (15) | C4—H4B | 0.9800 |
| Cu1—Cl1 | 2.2357 (15) | C4—H4C | 0.9800 |
| Cu1—Cl3 | 2.2374 (15) | N2—C8 | 1.486 (7) |
| Cu1—Cl2 | 2.2538 (16) | N2—C7 | 1.488 (8) |
| N1—C1 | 1.481 (7) | N2—C6 | 1.488 (7) |
| N1—C3 | 1.483 (8) | N2—C5 | 1.491 (7) |
| N1—C2 | 1.488 (7) | C5—H5A | 0.9800 |
| N1—C4 | 1.498 (7) | C5—H5B | 0.9800 |
| C1—H1A | 0.9800 | C5—H5C | 0.9800 |
| C1—H1B | 0.9800 | C6—H6A | 0.9800 |
| C1—H1C | 0.9800 | C6—H6B | 0.9800 |
| C2—H2A | 0.9800 | C6—H6C | 0.9800 |
| C2—H2B | 0.9800 | C7—H7A | 0.9800 |
| C2—H2C | 0.9800 | C7—H7B | 0.9800 |
| C3—H3A | 0.9800 | C7—H7C | 0.9800 |
| C3—H3B | 0.9800 | C8—H8A | 0.9800 |
| C3—H3C | 0.9800 | C8—H8B | 0.9800 |
| C4—H4A | 0.9800 | C8—H8C | 0.9800 |
| Cl4—Cu1—Cl1 | 99.33 (6) | N1—C4—H4C | 109.5 |
| Cl4—Cu1—Cl3 | 133.69 (7) | H4A—C4—H4C | 109.5 |
| Cl1—Cu1—Cl3 | 98.64 (6) | H4B—C4—H4C | 109.5 |
| Cl4—Cu1—Cl2 | 98.44 (7) | C8—N2—C7 | 109.7 (5) |
| Cl1—Cu1—Cl2 | 133.48 (6) | C8—N2—C6 | 109.5 (5) |
| Cl3—Cu1—Cl2 | 99.32 (6) | C7—N2—C6 | 109.1 (5) |
| C1—N1—C3 | 108.6 (5) | C8—N2—C5 | 109.2 (4) |
| C1—N1—C2 | 110.9 (5) | C7—N2—C5 | 108.5 (5) |
| C3—N1—C2 | 109.2 (5) | C6—N2—C5 | 110.8 (5) |
| C1—N1—C4 | 109.7 (5) | N2—C5—H5A | 109.5 |
| C3—N1—C4 | 109.6 (5) | N2—C5—H5B | 109.5 |
| C2—N1—C4 | 108.9 (5) | H5A—C5—H5B | 109.5 |
| N1—C1—H1A | 109.5 | N2—C5—H5C | 109.5 |
| N1—C1—H1B | 109.5 | H5A—C5—H5C | 109.5 |
| H1A—C1—H1B | 109.5 | H5B—C5—H5C | 109.5 |
| N1—C1—H1C | 109.5 | N2—C6—H6A | 109.5 |
| H1A—C1—H1C | 109.5 | N2—C6—H6B | 109.5 |
| H1B—C1—H1C | 109.5 | H6A—C6—H6B | 109.5 |
| N1—C2—H2A | 109.5 | N2—C6—H6C | 109.5 |
| N1—C2—H2B | 109.5 | H6A—C6—H6C | 109.5 |
| H2A—C2—H2B | 109.5 | H6B—C6—H6C | 109.5 |
| N1—C2—H2C | 109.5 | N2—C7—H7A | 109.5 |
| H2A—C2—H2C | 109.5 | N2—C7—H7B | 109.5 |
| H2B—C2—H2C | 109.5 | H7A—C7—H7B | 109.5 |
| N1—C3—H3A | 109.5 | N2—C7—H7C | 109.5 |
| N1—C3—H3B | 109.5 | H7A—C7—H7C | 109.5 |
| H3A—C3—H3B | 109.5 | H7B—C7—H7C | 109.5 |
| N1—C3—H3C | 109.5 | N2—C8—H8A | 109.5 |
| H3A—C3—H3C | 109.5 | N2—C8—H8B | 109.5 |
| H3B—C3—H3C | 109.5 | H8A—C8—H8B | 109.5 |
| N1—C4—H4A | 109.5 | N2—C8—H8C | 109.5 |
| N1—C4—H4B | 109.5 | H8A—C8—H8C | 109.5 |
| H4A—C4—H4B | 109.5 | H8B—C8—H8C | 109.5 |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1C···Cl2i | 0.98 | 2.69 | 3.585 (7) | 153 |
| C2—H2A···Cl1ii | 0.98 | 2.79 | 3.675 (7) | 151 |
| C2—H2A···Cl3ii | 0.98 | 2.80 | 3.555 (7) | 134 |
| C2—H2B···Cl1i | 0.98 | 2.79 | 3.674 (7) | 150 |
| C3—H3B···Cl4 | 0.98 | 2.74 | 3.670 (7) | 159 |
| C4—H4A···Cl3iii | 0.98 | 2.59 | 3.555 (7) | 166 |
| C5—H5A···Cl2iv | 0.98 | 2.68 | 3.635 (7) | 165 |
| C5—H5B···Cl3v | 0.98 | 2.81 | 3.587 (6) | 137 |
| C5—H5C···Cl4i | 0.98 | 2.63 | 3.610 (6) | 173 |
| C8—H8B···Cl1iii | 0.98 | 2.76 | 3.650 (6) | 151 |
| C8—H8C···Cl2v | 0.98 | 2.82 | 3.763 (7) | 162 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+3/2, y−1/2, −z+3/2; (iv) x, y−1, z; (v) −x+2, −y+1, −z+1.
References
- Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clay, R., Murray-Rust, J. & Murray-Rust, P. (1975). Acta Cryst. B31, 289–290.
- Gesi, K. & Iizumi, M. (1980). J. Phys. Soc. Jpn, 48, 1775–1776.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hlel, F., Ben Rhaeim, A. & Guidara, K. (2008). Zh. Neorg. Khim. 53, 785–793.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Morosin, B. & Lingafelter, E. C. (1961). J. Phys. Chem. 65, 50–51.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sugiyama, J., Wada, M., Sawada, A. & Ishibashi, Y. (1980). J. Phys. Soc. Jpn, 49, 1405–1412.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002146/is5469sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002146/is5469Isup2.hkl
CCDC reference: 1531866
Additional supporting information: crystallographic information; 3D view; checkCIF report


