Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Feb 14;73(Pt 3):375–377. doi: 10.1107/S2056989017002031

Crystal structure of poly[[aqua­(μ-2,3-di­hydro­thieno[3,4-b][1,4]dioxine-5,7-di­carboxyl­ato-κ2 O 5:O 7)[μ-di(pyridin-4-yl)sulfane-κ2 N:N′]zinc] 0.26-hydrate]

Wen-Liang Wu a, Bing Hu a,*
PMCID: PMC5347058  PMID: 28316813

The zinc cation in the structure has a N2O3 coordination set, arranged in a trigonal–bipyramidal configuration. The bridging mode of the organic ligands leads to the formation of a polymeric layer structure parallel to the ab plane.

Keywords: crystal structure, hydrogen bond, zinc, trigonal–bipyramidal coordination environment

Abstract

The crystal structure of the title polymer, {[Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O}n, is characterized by a layered arrangement parallel to the ab plane. The zinc cation is five-coordinated in a slightly distorted trigonal–bipyramidal coordination environment defined by two pyridine ligands, two carboxyl­ate groups of two thio­phene di­carboxyl­ate ligands, and by one water mol­ecule. The ethyl­ene bridge in the dioxine ligand is disordered over two sets of sites [occupancy ratio 0.624 (9):0.376 (9)]. Several hydrogen-bonding inter­actions of the types O—H⋯O, C—H⋯O, C—H⋯S and C—H⋯N ensure the cohesion within the crystal structure.

Chemical context  

Complexes constructed by metal ions and organic ligands are of continuous inter­est due to the vast diversity and feasible tailorability of their structures and functions compared with purely inorganic compounds (Zhang et al., 2015).graphic file with name e-73-00375-scheme1.jpg

The incorporation of both carb­oxy­lic and pyridine ligands can lead to a variety of structures (Schoedel et al., 2016). Complexes based on thio­phene derivatives with carb­oxy­lic acid functionalities are of some inter­est as anti­cancer agents (Chen et al., 1998, 1999; Guo et al., 2009). In this context, we report here on synthesis and crystal structure of the title compound, [Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O, (1).

Structural commentary  

In the crystal structure of (1), the zinc ion is coordinated by four organic ligands and one water mol­ecule, giving rise to a slightly distorted trigonal–bipyramidal coordination environment. Two nitro­gen atoms are delivered by two symmetry-related pyridine ligands, two oxygen atoms of two carboxyl groups stem from two symmetry-related thio­phene carboxyl­ate ligands, and one O atom from the aqua ligand (Fig. 1). In the trigonal bipyramid, the axial angle O7—Zn1—N2 is 171.31 (6)°. The ZnII ion is co-planar with the O5—N1—O4 equatorial plane, with the deviation of the Zn atom from this plane being 0.0034 (3) Å. The equatorial Zn1—N1 bond length is 2.1131 (18) Å, while the axial Zn1—N2 bond is longer, 2.2107 (18) Å. Similarly, the two equatorial Zn1—O (O4, O5) bond lengths, ranging from 1.9835 (15) to 2.0285 (15) Å, are shorter than the axial Zn1—O7 bond of 2.1375 (17) Å. These are typical values, numerical details of which are given in Table 1.

Figure 1.

Figure 1

The asymmetric unit of (1), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonding is indicated by dashed lines.

Table 1. Selected geometric parameters (Å, °).

Zn1—O5 1.9835 (15) Zn1—O7 2.1375 (17)
Zn1—O4i 2.0285 (15) Zn1—N2ii 2.2107 (18)
Zn1—N1 2.1131 (18)    
       
O5—Zn1—O4i 117.56 (6) N1—Zn1—O7 85.43 (7)
O5—Zn1—N1 95.66 (7) O5—Zn1—N2ii 95.24 (7)
O4i—Zn1—N1 146.78 (7) O4i—Zn1—N2ii 85.85 (7)
O5—Zn1—O7 93.06 (6) N1—Zn1—N2ii 91.17 (7)
O4i—Zn1—O7 92.61 (6) O7—Zn1—N2ii 171.31 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

The bridging coordinating mode of the organic ligands leads to the formation of polymeric layers parallel to the ab plane (Fig. 2).

Figure 2.

Figure 2

The polymeric layer in the crystal structure of (1), extending along the ab plane (H atoms have been omitted for clarity).

There are several types of hydrogen bonds in the structure. One intra­molecular hydrogen bond is present and extends from a (pyridine)C—H group (C10—H10A) to the coordinating O5 atom of the carboxyl group. Another (pyridine)C—H group (C18—H18A) is hydrogen-bonded to the disordered O8 atom of the lattice water mol­ecule. Three O—H⋯O inter­actions are present between the coordinating water mol­ecule to either the carboxyl group oxygen atoms or the dioxine oxygen atom in the thio­phene derivative with DA distances ranging between 2.733 (2) and 3.123 (2) Å and corresponding O—H⋯O angles of 135 (2) and 159 (2)°. Numerous other C—H⋯O inter­actions are present between the disordered dioxine C—H groups and a carboxyl O atom (O6) or the lattice water atom O8. Other C—H⋯O inter­actions involve pyridyl C—H groups and the carboxyl O3 atom. In addition, one C—H⋯S inter­action and one C—H⋯N inter­action are found between pyridyl C—H groups and the sulfane S1 atom or the pyridyl N1 atom (Fig. 3). It is expected that other extensive hydrogen bonds are formed with the lattice water mol­ecules as the donor group and the coordinating water mol­ecules or carbonyl O atoms from the layers as acceptors (O8⋯O distances in the range 2.87–3.13 Å). However, since the H atoms of the disordered O8 atom were not modelled, a definite statement cannot be made. Numerical details of the hydrogen bonding are given in Table 2.

Figure 3.

Figure 3

Part of the crystal structure of (1), showing the network formed by inter­molecular C—H⋯O, O—H⋯O, C—H⋯S and C—H⋯N hydrogen bonds (shown as dashed lines).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2iii 0.83 (1) 2.48 (2) 3.123 (2) 135 (2)
O7—H7A⋯O4iii 0.83 (1) 2.04 (2) 2.746 (2) 143 (2)
O7—H7B⋯O6iv 0.83 (1) 1.94 (1) 2.733 (2) 159 (2)
C3—H3A⋯O6v 0.97 2.66 3.275 (9) 122
C4—H4A⋯O8iii 0.97 2.27 3.015 (17) 133
C3A—H3D⋯O6v 0.97 2.60 3.473 (19) 150
C4A—H4C⋯O8vi 0.97 1.93 2.566 (16) 121
C10—H10A⋯O5 0.93 2.50 3.079 (3) 121
C14—H14A⋯O3i 0.93 2.51 3.213 (3) 133
C15—H15A⋯S1vii 0.93 3.01 3.768 (2) 140
C15—H15A⋯O3vii 0.93 2.57 3.096 (3) 116
C15—H15A⋯N1viii 0.93 2.67 3.227 (3) 119
C18—H18A⋯O8 0.93 2.58 3.190 (13) 123

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Database survey  

Some complexes based on tddc2− (H2ttdc is 2,3-di­hydro­thieno[3,4-b][1,4]dioxine-5,7-di­carb­oxy­lic acid) (Guo et al., 2009) or di(pyridin-4-yl)sulfane (Liu et al., 2015; Han et al., 2015) have been reported, but a complex incorporating both ligands was not found.

Synthesis and crystallization  

2,3-Di­hydro­thieno[3,4-b][1,4]dioxine-5,7-di­carb­oxy­lic acid (H2ttdc) was prepared as reported (Zhang et al., 2011), and di(pyridin-4-yl)sulfane was formed in situ from the reactant 4,4′-di­thiodi­pyridine in the synthesis. A mixture of zinc nitrate (0.06 g, 0.21 mmol), H2ttdc (0.02 g, 0.10 mmol), 4,4′-di­thiodi­pyridine (0.02 g, 0.10 mmol), 5 ml di­methyl­formamide and 3 ml water was mixed and heated at 353 K for 3 days. After cooling, 0.17 g light-yellow crystals were collected in a yield of 32%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to carbon were positioned geometrically and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C). The H atoms of the coordinating water mol­ecule were located in a difference map and restrained to have comparable bond lengths using DFIX and DANG commands to keep their geometries reasonable; U iso(H) values were set to 1.5U eq(O). The hydrogen atoms of the disordered lattice water mol­ecule [occupancy 0.262 (10)] could not be retrieved from difference maps and thus were not part of the model. Two carbon atoms of the dioxine moiety are disordered over two sets of sites and were refined in two parts (C3–C4/C3A–C4A) with a refined occupancy ratio of 0.624 (9)/0.376 (9). Soft restraints (DFIX, SIMU, SADI) were applied on the disordered atoms to keep their geometries and atomic displacement parameters reasonable.

Table 3. Experimental details.

Crystal data
Chemical formula [Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O
M r 504.57
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 295
a, b, c (Å) 10.0052 (6), 10.2173 (5), 10.6694 (5)
α, β, γ (°) 87.515 (4), 68.625 (5), 73.988 (5)
V3) 974.27 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.52
Crystal size (mm) 0.32 × 0.25 × 0.20
 
Data collection
Diffractometer Rigaku SuperNova, single source at offset, EosS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.784, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10924, 3925, 3549
R int 0.021
(sin θ/λ)max−1) 0.659
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.069, 1.01
No. of reflections 3925
No. of parameters 306
No. of restraints 47
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.39

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363sup1.cif

e-73-00375-sup1.cif (383.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363Isup2.hkl

e-73-00375-Isup2.hkl (312.8KB, hkl)

CCDC reference: 1528425

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O Z = 2
Mr = 504.57 F(000) = 512.7
Triclinic, P1 Dx = 1.718 Mg m3
a = 10.0052 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2173 (5) Å Cell parameters from 6096 reflections
c = 10.6694 (5) Å θ = 4.1–27.2°
α = 87.515 (4)° µ = 1.52 mm1
β = 68.625 (5)° T = 295 K
γ = 73.988 (5)° Block, yellow
V = 974.27 (10) Å3 0.32 × 0.25 × 0.20 mm

Data collection

Rigaku SuperNova, single source at offset, EosS2 diffractometer 3925 independent reflections
Radiation source: micro-focus sealed X-ray tube 3549 reflections with I > 2σ(I)
Detector resolution: 8.0584 pixels mm-1 Rint = 0.021
ω scans θmax = 27.9°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) h = −12→12
Tmin = 0.784, Tmax = 1.000 k = −13→13
10924 measured reflections l = −14→13

Refinement

Refinement on F2 47 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0267P)2 + 0.8P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3925 reflections Δρmax = 0.58 e Å3
306 parameters Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.87280 (3) 0.50627 (3) 0.23783 (3) 0.02570 (9)
S1 0.40744 (6) 0.53672 (5) 0.19475 (5) 0.02461 (13)
S2 0.66583 (9) 0.04878 (7) 0.67347 (6) 0.04739 (19)
O1 0.46527 (18) 0.85023 (18) −0.01437 (18) 0.0414 (4)
O2 0.17934 (19) 0.80589 (19) 0.0274 (2) 0.0467 (5)
O3 0.11429 (19) 0.47305 (18) 0.27948 (18) 0.0425 (4)
O4 0.03227 (16) 0.59934 (17) 0.13592 (15) 0.0315 (4)
O5 0.69482 (17) 0.54177 (17) 0.18673 (16) 0.0341 (4)
O6 0.72194 (17) 0.71896 (18) 0.05940 (18) 0.0417 (4)
O7 0.98637 (17) 0.32423 (18) 0.10848 (16) 0.0331 (4)
H7A 0.949 (2) 0.331 (3) 0.0497 (19) 0.050*
H7B 1.0774 (12) 0.315 (3) 0.075 (2) 0.050*
N1 0.8030 (2) 0.37482 (18) 0.39130 (18) 0.0271 (4)
N2 0.7799 (2) −0.31732 (19) 0.38683 (18) 0.0293 (4)
C1 0.5018 (2) 0.6525 (2) 0.1156 (2) 0.0234 (4)
C2 0.4201 (2) 0.7464 (2) 0.0563 (2) 0.0260 (5)
C3 0.3432 (9) 0.9506 (9) −0.0350 (10) 0.050 (2) 0.624 (9)
H3A 0.3823 1.0115 −0.1018 0.060* 0.624 (9)
H3B 0.2798 1.0046 0.0487 0.060* 0.624 (9)
C4 0.2518 (6) 0.8826 (6) −0.0820 (6) 0.0520 (16) 0.624 (9)
H4A 0.1773 0.9509 −0.1056 0.062* 0.624 (9)
H4B 0.3160 0.8218 −0.1611 0.062* 0.624 (9)
C3A 0.3637 (11) 0.9273 (19) −0.0762 (13) 0.049 (4) 0.376 (9)
H3C 0.3861 0.8817 −0.1623 0.059* 0.376 (9)
H3D 0.3792 1.0171 −0.0932 0.059* 0.376 (9)
C4A 0.2024 (9) 0.9430 (7) 0.0105 (12) 0.055 (3) 0.376 (9)
H4C 0.1787 0.9870 0.0977 0.066* 0.376 (9)
H4D 0.1377 0.9989 −0.0322 0.066* 0.376 (9)
C6 0.2801 (2) 0.7233 (2) 0.0760 (2) 0.0275 (5)
C7 0.2570 (2) 0.6134 (2) 0.1493 (2) 0.0246 (4)
C8 0.6522 (2) 0.6389 (2) 0.1185 (2) 0.0270 (5)
C9 0.1274 (2) 0.5569 (2) 0.1920 (2) 0.0271 (5)
C10 0.6685 (3) 0.3545 (3) 0.4234 (3) 0.0364 (5)
H10A 0.6029 0.4076 0.3856 0.044*
C11 0.6230 (3) 0.2585 (3) 0.5098 (3) 0.0419 (6)
H11A 0.5276 0.2488 0.5314 0.050*
C12 0.7185 (3) 0.1776 (2) 0.5640 (2) 0.0333 (5)
C13 0.8558 (3) 0.1991 (3) 0.5352 (3) 0.0445 (6)
H13A 0.9224 0.1476 0.5728 0.053*
C14 0.8924 (3) 0.2991 (3) 0.4487 (3) 0.0452 (7)
H14A 0.9852 0.3141 0.4299 0.054*
C15 0.7464 (3) −0.3252 (2) 0.5191 (2) 0.0332 (5)
H15A 0.7490 −0.4104 0.5540 0.040*
C16 0.7082 (3) −0.2146 (2) 0.6076 (2) 0.0347 (5)
H16A 0.6836 −0.2252 0.6995 0.042*
C17 0.7074 (3) −0.0877 (2) 0.5566 (2) 0.0331 (5)
C18 0.7401 (3) −0.0775 (3) 0.4195 (3) 0.0446 (7)
H18A 0.7383 0.0065 0.3820 0.054*
C19 0.7751 (3) −0.1935 (2) 0.3391 (2) 0.0404 (6)
H19A 0.7966 −0.1852 0.2472 0.049*
O8 0.9744 (16) 0.0639 (13) 0.2164 (12) 0.126 (7) 0.262 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02134 (13) 0.02812 (15) 0.03265 (15) −0.01234 (10) −0.01248 (10) 0.00955 (10)
S1 0.0224 (3) 0.0256 (3) 0.0299 (3) −0.0091 (2) −0.0128 (2) 0.0050 (2)
S2 0.0788 (5) 0.0330 (3) 0.0288 (3) −0.0272 (3) −0.0098 (3) 0.0049 (3)
O1 0.0354 (9) 0.0444 (10) 0.0579 (11) −0.0242 (8) −0.0256 (8) 0.0275 (9)
O2 0.0373 (10) 0.0506 (11) 0.0721 (13) −0.0245 (9) −0.0374 (9) 0.0357 (10)
O3 0.0427 (10) 0.0491 (11) 0.0498 (11) −0.0300 (9) −0.0231 (8) 0.0265 (9)
O4 0.0234 (8) 0.0453 (10) 0.0338 (8) −0.0185 (7) −0.0139 (7) 0.0095 (7)
O5 0.0248 (8) 0.0393 (10) 0.0456 (10) −0.0101 (7) −0.0213 (7) 0.0103 (8)
O6 0.0235 (8) 0.0425 (10) 0.0624 (12) −0.0158 (8) −0.0162 (8) 0.0160 (9)
O7 0.0253 (8) 0.0427 (10) 0.0341 (9) −0.0126 (8) −0.0118 (7) 0.0031 (7)
N1 0.0269 (9) 0.0250 (10) 0.0312 (10) −0.0107 (8) −0.0105 (8) 0.0052 (8)
N2 0.0330 (10) 0.0268 (10) 0.0317 (10) −0.0117 (8) −0.0139 (8) 0.0063 (8)
C1 0.0190 (10) 0.0273 (11) 0.0252 (11) −0.0090 (8) −0.0079 (8) 0.0016 (9)
C2 0.0242 (10) 0.0282 (12) 0.0284 (11) −0.0122 (9) −0.0098 (9) 0.0058 (9)
C3 0.050 (4) 0.046 (4) 0.073 (5) −0.026 (3) −0.039 (3) 0.035 (4)
C4 0.051 (3) 0.065 (3) 0.061 (3) −0.032 (3) −0.036 (3) 0.039 (3)
C3A 0.046 (5) 0.049 (6) 0.061 (7) −0.020 (4) −0.027 (5) 0.034 (5)
C4A 0.046 (4) 0.047 (5) 0.083 (6) −0.016 (4) −0.038 (4) 0.036 (4)
C6 0.0228 (10) 0.0326 (12) 0.0329 (12) −0.0108 (9) −0.0152 (9) 0.0084 (9)
C7 0.0208 (10) 0.0295 (12) 0.0270 (11) −0.0091 (9) −0.0112 (8) 0.0032 (9)
C8 0.0198 (10) 0.0305 (12) 0.0317 (12) −0.0075 (9) −0.0098 (9) −0.0006 (9)
C9 0.0236 (11) 0.0298 (12) 0.0308 (12) −0.0131 (9) −0.0090 (9) 0.0024 (9)
C10 0.0284 (12) 0.0387 (14) 0.0433 (14) −0.0120 (10) −0.0137 (10) 0.0111 (11)
C11 0.0338 (13) 0.0492 (16) 0.0473 (15) −0.0228 (12) −0.0132 (11) 0.0147 (12)
C12 0.0457 (14) 0.0235 (12) 0.0271 (12) −0.0130 (10) −0.0069 (10) 0.0013 (9)
C13 0.0433 (15) 0.0397 (15) 0.0514 (16) −0.0093 (12) −0.0215 (12) 0.0172 (12)
C14 0.0315 (13) 0.0500 (16) 0.0605 (17) −0.0187 (12) −0.0208 (12) 0.0225 (13)
C15 0.0398 (13) 0.0285 (12) 0.0360 (13) −0.0141 (10) −0.0168 (11) 0.0114 (10)
C16 0.0429 (14) 0.0339 (13) 0.0292 (12) −0.0141 (11) −0.0136 (10) 0.0078 (10)
C17 0.0396 (13) 0.0279 (12) 0.0324 (12) −0.0116 (10) −0.0126 (10) 0.0036 (9)
C18 0.0727 (19) 0.0260 (13) 0.0367 (14) −0.0166 (13) −0.0206 (13) 0.0100 (10)
C19 0.0594 (17) 0.0330 (14) 0.0293 (13) −0.0135 (12) −0.0169 (12) 0.0072 (10)
O8 0.138 (13) 0.101 (10) 0.094 (10) −0.032 (8) 0.007 (8) 0.002 (7)

Geometric parameters (Å, º)

Zn1—O5 1.9835 (15) C2—C6 1.424 (3)
Zn1—O4i 2.0285 (15) C3—C4 1.512 (8)
Zn1—N1 2.1131 (18) C3—H3A 0.9700
Zn1—O7 2.1375 (17) C3—H3B 0.9700
Zn1—N2ii 2.2107 (18) C4—H4A 0.9700
S1—C1 1.718 (2) C4—H4B 0.9700
S1—C7 1.721 (2) C3A—C4A 1.506 (9)
S2—C17 1.768 (2) C3A—H3C 0.9700
S2—C12 1.781 (2) C3A—H3D 0.9700
O1—C2 1.358 (3) C4A—H4C 0.9700
O1—C3 1.441 (5) C4A—H4D 0.9700
O1—C3A 1.446 (7) C6—C7 1.364 (3)
O2—C6 1.367 (3) C7—C9 1.477 (3)
O2—C4 1.456 (4) C10—C11 1.371 (3)
O2—C4A 1.474 (6) C10—H10A 0.9300
O3—C9 1.236 (3) C11—C12 1.363 (3)
O4—C9 1.271 (3) C11—H11A 0.9300
O4—Zn1iii 2.0285 (15) C12—C13 1.372 (4)
O5—C8 1.275 (3) C13—C14 1.382 (4)
O6—C8 1.226 (3) C13—H13A 0.9300
O7—H7A 0.827 (9) C14—H14A 0.9300
O7—H7B 0.828 (9) C15—C16 1.380 (3)
N1—C14 1.323 (3) C15—H15A 0.9300
N1—C10 1.336 (3) C16—C17 1.383 (3)
N2—C15 1.331 (3) C16—H16A 0.9300
N2—C19 1.339 (3) C17—C18 1.384 (3)
N2—Zn1iv 2.2107 (18) C18—C19 1.379 (3)
C1—C2 1.372 (3) C18—H18A 0.9300
C1—C8 1.484 (3) C19—H19A 0.9300
O5—Zn1—O4i 117.56 (6) H3C—C3A—H3D 107.8
O5—Zn1—N1 95.66 (7) O2—C4A—C3A 108.1 (11)
O4i—Zn1—N1 146.78 (7) O2—C4A—H4C 110.1
O5—Zn1—O7 93.06 (6) C3A—C4A—H4C 110.1
O4i—Zn1—O7 92.61 (6) O2—C4A—H4D 110.1
N1—Zn1—O7 85.43 (7) C3A—C4A—H4D 110.1
O5—Zn1—N2ii 95.24 (7) H4C—C4A—H4D 108.4
O4i—Zn1—N2ii 85.85 (7) C7—C6—O2 124.33 (19)
N1—Zn1—N2ii 91.17 (7) C7—C6—C2 113.23 (19)
O7—Zn1—N2ii 171.31 (6) O2—C6—C2 122.4 (2)
C1—S1—C7 92.49 (10) C6—C7—C9 129.87 (19)
C17—S2—C12 101.52 (11) C6—C7—S1 110.81 (15)
C2—O1—C3 111.8 (4) C9—C7—S1 119.32 (17)
C2—O1—C3A 113.7 (7) O6—C8—O5 126.4 (2)
C6—O2—C4 111.1 (2) O6—C8—C1 119.5 (2)
C6—O2—C4A 110.1 (3) O5—C8—C1 114.1 (2)
C9—O4—Zn1iii 101.88 (14) O3—C9—O4 122.8 (2)
C8—O5—Zn1 126.61 (15) O3—C9—C7 120.0 (2)
Zn1—O7—H7A 106.5 (19) O4—C9—C7 117.1 (2)
Zn1—O7—H7B 110.6 (19) N1—C10—C11 122.7 (2)
H7A—O7—H7B 111.7 (16) N1—C10—H10A 118.7
C14—N1—C10 117.0 (2) C11—C10—H10A 118.7
C14—N1—Zn1 122.99 (16) C12—C11—C10 119.6 (2)
C10—N1—Zn1 119.57 (16) C12—C11—H11A 120.2
C15—N2—C19 116.8 (2) C10—C11—H11A 120.2
C15—N2—Zn1iv 125.22 (15) C11—C12—C13 118.6 (2)
C19—N2—Zn1iv 117.37 (15) C11—C12—S2 121.1 (2)
C2—C1—C8 129.8 (2) C13—C12—S2 120.2 (2)
C2—C1—S1 111.10 (15) C12—C13—C14 118.2 (2)
C8—C1—S1 119.09 (16) C12—C13—H13A 120.9
O1—C2—C1 124.96 (19) C14—C13—H13A 120.9
O1—C2—C6 122.68 (19) N1—C14—C13 123.7 (2)
C1—C2—C6 112.4 (2) N1—C14—H14A 118.2
O1—C3—C4 110.7 (6) C13—C14—H14A 118.2
O1—C3—H3A 109.5 N2—C15—C16 124.0 (2)
C4—C3—H3A 109.5 N2—C15—H15A 118.0
O1—C3—H3B 109.5 C16—C15—H15A 118.0
C4—C3—H3B 109.5 C15—C16—C17 118.6 (2)
H3A—C3—H3B 108.1 C15—C16—H16A 120.7
O2—C4—C3 108.1 (6) C17—C16—H16A 120.7
O2—C4—H4A 110.1 C16—C17—C18 118.0 (2)
C3—C4—H4A 110.1 C16—C17—S2 116.68 (18)
O2—C4—H4B 110.1 C18—C17—S2 125.28 (19)
C3—C4—H4B 110.1 C19—C18—C17 119.2 (2)
H4A—C4—H4B 108.4 C19—C18—H18A 120.4
O1—C3A—C4A 112.5 (8) C17—C18—H18A 120.4
O1—C3A—H3C 109.1 N2—C19—C18 123.3 (2)
C4A—C3A—H3C 109.1 N2—C19—H19A 118.4
O1—C3A—H3D 109.1 C18—C19—H19A 118.4
C4A—C3A—H3D 109.1
C7—S1—C1—C2 −0.11 (17) Zn1—O5—C8—C1 −170.36 (13)
C7—S1—C1—C8 −179.57 (17) C2—C1—C8—O6 −1.2 (3)
C3—O1—C2—C1 −165.4 (5) S1—C1—C8—O6 178.18 (17)
C3A—O1—C2—C1 174.9 (8) C2—C1—C8—O5 177.9 (2)
C3—O1—C2—C6 14.9 (5) S1—C1—C8—O5 −2.7 (3)
C3A—O1—C2—C6 −4.7 (8) Zn1iii—O4—C9—O3 3.9 (3)
C8—C1—C2—O1 −0.2 (4) Zn1iii—O4—C9—C7 −175.43 (15)
S1—C1—C2—O1 −179.60 (17) C6—C7—C9—O3 −166.0 (2)
C8—C1—C2—C6 179.5 (2) S1—C7—C9—O3 13.6 (3)
S1—C1—C2—C6 0.1 (2) C6—C7—C9—O4 13.4 (3)
C2—O1—C3—C4 −46.5 (8) S1—C7—C9—O4 −167.03 (16)
C3A—O1—C3—C4 53 (3) C14—N1—C10—C11 −1.1 (4)
C6—O2—C4—C3 −50.6 (6) Zn1—N1—C10—C11 171.90 (19)
C4A—O2—C4—C3 46.4 (6) N1—C10—C11—C12 −1.5 (4)
O1—C3—C4—O2 66.3 (9) C10—C11—C12—C13 3.1 (4)
C2—O1—C3A—C4A 36.5 (17) C10—C11—C12—S2 −178.43 (19)
C3—O1—C3A—C4A −51 (2) C17—S2—C12—C11 83.8 (2)
C6—O2—C4A—C3A 54.2 (9) C17—S2—C12—C13 −97.7 (2)
C4—O2—C4A—C3A −45.6 (7) C11—C12—C13—C14 −2.1 (4)
O1—C3A—C4A—O2 −62.5 (17) S2—C12—C13—C14 179.4 (2)
C4—O2—C6—C7 −160.5 (4) C10—N1—C14—C13 2.1 (4)
C4A—O2—C6—C7 154.0 (5) Zn1—N1—C14—C13 −170.6 (2)
C4—O2—C6—C2 20.7 (4) C12—C13—C14—N1 −0.5 (4)
C4A—O2—C6—C2 −24.9 (6) C19—N2—C15—C16 −0.1 (4)
O1—C2—C6—C7 179.7 (2) Zn1iv—N2—C15—C16 170.64 (18)
C1—C2—C6—C7 0.0 (3) N2—C15—C16—C17 −1.5 (4)
O1—C2—C6—O2 −1.4 (3) C15—C16—C17—C18 2.2 (4)
C1—C2—C6—O2 179.0 (2) C15—C16—C17—S2 −177.25 (19)
O2—C6—C7—C9 0.6 (4) C12—S2—C17—C16 167.2 (2)
C2—C6—C7—C9 179.5 (2) C12—S2—C17—C18 −12.2 (3)
O2—C6—C7—S1 −179.02 (18) C16—C17—C18—C19 −1.4 (4)
C2—C6—C7—S1 −0.1 (2) S2—C17—C18—C19 178.0 (2)
C1—S1—C7—C6 0.11 (17) C15—N2—C19—C18 1.0 (4)
C1—S1—C7—C9 −179.53 (17) Zn1iv—N2—C19—C18 −170.5 (2)
Zn1—O5—C8—O6 8.7 (3) C17—C18—C19—N2 −0.2 (4)

Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x−1, y, z; (iv) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O2v 0.83 (1) 2.48 (2) 3.123 (2) 135 (2)
O7—H7A···O4v 0.83 (1) 2.04 (2) 2.746 (2) 143 (2)
O7—H7B···O6vi 0.83 (1) 1.94 (1) 2.733 (2) 159 (2)
C3—H3A···O6vii 0.97 2.66 3.275 (9) 122
C4—H4A···O8v 0.97 2.27 3.015 (17) 133
C3A—H3D···O6vii 0.97 2.60 3.473 (19) 150
C4A—H4C···O8viii 0.97 1.93 2.566 (16) 121
C10—H10A···O5 0.93 2.50 3.079 (3) 121
C14—H14A···O3i 0.93 2.51 3.213 (3) 133
C15—H15A···S1ix 0.93 3.01 3.768 (2) 140
C15—H15A···O3ix 0.93 2.57 3.096 (3) 116
C15—H15A···N1iv 0.93 2.67 3.227 (3) 119
C18—H18A···O8 0.93 2.58 3.190 (13) 123

Symmetry codes: (i) x+1, y, z; (iv) x, y−1, z; (v) −x+1, −y+1, −z; (vi) −x+2, −y+1, −z; (vii) −x+1, −y+2, −z; (viii) x−1, y+1, z; (ix) −x+1, −y, −z+1.

References

  1. Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Chen, B. L., Mok, K. F., Ng, S. C. & Drew, M. G. B. (1999). Polyhedron, 18, 1211–1220.
  3. Chen, B. L., Mok, K. F., Ng, S. C., Feng, Y. L. & Liu, S. X. (1998). Polyhedron, 17, 4237–4247.
  4. Guo, C., Zhuo, X., Li, Y. & Zheng, H. (2009). Inorg. Chim. Acta, 362, 491–501.
  5. Han, M. L., Bai, L., Tang, P., Wu, X. Q., Wu, Y. P., Zhao, J., Li, D. S. & Wang, Y. Y. (2015). Dalton Trans. 44, 14673–14685. [DOI] [PubMed]
  6. Liu, W., Fang, Y., Wei, G. Z., Teat, S. J., Xiong, K., Hu, Z., Lustig, W. P. & Li, J. (2015). J. Am. Chem. Soc. 137, 9400–9408. [DOI] [PubMed]
  7. Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
  8. Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. (2016). Chem. Rev. 116, 12466–12535. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Zhang, W., Liao, P., Lin, R., Wei, Y., Zeng, M. & Chen, X. (2015). Coord. Chem. Rev. 293–294, 263–278.
  13. Zhang, H., Qian, C. & Chen, X. Z. (2011). J. Chem. Res. (S), 35, 339–340.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363sup1.cif

e-73-00375-sup1.cif (383.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363Isup2.hkl

e-73-00375-Isup2.hkl (312.8KB, hkl)

CCDC reference: 1528425

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES