The zinc cation in the structure has a N2O3 coordination set, arranged in a trigonal–bipyramidal configuration. The bridging mode of the organic ligands leads to the formation of a polymeric layer structure parallel to the ab plane.
Keywords: crystal structure, hydrogen bond, zinc, trigonal–bipyramidal coordination environment
Abstract
The crystal structure of the title polymer, {[Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O}n, is characterized by a layered arrangement parallel to the ab plane. The zinc cation is five-coordinated in a slightly distorted trigonal–bipyramidal coordination environment defined by two pyridine ligands, two carboxylate groups of two thiophene dicarboxylate ligands, and by one water molecule. The ethylene bridge in the dioxine ligand is disordered over two sets of sites [occupancy ratio 0.624 (9):0.376 (9)]. Several hydrogen-bonding interactions of the types O—H⋯O, C—H⋯O, C—H⋯S and C—H⋯N ensure the cohesion within the crystal structure.
Chemical context
Complexes constructed by metal ions and organic ligands are of continuous interest due to the vast diversity and feasible tailorability of their structures and functions compared with purely inorganic compounds (Zhang et al., 2015 ▸).
The incorporation of both carboxylic and pyridine ligands can lead to a variety of structures (Schoedel et al., 2016 ▸). Complexes based on thiophene derivatives with carboxylic acid functionalities are of some interest as anticancer agents (Chen et al., 1998 ▸, 1999 ▸; Guo et al., 2009 ▸). In this context, we report here on synthesis and crystal structure of the title compound, [Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O, (1).
Structural commentary
In the crystal structure of (1), the zinc ion is coordinated by four organic ligands and one water molecule, giving rise to a slightly distorted trigonal–bipyramidal coordination environment. Two nitrogen atoms are delivered by two symmetry-related pyridine ligands, two oxygen atoms of two carboxyl groups stem from two symmetry-related thiophene carboxylate ligands, and one O atom from the aqua ligand (Fig. 1 ▸). In the trigonal bipyramid, the axial angle O7—Zn1—N2 is 171.31 (6)°. The ZnII ion is co-planar with the O5—N1—O4 equatorial plane, with the deviation of the Zn atom from this plane being 0.0034 (3) Å. The equatorial Zn1—N1 bond length is 2.1131 (18) Å, while the axial Zn1—N2 bond is longer, 2.2107 (18) Å. Similarly, the two equatorial Zn1—O (O4, O5) bond lengths, ranging from 1.9835 (15) to 2.0285 (15) Å, are shorter than the axial Zn1—O7 bond of 2.1375 (17) Å. These are typical values, numerical details of which are given in Table 1 ▸.
Figure 1.
The asymmetric unit of (1), with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonding is indicated by dashed lines.
Table 1. Selected geometric parameters (Å, °).
| Zn1—O5 | 1.9835 (15) | Zn1—O7 | 2.1375 (17) |
| Zn1—O4i | 2.0285 (15) | Zn1—N2ii | 2.2107 (18) |
| Zn1—N1 | 2.1131 (18) | ||
| O5—Zn1—O4i | 117.56 (6) | N1—Zn1—O7 | 85.43 (7) |
| O5—Zn1—N1 | 95.66 (7) | O5—Zn1—N2ii | 95.24 (7) |
| O4i—Zn1—N1 | 146.78 (7) | O4i—Zn1—N2ii | 85.85 (7) |
| O5—Zn1—O7 | 93.06 (6) | N1—Zn1—N2ii | 91.17 (7) |
| O4i—Zn1—O7 | 92.61 (6) | O7—Zn1—N2ii | 171.31 (6) |
Symmetry codes: (i)
; (ii)
.
Supramolecular features
The bridging coordinating mode of the organic ligands leads to the formation of polymeric layers parallel to the ab plane (Fig. 2 ▸).
Figure 2.
The polymeric layer in the crystal structure of (1), extending along the ab plane (H atoms have been omitted for clarity).
There are several types of hydrogen bonds in the structure. One intramolecular hydrogen bond is present and extends from a (pyridine)C—H group (C10—H10A) to the coordinating O5 atom of the carboxyl group. Another (pyridine)C—H group (C18—H18A) is hydrogen-bonded to the disordered O8 atom of the lattice water molecule. Three O—H⋯O interactions are present between the coordinating water molecule to either the carboxyl group oxygen atoms or the dioxine oxygen atom in the thiophene derivative with D⋯A distances ranging between 2.733 (2) and 3.123 (2) Å and corresponding O—H⋯O angles of 135 (2) and 159 (2)°. Numerous other C—H⋯O interactions are present between the disordered dioxine C—H groups and a carboxyl O atom (O6) or the lattice water atom O8. Other C—H⋯O interactions involve pyridyl C—H groups and the carboxyl O3 atom. In addition, one C—H⋯S interaction and one C—H⋯N interaction are found between pyridyl C—H groups and the sulfane S1 atom or the pyridyl N1 atom (Fig. 3 ▸). It is expected that other extensive hydrogen bonds are formed with the lattice water molecules as the donor group and the coordinating water molecules or carbonyl O atoms from the layers as acceptors (O8⋯O distances in the range 2.87–3.13 Å). However, since the H atoms of the disordered O8 atom were not modelled, a definite statement cannot be made. Numerical details of the hydrogen bonding are given in Table 2 ▸.
Figure 3.
Part of the crystal structure of (1), showing the network formed by intermolecular C—H⋯O, O—H⋯O, C—H⋯S and C—H⋯N hydrogen bonds (shown as dashed lines).
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O7—H7A⋯O2iii | 0.83 (1) | 2.48 (2) | 3.123 (2) | 135 (2) |
| O7—H7A⋯O4iii | 0.83 (1) | 2.04 (2) | 2.746 (2) | 143 (2) |
| O7—H7B⋯O6iv | 0.83 (1) | 1.94 (1) | 2.733 (2) | 159 (2) |
| C3—H3A⋯O6v | 0.97 | 2.66 | 3.275 (9) | 122 |
| C4—H4A⋯O8iii | 0.97 | 2.27 | 3.015 (17) | 133 |
| C3A—H3D⋯O6v | 0.97 | 2.60 | 3.473 (19) | 150 |
| C4A—H4C⋯O8vi | 0.97 | 1.93 | 2.566 (16) | 121 |
| C10—H10A⋯O5 | 0.93 | 2.50 | 3.079 (3) | 121 |
| C14—H14A⋯O3i | 0.93 | 2.51 | 3.213 (3) | 133 |
| C15—H15A⋯S1vii | 0.93 | 3.01 | 3.768 (2) | 140 |
| C15—H15A⋯O3vii | 0.93 | 2.57 | 3.096 (3) | 116 |
| C15—H15A⋯N1viii | 0.93 | 2.67 | 3.227 (3) | 119 |
| C18—H18A⋯O8 | 0.93 | 2.58 | 3.190 (13) | 123 |
Symmetry codes: (i)
; (iii)
; (iv)
; (v)
; (vi)
; (vii)
; (viii)
.
Database survey
Some complexes based on tddc2− (H2ttdc is 2,3-dihydrothieno[3,4-b][1,4]dioxine-5,7-dicarboxylic acid) (Guo et al., 2009 ▸) or di(pyridin-4-yl)sulfane (Liu et al., 2015 ▸; Han et al., 2015 ▸) have been reported, but a complex incorporating both ligands was not found.
Synthesis and crystallization
2,3-Dihydrothieno[3,4-b][1,4]dioxine-5,7-dicarboxylic acid (H2ttdc) was prepared as reported (Zhang et al., 2011 ▸), and di(pyridin-4-yl)sulfane was formed in situ from the reactant 4,4′-dithiodipyridine in the synthesis. A mixture of zinc nitrate (0.06 g, 0.21 mmol), H2ttdc (0.02 g, 0.10 mmol), 4,4′-dithiodipyridine (0.02 g, 0.10 mmol), 5 ml dimethylformamide and 3 ml water was mixed and heated at 353 K for 3 days. After cooling, 0.17 g light-yellow crystals were collected in a yield of 32%.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. H atoms attached to carbon were positioned geometrically and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C). The H atoms of the coordinating water molecule were located in a difference map and restrained to have comparable bond lengths using DFIX and DANG commands to keep their geometries reasonable; U iso(H) values were set to 1.5U eq(O). The hydrogen atoms of the disordered lattice water molecule [occupancy 0.262 (10)] could not be retrieved from difference maps and thus were not part of the model. Two carbon atoms of the dioxine moiety are disordered over two sets of sites and were refined in two parts (C3–C4/C3A–C4A) with a refined occupancy ratio of 0.624 (9)/0.376 (9). Soft restraints (DFIX, SIMU, SADI) were applied on the disordered atoms to keep their geometries and atomic displacement parameters reasonable.
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O |
| M r | 504.57 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 295 |
| a, b, c (Å) | 10.0052 (6), 10.2173 (5), 10.6694 (5) |
| α, β, γ (°) | 87.515 (4), 68.625 (5), 73.988 (5) |
| V (Å3) | 974.27 (10) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.52 |
| Crystal size (mm) | 0.32 × 0.25 × 0.20 |
| Data collection | |
| Diffractometer | Rigaku SuperNova, single source at offset, EosS2 |
| Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2015 ▸) |
| T min, T max | 0.784, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 10924, 3925, 3549 |
| R int | 0.021 |
| (sin θ/λ)max (Å−1) | 0.659 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.030, 0.069, 1.01 |
| No. of reflections | 3925 |
| No. of parameters | 306 |
| No. of restraints | 47 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.58, −0.39 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363Isup2.hkl
CCDC reference: 1528425
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| [Zn(C8H4O6S)(C10H8N2S)(H2O)]·0.26H2O | Z = 2 |
| Mr = 504.57 | F(000) = 512.7 |
| Triclinic, P1 | Dx = 1.718 Mg m−3 |
| a = 10.0052 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 10.2173 (5) Å | Cell parameters from 6096 reflections |
| c = 10.6694 (5) Å | θ = 4.1–27.2° |
| α = 87.515 (4)° | µ = 1.52 mm−1 |
| β = 68.625 (5)° | T = 295 K |
| γ = 73.988 (5)° | Block, yellow |
| V = 974.27 (10) Å3 | 0.32 × 0.25 × 0.20 mm |
Data collection
| Rigaku SuperNova, single source at offset, EosS2 diffractometer | 3925 independent reflections |
| Radiation source: micro-focus sealed X-ray tube | 3549 reflections with I > 2σ(I) |
| Detector resolution: 8.0584 pixels mm-1 | Rint = 0.021 |
| ω scans | θmax = 27.9°, θmin = 3.5° |
| Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −12→12 |
| Tmin = 0.784, Tmax = 1.000 | k = −13→13 |
| 10924 measured reflections | l = −14→13 |
Refinement
| Refinement on F2 | 47 restraints |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0267P)2 + 0.8P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.01 | (Δ/σ)max < 0.001 |
| 3925 reflections | Δρmax = 0.58 e Å−3 |
| 306 parameters | Δρmin = −0.39 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Zn1 | 0.87280 (3) | 0.50627 (3) | 0.23783 (3) | 0.02570 (9) | |
| S1 | 0.40744 (6) | 0.53672 (5) | 0.19475 (5) | 0.02461 (13) | |
| S2 | 0.66583 (9) | 0.04878 (7) | 0.67347 (6) | 0.04739 (19) | |
| O1 | 0.46527 (18) | 0.85023 (18) | −0.01437 (18) | 0.0414 (4) | |
| O2 | 0.17934 (19) | 0.80589 (19) | 0.0274 (2) | 0.0467 (5) | |
| O3 | 0.11429 (19) | 0.47305 (18) | 0.27948 (18) | 0.0425 (4) | |
| O4 | 0.03227 (16) | 0.59934 (17) | 0.13592 (15) | 0.0315 (4) | |
| O5 | 0.69482 (17) | 0.54177 (17) | 0.18673 (16) | 0.0341 (4) | |
| O6 | 0.72194 (17) | 0.71896 (18) | 0.05940 (18) | 0.0417 (4) | |
| O7 | 0.98637 (17) | 0.32423 (18) | 0.10848 (16) | 0.0331 (4) | |
| H7A | 0.949 (2) | 0.331 (3) | 0.0497 (19) | 0.050* | |
| H7B | 1.0774 (12) | 0.315 (3) | 0.075 (2) | 0.050* | |
| N1 | 0.8030 (2) | 0.37482 (18) | 0.39130 (18) | 0.0271 (4) | |
| N2 | 0.7799 (2) | −0.31732 (19) | 0.38683 (18) | 0.0293 (4) | |
| C1 | 0.5018 (2) | 0.6525 (2) | 0.1156 (2) | 0.0234 (4) | |
| C2 | 0.4201 (2) | 0.7464 (2) | 0.0563 (2) | 0.0260 (5) | |
| C3 | 0.3432 (9) | 0.9506 (9) | −0.0350 (10) | 0.050 (2) | 0.624 (9) |
| H3A | 0.3823 | 1.0115 | −0.1018 | 0.060* | 0.624 (9) |
| H3B | 0.2798 | 1.0046 | 0.0487 | 0.060* | 0.624 (9) |
| C4 | 0.2518 (6) | 0.8826 (6) | −0.0820 (6) | 0.0520 (16) | 0.624 (9) |
| H4A | 0.1773 | 0.9509 | −0.1056 | 0.062* | 0.624 (9) |
| H4B | 0.3160 | 0.8218 | −0.1611 | 0.062* | 0.624 (9) |
| C3A | 0.3637 (11) | 0.9273 (19) | −0.0762 (13) | 0.049 (4) | 0.376 (9) |
| H3C | 0.3861 | 0.8817 | −0.1623 | 0.059* | 0.376 (9) |
| H3D | 0.3792 | 1.0171 | −0.0932 | 0.059* | 0.376 (9) |
| C4A | 0.2024 (9) | 0.9430 (7) | 0.0105 (12) | 0.055 (3) | 0.376 (9) |
| H4C | 0.1787 | 0.9870 | 0.0977 | 0.066* | 0.376 (9) |
| H4D | 0.1377 | 0.9989 | −0.0322 | 0.066* | 0.376 (9) |
| C6 | 0.2801 (2) | 0.7233 (2) | 0.0760 (2) | 0.0275 (5) | |
| C7 | 0.2570 (2) | 0.6134 (2) | 0.1493 (2) | 0.0246 (4) | |
| C8 | 0.6522 (2) | 0.6389 (2) | 0.1185 (2) | 0.0270 (5) | |
| C9 | 0.1274 (2) | 0.5569 (2) | 0.1920 (2) | 0.0271 (5) | |
| C10 | 0.6685 (3) | 0.3545 (3) | 0.4234 (3) | 0.0364 (5) | |
| H10A | 0.6029 | 0.4076 | 0.3856 | 0.044* | |
| C11 | 0.6230 (3) | 0.2585 (3) | 0.5098 (3) | 0.0419 (6) | |
| H11A | 0.5276 | 0.2488 | 0.5314 | 0.050* | |
| C12 | 0.7185 (3) | 0.1776 (2) | 0.5640 (2) | 0.0333 (5) | |
| C13 | 0.8558 (3) | 0.1991 (3) | 0.5352 (3) | 0.0445 (6) | |
| H13A | 0.9224 | 0.1476 | 0.5728 | 0.053* | |
| C14 | 0.8924 (3) | 0.2991 (3) | 0.4487 (3) | 0.0452 (7) | |
| H14A | 0.9852 | 0.3141 | 0.4299 | 0.054* | |
| C15 | 0.7464 (3) | −0.3252 (2) | 0.5191 (2) | 0.0332 (5) | |
| H15A | 0.7490 | −0.4104 | 0.5540 | 0.040* | |
| C16 | 0.7082 (3) | −0.2146 (2) | 0.6076 (2) | 0.0347 (5) | |
| H16A | 0.6836 | −0.2252 | 0.6995 | 0.042* | |
| C17 | 0.7074 (3) | −0.0877 (2) | 0.5566 (2) | 0.0331 (5) | |
| C18 | 0.7401 (3) | −0.0775 (3) | 0.4195 (3) | 0.0446 (7) | |
| H18A | 0.7383 | 0.0065 | 0.3820 | 0.054* | |
| C19 | 0.7751 (3) | −0.1935 (2) | 0.3391 (2) | 0.0404 (6) | |
| H19A | 0.7966 | −0.1852 | 0.2472 | 0.049* | |
| O8 | 0.9744 (16) | 0.0639 (13) | 0.2164 (12) | 0.126 (7) | 0.262 (10) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Zn1 | 0.02134 (13) | 0.02812 (15) | 0.03265 (15) | −0.01234 (10) | −0.01248 (10) | 0.00955 (10) |
| S1 | 0.0224 (3) | 0.0256 (3) | 0.0299 (3) | −0.0091 (2) | −0.0128 (2) | 0.0050 (2) |
| S2 | 0.0788 (5) | 0.0330 (3) | 0.0288 (3) | −0.0272 (3) | −0.0098 (3) | 0.0049 (3) |
| O1 | 0.0354 (9) | 0.0444 (10) | 0.0579 (11) | −0.0242 (8) | −0.0256 (8) | 0.0275 (9) |
| O2 | 0.0373 (10) | 0.0506 (11) | 0.0721 (13) | −0.0245 (9) | −0.0374 (9) | 0.0357 (10) |
| O3 | 0.0427 (10) | 0.0491 (11) | 0.0498 (11) | −0.0300 (9) | −0.0231 (8) | 0.0265 (9) |
| O4 | 0.0234 (8) | 0.0453 (10) | 0.0338 (8) | −0.0185 (7) | −0.0139 (7) | 0.0095 (7) |
| O5 | 0.0248 (8) | 0.0393 (10) | 0.0456 (10) | −0.0101 (7) | −0.0213 (7) | 0.0103 (8) |
| O6 | 0.0235 (8) | 0.0425 (10) | 0.0624 (12) | −0.0158 (8) | −0.0162 (8) | 0.0160 (9) |
| O7 | 0.0253 (8) | 0.0427 (10) | 0.0341 (9) | −0.0126 (8) | −0.0118 (7) | 0.0031 (7) |
| N1 | 0.0269 (9) | 0.0250 (10) | 0.0312 (10) | −0.0107 (8) | −0.0105 (8) | 0.0052 (8) |
| N2 | 0.0330 (10) | 0.0268 (10) | 0.0317 (10) | −0.0117 (8) | −0.0139 (8) | 0.0063 (8) |
| C1 | 0.0190 (10) | 0.0273 (11) | 0.0252 (11) | −0.0090 (8) | −0.0079 (8) | 0.0016 (9) |
| C2 | 0.0242 (10) | 0.0282 (12) | 0.0284 (11) | −0.0122 (9) | −0.0098 (9) | 0.0058 (9) |
| C3 | 0.050 (4) | 0.046 (4) | 0.073 (5) | −0.026 (3) | −0.039 (3) | 0.035 (4) |
| C4 | 0.051 (3) | 0.065 (3) | 0.061 (3) | −0.032 (3) | −0.036 (3) | 0.039 (3) |
| C3A | 0.046 (5) | 0.049 (6) | 0.061 (7) | −0.020 (4) | −0.027 (5) | 0.034 (5) |
| C4A | 0.046 (4) | 0.047 (5) | 0.083 (6) | −0.016 (4) | −0.038 (4) | 0.036 (4) |
| C6 | 0.0228 (10) | 0.0326 (12) | 0.0329 (12) | −0.0108 (9) | −0.0152 (9) | 0.0084 (9) |
| C7 | 0.0208 (10) | 0.0295 (12) | 0.0270 (11) | −0.0091 (9) | −0.0112 (8) | 0.0032 (9) |
| C8 | 0.0198 (10) | 0.0305 (12) | 0.0317 (12) | −0.0075 (9) | −0.0098 (9) | −0.0006 (9) |
| C9 | 0.0236 (11) | 0.0298 (12) | 0.0308 (12) | −0.0131 (9) | −0.0090 (9) | 0.0024 (9) |
| C10 | 0.0284 (12) | 0.0387 (14) | 0.0433 (14) | −0.0120 (10) | −0.0137 (10) | 0.0111 (11) |
| C11 | 0.0338 (13) | 0.0492 (16) | 0.0473 (15) | −0.0228 (12) | −0.0132 (11) | 0.0147 (12) |
| C12 | 0.0457 (14) | 0.0235 (12) | 0.0271 (12) | −0.0130 (10) | −0.0069 (10) | 0.0013 (9) |
| C13 | 0.0433 (15) | 0.0397 (15) | 0.0514 (16) | −0.0093 (12) | −0.0215 (12) | 0.0172 (12) |
| C14 | 0.0315 (13) | 0.0500 (16) | 0.0605 (17) | −0.0187 (12) | −0.0208 (12) | 0.0225 (13) |
| C15 | 0.0398 (13) | 0.0285 (12) | 0.0360 (13) | −0.0141 (10) | −0.0168 (11) | 0.0114 (10) |
| C16 | 0.0429 (14) | 0.0339 (13) | 0.0292 (12) | −0.0141 (11) | −0.0136 (10) | 0.0078 (10) |
| C17 | 0.0396 (13) | 0.0279 (12) | 0.0324 (12) | −0.0116 (10) | −0.0126 (10) | 0.0036 (9) |
| C18 | 0.0727 (19) | 0.0260 (13) | 0.0367 (14) | −0.0166 (13) | −0.0206 (13) | 0.0100 (10) |
| C19 | 0.0594 (17) | 0.0330 (14) | 0.0293 (13) | −0.0135 (12) | −0.0169 (12) | 0.0072 (10) |
| O8 | 0.138 (13) | 0.101 (10) | 0.094 (10) | −0.032 (8) | 0.007 (8) | 0.002 (7) |
Geometric parameters (Å, º)
| Zn1—O5 | 1.9835 (15) | C2—C6 | 1.424 (3) |
| Zn1—O4i | 2.0285 (15) | C3—C4 | 1.512 (8) |
| Zn1—N1 | 2.1131 (18) | C3—H3A | 0.9700 |
| Zn1—O7 | 2.1375 (17) | C3—H3B | 0.9700 |
| Zn1—N2ii | 2.2107 (18) | C4—H4A | 0.9700 |
| S1—C1 | 1.718 (2) | C4—H4B | 0.9700 |
| S1—C7 | 1.721 (2) | C3A—C4A | 1.506 (9) |
| S2—C17 | 1.768 (2) | C3A—H3C | 0.9700 |
| S2—C12 | 1.781 (2) | C3A—H3D | 0.9700 |
| O1—C2 | 1.358 (3) | C4A—H4C | 0.9700 |
| O1—C3 | 1.441 (5) | C4A—H4D | 0.9700 |
| O1—C3A | 1.446 (7) | C6—C7 | 1.364 (3) |
| O2—C6 | 1.367 (3) | C7—C9 | 1.477 (3) |
| O2—C4 | 1.456 (4) | C10—C11 | 1.371 (3) |
| O2—C4A | 1.474 (6) | C10—H10A | 0.9300 |
| O3—C9 | 1.236 (3) | C11—C12 | 1.363 (3) |
| O4—C9 | 1.271 (3) | C11—H11A | 0.9300 |
| O4—Zn1iii | 2.0285 (15) | C12—C13 | 1.372 (4) |
| O5—C8 | 1.275 (3) | C13—C14 | 1.382 (4) |
| O6—C8 | 1.226 (3) | C13—H13A | 0.9300 |
| O7—H7A | 0.827 (9) | C14—H14A | 0.9300 |
| O7—H7B | 0.828 (9) | C15—C16 | 1.380 (3) |
| N1—C14 | 1.323 (3) | C15—H15A | 0.9300 |
| N1—C10 | 1.336 (3) | C16—C17 | 1.383 (3) |
| N2—C15 | 1.331 (3) | C16—H16A | 0.9300 |
| N2—C19 | 1.339 (3) | C17—C18 | 1.384 (3) |
| N2—Zn1iv | 2.2107 (18) | C18—C19 | 1.379 (3) |
| C1—C2 | 1.372 (3) | C18—H18A | 0.9300 |
| C1—C8 | 1.484 (3) | C19—H19A | 0.9300 |
| O5—Zn1—O4i | 117.56 (6) | H3C—C3A—H3D | 107.8 |
| O5—Zn1—N1 | 95.66 (7) | O2—C4A—C3A | 108.1 (11) |
| O4i—Zn1—N1 | 146.78 (7) | O2—C4A—H4C | 110.1 |
| O5—Zn1—O7 | 93.06 (6) | C3A—C4A—H4C | 110.1 |
| O4i—Zn1—O7 | 92.61 (6) | O2—C4A—H4D | 110.1 |
| N1—Zn1—O7 | 85.43 (7) | C3A—C4A—H4D | 110.1 |
| O5—Zn1—N2ii | 95.24 (7) | H4C—C4A—H4D | 108.4 |
| O4i—Zn1—N2ii | 85.85 (7) | C7—C6—O2 | 124.33 (19) |
| N1—Zn1—N2ii | 91.17 (7) | C7—C6—C2 | 113.23 (19) |
| O7—Zn1—N2ii | 171.31 (6) | O2—C6—C2 | 122.4 (2) |
| C1—S1—C7 | 92.49 (10) | C6—C7—C9 | 129.87 (19) |
| C17—S2—C12 | 101.52 (11) | C6—C7—S1 | 110.81 (15) |
| C2—O1—C3 | 111.8 (4) | C9—C7—S1 | 119.32 (17) |
| C2—O1—C3A | 113.7 (7) | O6—C8—O5 | 126.4 (2) |
| C6—O2—C4 | 111.1 (2) | O6—C8—C1 | 119.5 (2) |
| C6—O2—C4A | 110.1 (3) | O5—C8—C1 | 114.1 (2) |
| C9—O4—Zn1iii | 101.88 (14) | O3—C9—O4 | 122.8 (2) |
| C8—O5—Zn1 | 126.61 (15) | O3—C9—C7 | 120.0 (2) |
| Zn1—O7—H7A | 106.5 (19) | O4—C9—C7 | 117.1 (2) |
| Zn1—O7—H7B | 110.6 (19) | N1—C10—C11 | 122.7 (2) |
| H7A—O7—H7B | 111.7 (16) | N1—C10—H10A | 118.7 |
| C14—N1—C10 | 117.0 (2) | C11—C10—H10A | 118.7 |
| C14—N1—Zn1 | 122.99 (16) | C12—C11—C10 | 119.6 (2) |
| C10—N1—Zn1 | 119.57 (16) | C12—C11—H11A | 120.2 |
| C15—N2—C19 | 116.8 (2) | C10—C11—H11A | 120.2 |
| C15—N2—Zn1iv | 125.22 (15) | C11—C12—C13 | 118.6 (2) |
| C19—N2—Zn1iv | 117.37 (15) | C11—C12—S2 | 121.1 (2) |
| C2—C1—C8 | 129.8 (2) | C13—C12—S2 | 120.2 (2) |
| C2—C1—S1 | 111.10 (15) | C12—C13—C14 | 118.2 (2) |
| C8—C1—S1 | 119.09 (16) | C12—C13—H13A | 120.9 |
| O1—C2—C1 | 124.96 (19) | C14—C13—H13A | 120.9 |
| O1—C2—C6 | 122.68 (19) | N1—C14—C13 | 123.7 (2) |
| C1—C2—C6 | 112.4 (2) | N1—C14—H14A | 118.2 |
| O1—C3—C4 | 110.7 (6) | C13—C14—H14A | 118.2 |
| O1—C3—H3A | 109.5 | N2—C15—C16 | 124.0 (2) |
| C4—C3—H3A | 109.5 | N2—C15—H15A | 118.0 |
| O1—C3—H3B | 109.5 | C16—C15—H15A | 118.0 |
| C4—C3—H3B | 109.5 | C15—C16—C17 | 118.6 (2) |
| H3A—C3—H3B | 108.1 | C15—C16—H16A | 120.7 |
| O2—C4—C3 | 108.1 (6) | C17—C16—H16A | 120.7 |
| O2—C4—H4A | 110.1 | C16—C17—C18 | 118.0 (2) |
| C3—C4—H4A | 110.1 | C16—C17—S2 | 116.68 (18) |
| O2—C4—H4B | 110.1 | C18—C17—S2 | 125.28 (19) |
| C3—C4—H4B | 110.1 | C19—C18—C17 | 119.2 (2) |
| H4A—C4—H4B | 108.4 | C19—C18—H18A | 120.4 |
| O1—C3A—C4A | 112.5 (8) | C17—C18—H18A | 120.4 |
| O1—C3A—H3C | 109.1 | N2—C19—C18 | 123.3 (2) |
| C4A—C3A—H3C | 109.1 | N2—C19—H19A | 118.4 |
| O1—C3A—H3D | 109.1 | C18—C19—H19A | 118.4 |
| C4A—C3A—H3D | 109.1 | ||
| C7—S1—C1—C2 | −0.11 (17) | Zn1—O5—C8—C1 | −170.36 (13) |
| C7—S1—C1—C8 | −179.57 (17) | C2—C1—C8—O6 | −1.2 (3) |
| C3—O1—C2—C1 | −165.4 (5) | S1—C1—C8—O6 | 178.18 (17) |
| C3A—O1—C2—C1 | 174.9 (8) | C2—C1—C8—O5 | 177.9 (2) |
| C3—O1—C2—C6 | 14.9 (5) | S1—C1—C8—O5 | −2.7 (3) |
| C3A—O1—C2—C6 | −4.7 (8) | Zn1iii—O4—C9—O3 | 3.9 (3) |
| C8—C1—C2—O1 | −0.2 (4) | Zn1iii—O4—C9—C7 | −175.43 (15) |
| S1—C1—C2—O1 | −179.60 (17) | C6—C7—C9—O3 | −166.0 (2) |
| C8—C1—C2—C6 | 179.5 (2) | S1—C7—C9—O3 | 13.6 (3) |
| S1—C1—C2—C6 | 0.1 (2) | C6—C7—C9—O4 | 13.4 (3) |
| C2—O1—C3—C4 | −46.5 (8) | S1—C7—C9—O4 | −167.03 (16) |
| C3A—O1—C3—C4 | 53 (3) | C14—N1—C10—C11 | −1.1 (4) |
| C6—O2—C4—C3 | −50.6 (6) | Zn1—N1—C10—C11 | 171.90 (19) |
| C4A—O2—C4—C3 | 46.4 (6) | N1—C10—C11—C12 | −1.5 (4) |
| O1—C3—C4—O2 | 66.3 (9) | C10—C11—C12—C13 | 3.1 (4) |
| C2—O1—C3A—C4A | 36.5 (17) | C10—C11—C12—S2 | −178.43 (19) |
| C3—O1—C3A—C4A | −51 (2) | C17—S2—C12—C11 | 83.8 (2) |
| C6—O2—C4A—C3A | 54.2 (9) | C17—S2—C12—C13 | −97.7 (2) |
| C4—O2—C4A—C3A | −45.6 (7) | C11—C12—C13—C14 | −2.1 (4) |
| O1—C3A—C4A—O2 | −62.5 (17) | S2—C12—C13—C14 | 179.4 (2) |
| C4—O2—C6—C7 | −160.5 (4) | C10—N1—C14—C13 | 2.1 (4) |
| C4A—O2—C6—C7 | 154.0 (5) | Zn1—N1—C14—C13 | −170.6 (2) |
| C4—O2—C6—C2 | 20.7 (4) | C12—C13—C14—N1 | −0.5 (4) |
| C4A—O2—C6—C2 | −24.9 (6) | C19—N2—C15—C16 | −0.1 (4) |
| O1—C2—C6—C7 | 179.7 (2) | Zn1iv—N2—C15—C16 | 170.64 (18) |
| C1—C2—C6—C7 | 0.0 (3) | N2—C15—C16—C17 | −1.5 (4) |
| O1—C2—C6—O2 | −1.4 (3) | C15—C16—C17—C18 | 2.2 (4) |
| C1—C2—C6—O2 | 179.0 (2) | C15—C16—C17—S2 | −177.25 (19) |
| O2—C6—C7—C9 | 0.6 (4) | C12—S2—C17—C16 | 167.2 (2) |
| C2—C6—C7—C9 | 179.5 (2) | C12—S2—C17—C18 | −12.2 (3) |
| O2—C6—C7—S1 | −179.02 (18) | C16—C17—C18—C19 | −1.4 (4) |
| C2—C6—C7—S1 | −0.1 (2) | S2—C17—C18—C19 | 178.0 (2) |
| C1—S1—C7—C6 | 0.11 (17) | C15—N2—C19—C18 | 1.0 (4) |
| C1—S1—C7—C9 | −179.53 (17) | Zn1iv—N2—C19—C18 | −170.5 (2) |
| Zn1—O5—C8—O6 | 8.7 (3) | C17—C18—C19—N2 | −0.2 (4) |
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x−1, y, z; (iv) x, y−1, z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O7—H7A···O2v | 0.83 (1) | 2.48 (2) | 3.123 (2) | 135 (2) |
| O7—H7A···O4v | 0.83 (1) | 2.04 (2) | 2.746 (2) | 143 (2) |
| O7—H7B···O6vi | 0.83 (1) | 1.94 (1) | 2.733 (2) | 159 (2) |
| C3—H3A···O6vii | 0.97 | 2.66 | 3.275 (9) | 122 |
| C4—H4A···O8v | 0.97 | 2.27 | 3.015 (17) | 133 |
| C3A—H3D···O6vii | 0.97 | 2.60 | 3.473 (19) | 150 |
| C4A—H4C···O8viii | 0.97 | 1.93 | 2.566 (16) | 121 |
| C10—H10A···O5 | 0.93 | 2.50 | 3.079 (3) | 121 |
| C14—H14A···O3i | 0.93 | 2.51 | 3.213 (3) | 133 |
| C15—H15A···S1ix | 0.93 | 3.01 | 3.768 (2) | 140 |
| C15—H15A···O3ix | 0.93 | 2.57 | 3.096 (3) | 116 |
| C15—H15A···N1iv | 0.93 | 2.67 | 3.227 (3) | 119 |
| C18—H18A···O8 | 0.93 | 2.58 | 3.190 (13) | 123 |
Symmetry codes: (i) x+1, y, z; (iv) x, y−1, z; (v) −x+1, −y+1, −z; (vi) −x+2, −y+1, −z; (vii) −x+1, −y+2, −z; (viii) x−1, y+1, z; (ix) −x+1, −y, −z+1.
References
- Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Chen, B. L., Mok, K. F., Ng, S. C. & Drew, M. G. B. (1999). Polyhedron, 18, 1211–1220.
- Chen, B. L., Mok, K. F., Ng, S. C., Feng, Y. L. & Liu, S. X. (1998). Polyhedron, 17, 4237–4247.
- Guo, C., Zhuo, X., Li, Y. & Zheng, H. (2009). Inorg. Chim. Acta, 362, 491–501.
- Han, M. L., Bai, L., Tang, P., Wu, X. Q., Wu, Y. P., Zhao, J., Li, D. S. & Wang, Y. Y. (2015). Dalton Trans. 44, 14673–14685. [DOI] [PubMed]
- Liu, W., Fang, Y., Wei, G. Z., Teat, S. J., Xiong, K., Hu, Z., Lustig, W. P. & Li, J. (2015). J. Am. Chem. Soc. 137, 9400–9408. [DOI] [PubMed]
- Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.
- Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. (2016). Chem. Rev. 116, 12466–12535. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zhang, W., Liao, P., Lin, R., Wei, Y., Zeng, M. & Chen, X. (2015). Coord. Chem. Rev. 293–294, 263–278.
- Zhang, H., Qian, C. & Chen, X. Z. (2011). J. Chem. Res. (S), 35, 339–340.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002031/wm5363Isup2.hkl
CCDC reference: 1528425
Additional supporting information: crystallographic information; 3D view; checkCIF report




