Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Feb 14;73(Pt 3):378–382. doi: 10.1107/S2056989017002213

Crystal structure and solvent-dependent behaviours of 3-amino-1,6-diethyl-2,5,7-trimethyl-4,4-di­phenyl-3a,4a-di­aza-4-bora-s-indacene

Lijing Yang a, Brett Drew a, Ravi Shekar Yalagala a, Rameez Chaviwala a, Razvan Simionescu a, Alan J Lough b,*, Hongbin Yan a,*
PMCID: PMC5347059  PMID: 28316814

3-Amino-1,6-diethyl-2,5,7-trimethyl-4,4-diphenyl-4-bora-3a,4a-di­aza-s-indacene displays solvent-dependent behaviour in both NMR and fluorescence spectroscopy.

Keywords: crystal structure, BODIPY, excitation and emission, fluorescence, NMR spectroscopy, solvent dependence

Abstract

In the title compound (3-amino-4,4-diphenyl-BODIPY), C28H32BN3, the central six-membered ring has a flattened sofa conformation, with one of the N atoms deviating by 0.142 (4) Å from the mean plane of the other five atoms, which have an r.m.s. deviation of 0.015 Å. The dihedral angle between the two essentially planar outer five-membered rings is 8.0 (2)°. In the crystal, mol­ecules are linked via weak N—H⋯π inter­actions, forming chains along [010]. The com­pound displays solvent-dependent behaviours in both NMR and fluorescence spectroscopy. In the 1H NMR spectra, the aliphatic resonance signals virtually coalesce in solvents such as chloro­form, di­chloro­methane and di­bromo­ethane; however, they are fully resolved in solvents such as dimethyl sulfoxide (DMSO), methanol and toluene. The excitation and fluorescence intensities in chloro­form decreased significantly over time, while in DMSO the decrease is not so profound. In toluene, the excitation and fluorescent intensities are not time-dependent. This behaviour is presumably attributed to the assembly of 3-amino-4,4-diphenyl-BODIPY in solution that leads to the formation of noncovalent structures, while in polar or aromatic solvents, the formation of these assemblies is disrupted, leading to resolution of signals in the NMR spectra.

Chemical context  

4,4-Di­fluoro-3a,4a-di­aza-4-bora-s-indacene (BODIPY, see Scheme 1), as an attractive fluoro­phore, has found many applications in material sciences, as sensors and in labelling biomolecules such as proteins, lipids and nucleic acids (Ulrich et al., 2008; Loudet & Burgess, 2007; Ziessel et al., 2007; Tram et al., 2011; Lu et al., 2014; Bessette & Hanan, 2014). In our efforts to develop new BODIPY labelling chemistry, BODIPY analogues bearing an amino group, such as 3-amino-4,4-di­fluoro- and 3-amino-4,4-diphenyl-BODIPY, are being sought. While 3-amino-4,4-di­fluoro-BODIPY has been synthesized pre­viously (Liras et al., 2007), a unique solvent-dependent behaviour of 3-amino-4,4-diphenyl-BODIPY, but not 3-amino-4,4-di­fluoro-BODIPY, was observed by NMR. In this regard, the resonance signals of the aliphatic protons are fully resolved in solvents such as DMSO-d 6, but coalesced in solvents such as CDCl3. We herein report the solvent-dependent behaviour of 3-amino-4,4-diphenyl-BODIPY analogues as observed in the 1H NMR and in excitation and emission spectroscopy. The crystal structure suggests that the title compound could form noncolvalent assemblies in solvents such as CDCl3, leading to its solvent-dependent behaviours in NMR and fluorescence spectroscopy.

Synthesis of BODIPY 2b  

The presence of an amino group in BODIPY allows for functional-group transformation and potential applications in labelling biomolecules. Towards the synthesis of amino BODIPY, an intriguing chemistry was recently described (Liras et al., 2007). In this chemistry, a one-pot reaction of a substituted pyrrole in the presence of sodium nitrite, acetic acid and acetic anhydride, followed by treatment with boron trifluoride dietherate, led to the formation of a mixture of amino 2a and acetimido BODIPY 3a (see Scheme 2, R = F). Following this approach, 3-amino-1,6-diethyl-2,5,7-trimethyl-4,4-diphenyl-3a,4a-di­aza-4-bora-s-indacene (BODIPY 2b, see Scheme 2 and Fig. 1) was synthesized in very low yield (typically <5%), where boron trifluoride diethyl etherate was replaced with di­phenyl­boron bromide (Scheme 2, R = Ph).graphic file with name e-73-00378-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probabilty level. H atoms are not shown.

Solvent-dependent behaviour of BODIPY 2b observed by NMR spectroscopy  

The characterization of 2b by 1H NMR spectroscopy yielded intriguing results. While the proton signals in 1H NMR spectra are fully resolved in DMSO-d 6 (as in Fig. 2 f), the aliphatic protons are completely coalesced in CDCl3. It is also observed that gradual addition of CDCl3 to a solution of 2b in DMSO-d 6 led to a loss of resolution of the aliphatic protons (Figs. 2 be).

Figure 2.

Figure 2

1H NMR spectra of BODIPY 2 b in DMSO-d 6 or mixtures of CDCl3 and DMSO-d 6 in varying ratios: (a) DMSO-d 6/CDCl3 (1:2 v/v); (b) DMSO-d 6/CDCl3 (1:1 v/v); (c) DMSO-d 6/CDCl3 (5:2 v/v); (d) DMSO-d 6/CDCl3 (5:1 v/v); (e) DMSO-d 6/CDCl3 (10:1 v/v); (f) neat DMSO-d 6.

In deuterated di­chloro­methane and 1,2-di­bromo­ethane, the 1H NMR spectra are similarly coalesced (data not shown). On the other hand, spectra are resolved in deuterated methanol and toluene (data not shown), despite the poor solubility of 2b in methanol. These observations prompted us to further investigate the absorption and fluorescent emission behaviour of BODIPY 2b in solution.

Solvent-dependent behavior of BODIPY 2b observed by fluorescence spectroscopy  

Fig. 3(a) suggests that the fluorescence spectra of 2b in chloro­form, and to some extend in DMSO as well, shows time-dependent fluorescent intensities. In contrast, most solvatochromic BODIPY fluoro­phores that have been reported in the literature often show different maximal emission wavelengths (Baruah et al., 2006; Clemens et al., 2008; Filarowski et al., 2010, 2015; de Rezende et al., 2014), however, those solvatochromic BODIPY dyes do not display a time-dependent change in fluorescent intensity.graphic file with name e-73-00378-scheme2.jpg

Figure 3.

Figure 3

Excitation and emission profile of 3-amino-4,4-diphenyl-BODIPY 2 b in (a) chloro­form, DMSO and toluene; (b) chloro­form over 45 min; (c) DMSO over 45 min; (d) toluene over 60 min.

On the other hand, time-dependent spectroscopic changes, in emission intensity, shift of maximal emission wavelength, or absorbance, have been observed for compounds that undergo self-assembly in solution (Gassensmith et al., 2007; Miyatake et al., 2005). Taken together, these observations suggest that BODIPY 2b shows a tendency to form assembled structures in chloro­form, not as significantly in DMSO, and particularly not in toluene.

It can be seen from the crystal structure of BODIPY 2b that the mol­ecules are linked along the BODIPY plane by inter­actions between one of the amino H atoms and the BODIPY π ring (N—H⋯π ring; Table 1 and Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C17–C22 and N2/C6–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N⋯Cg1 0.87 (4) 3.07 (3) 3.772 (2) 139 (2)
N3—H2N⋯Cg2i 0.87 (4) 2.44 (3) 3.223 (2) 150 (2)

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

Part of the crystal structure of 2b, with weak C—H⋯π inter­actions shown as dashed lines.

It is conceivable that in solutions such as in di­chloro­methane, chloro­form and di­bromo­ethane, compound 2b could maintain similar inter­molecular assemblies. As a consequence of the reduced mobility of the BODIPY mol­ecules in these assembled structures, the alkyl signals are broadened to the extent that they become invisible in the NMR spectra (Celis et al., 2013; Brand et al., 2008; Chen et al., 2015). Motion of the phenyl rings, however, is not affected in the assembly, and thus the phenyl aromatic protons are visible in these solvents. In polar solvents such as DMSO and methanol, it is possible that solvation of the BODIPY NH2 group abolishes the ability for such assemblies to occur. On the other hand, in toluene, strong inter­actions of the aromatic benzene ring with the BODIPY co-plane could also diminish the assemblies. The emission profiles of BODIPY 2b in DMSO, chloro­form and toluene also corroborate this model.

Structural commentary  

The mol­ecular structure of 2b shown in Fig. 1 displays a typical BODIPY structure (Tram et al., 2009). The central six-membered ring has a flattened sofa conformation with atom N1 deviating by 0.142 (4) Å from the mean plane of the other five atoms (N2/C4/C5/C6/N1), which has an r.m.s. deviation of 0.015 Å. The dihedral angle between the two essentailly planar outer five-membered rings (N1/C1–C4 and N2/C6–C9) is 8.0 (2)°. The two B—N bond lengths are the same within experimental error [1.594 (4) and 1.579 (4) Å], confirming the delocalized nature of the BODIPY core. The two phenyl rings form dihedral angles of 78.8 (1) (C17–C22) and 80.8 (1)° (C23–C28) with the approximate plane of the 12 atoms of the BODIPY core (B1/N1/N2/C1–C9), which has an r.m.s. deviation of 0.067 Å. The dihedral angle between the two phenyl rings is 48.6 (2)°. Methyl atoms C12 and C15, belonging to the ethyl substituents, deviate by −1.326 (4) and 1.348 (3) Å, respectively, from the mean plane of the 12 atoms of the BODIPY core. There is a weak intra­molecular N3—H1N⋯π inter­action involving the amino group and the C17–C22 phenyl ring (Table 1).

Supra­molecular features  

In the crystal, mol­ecules are linked via weak N—H⋯π inter­actions (Table 1), forming chains along [010] (Fig. 4).

Spectroscopy and experimental  

Bruker Avance 300 and 600 Digital NMR spectrometers with a 14.1 and 7.05 Tesla Ultrashield magnet, respectively, were used to obtain 1H and 11B NMR spectra. 1H NMR spectra were measured at 300 or 600 MHz, and 11B at 96 MHz. Chemical shifts and coupling constants (J values) are given in ppm (δ) and Hz, respectively. Deuterated solvents were purchased from C/D/N Isotopes Inc. Fluorescence spectroscopy was recorded using a QuantaMaster model QM-2001-4 cuvette-based L-format scanning spectro­fluoro­meter from Photon Technology Inter­national (PTI), inter­faced with FeliX32 software. UV–Vis spectra were obtained using a Thermospectronic/Unicam UV/Vis spectrometer configured to the Vision32 software.

Anhydrous di­chloro­methane, tri­ethyl­amine and toluene were generated by first heating under reflux in the presence of phospho­rus pentoxide, calcium hydride and sodium metal, respectively, followed by distillation under an atmosphere of nitro­gen. All other chemicals and reagents were purchased from Sigma–Aldrich or TCI without further purification prior to use.

Synthesis and crystallization  

For the preparation of 2b, a solution of sodium nitrite (80 mg, 1.2 mmol) in water (1.0 ml) was added dropwise to another solution of 3-ethyl-2,4-di­methyl­pyrrole (0.25 ml, 1.85 mmol) in acetic acid (7.5 ml) and acetic anhydride (7.5 ml). The mixture was then heated at 373 K for 4 h. The solvents were removed under reduced pressure. The resulting products were diluted with di­chloro­methane (20 ml) and washed with a saturated aqueous sodium bicarbonate solution (2 × 15 ml). The organic phase was dried (MgSO4) and evaporated to dryness under reduced pressure. The residue was co-evaporated with dry toluene (10 ml) and then redissolved in dry di­chloro­methane (10 ml), followed by addition of dry tri­ethyl­amine (1.0 ml, 7.1 mmol). After stirring for 30 min, boron–di­phenyl­bromide (Noth & Vahrenkamp, 1968) (1.5 ml, 8.2 mmol) was added. Stirring was continued for 20 h and the products were washed with water (3 × 30 ml), dried (MgSO4) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel. The appropriate fractions, eluted with di­chloro­methane–hexane (1:9 v/v), were pooled and concentrated under reduced pressure to give the title compound as an orange solid (yield 18 mg, 4%). Single crystals were obtained by slow evaporation of the corresponding solution in hexane. δH[DMSO-d 6]: 7.19–7.64 (br, 10H), 6.89 (s, 1H), 5.94 (br, 2H), 2.55 (q, 2H, J = 7.5), 2.27 (q, 2H, J = 7.5 Hz), 2.13 (s, 3H), 1.83 (s, 3H), 1.50 (s, 3H), 1.09 (t, 2H, J = 7.5 Hz), 0.93 (t, 2H, J = 7.5 Hz). δB[DMSO-d 6]: 0.66 (s).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were included in calculated positions, with C—H = 0.95–0.99 Å, and were allowed to refine in a riding-motion approximation, with U iso(H) = 1.2U eq(C) or 1.5U eq(Cmeth­yl). The amino H atoms were refined independently with isotropic displacement parameters.

Table 2. Experimental details.

Crystal data
Chemical formula C28H32BN3
M r 421.37
Crystal system, space group Monoclinic, P21
Temperature (K) 147
a, b, c (Å) 9.4938 (7), 11.5325 (8), 11.3739 (9)
β (°) 109.557 (2)
V3) 1173.45 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.27 × 0.07
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.701, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 10457, 5032, 4054
R int 0.040
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.104, 1.03
No. of reflections 5032
No. of parameters 302
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.19
Absolute structure Flack x determined using 1500 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −1.3 (10)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002213/sj5520sup1.cif

e-73-00378-sup1.cif (329.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002213/sj5520Isup2.hkl

e-73-00378-Isup2.hkl (400.4KB, hkl)

CCDC reference: 1531986

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

supplementary crystallographic information

Crystal data

C28H32BN3 F(000) = 452
Mr = 421.37 Dx = 1.193 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 9.4938 (7) Å Cell parameters from 4278 reflections
b = 11.5325 (8) Å θ = 2.4–27.5°
c = 11.3739 (9) Å µ = 0.07 mm1
β = 109.557 (2)° T = 147 K
V = 1173.45 (15) Å3 Plate, red
Z = 2 0.35 × 0.27 × 0.07 mm

Data collection

Bruker Kappa APEX DUO CCD diffractometer 4054 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromator Rint = 0.040
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −12→12
Tmin = 0.701, Tmax = 0.746 k = −14→11
10457 measured reflections l = −14→14
5032 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.0459P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.19 e Å3
5032 reflections Δρmin = −0.19 e Å3
302 parameters Absolute structure: Flack x determined using 1500 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al, 2013)
1 restraint Absolute structure parameter: −1.3 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6209 (2) 0.4011 (2) 0.47877 (19) 0.0171 (5)
N2 0.7753 (2) 0.51637 (19) 0.66391 (19) 0.0174 (5)
N3 0.4280 (3) 0.2624 (2) 0.4350 (3) 0.0291 (6)
C1 0.5218 (3) 0.3302 (3) 0.4010 (3) 0.0204 (6)
C2 0.5273 (3) 0.3383 (3) 0.2759 (3) 0.0223 (6)
C3 0.6299 (3) 0.4212 (3) 0.2787 (2) 0.0191 (6)
C4 0.6900 (3) 0.4631 (2) 0.4057 (2) 0.0174 (6)
C5 0.7876 (3) 0.5506 (2) 0.4559 (2) 0.0187 (6)
H5A 0.8298 0.5927 0.4041 0.022*
C6 0.8277 (3) 0.5803 (2) 0.5833 (2) 0.0172 (6)
C7 0.9196 (3) 0.6704 (2) 0.6497 (3) 0.0192 (6)
C8 0.9259 (3) 0.6587 (2) 0.7743 (3) 0.0208 (6)
C9 0.8385 (3) 0.5641 (3) 0.7804 (2) 0.0202 (6)
C10 0.4334 (4) 0.2669 (3) 0.1690 (3) 0.0348 (8)
H10A 0.4545 0.2885 0.0933 0.052*
H10B 0.3275 0.2805 0.1566 0.052*
H10C 0.4566 0.1846 0.1871 0.052*
C11 0.6694 (3) 0.4692 (3) 0.1714 (3) 0.0243 (7)
H11A 0.6559 0.4081 0.1075 0.029*
H11B 0.7760 0.4924 0.2009 0.029*
C12 0.5734 (4) 0.5736 (3) 0.1125 (3) 0.0434 (9)
H12A 0.6030 0.6028 0.0433 0.065*
H12B 0.5873 0.6348 0.1753 0.065*
H12C 0.4680 0.5506 0.0811 0.065*
C13 0.9925 (3) 0.7628 (3) 0.5969 (3) 0.0279 (7)
H13A 1.0991 0.7672 0.6462 0.042*
H13B 0.9451 0.8377 0.5998 0.042*
H13C 0.9810 0.7439 0.5102 0.042*
C14 1.0172 (3) 0.7322 (3) 0.8821 (3) 0.0260 (7)
H14A 0.9688 0.7331 0.9469 0.031*
H14B 1.0193 0.8129 0.8530 0.031*
C15 1.1776 (3) 0.6883 (3) 0.9400 (3) 0.0365 (8)
H15A 1.2328 0.7394 1.0089 0.055*
H15B 1.2265 0.6880 0.8765 0.055*
H15C 1.1765 0.6094 0.9716 0.055*
C16 0.8189 (3) 0.5127 (3) 0.8948 (3) 0.0263 (7)
H16A 0.7133 0.5161 0.8876 0.039*
H16B 0.8787 0.5565 0.9684 0.039*
H16C 0.8521 0.4317 0.9032 0.039*
C17 0.5151 (3) 0.4325 (2) 0.6603 (2) 0.0182 (6)
C18 0.4069 (3) 0.5069 (3) 0.5835 (3) 0.0269 (7)
H18A 0.4245 0.5410 0.5136 0.032*
C19 0.2748 (3) 0.5331 (3) 0.6051 (3) 0.0355 (8)
H19A 0.2036 0.5835 0.5502 0.043*
C20 0.2475 (3) 0.4855 (3) 0.7068 (3) 0.0347 (8)
H20A 0.1579 0.5036 0.7228 0.042*
C21 0.3512 (3) 0.4115 (3) 0.7851 (3) 0.0337 (8)
H21A 0.3330 0.3783 0.8551 0.040*
C22 0.4828 (3) 0.3855 (3) 0.7615 (3) 0.0261 (7)
H22A 0.5528 0.3341 0.8161 0.031*
C23 0.7586 (3) 0.2907 (2) 0.6849 (2) 0.0177 (6)
C24 0.9149 (3) 0.2865 (3) 0.7172 (3) 0.0239 (6)
H24A 0.9667 0.3550 0.7096 0.029*
C25 0.9962 (3) 0.1863 (3) 0.7597 (3) 0.0301 (7)
H25A 1.1018 0.1870 0.7805 0.036*
C26 0.9244 (4) 0.0857 (3) 0.7719 (3) 0.0295 (7)
H26A 0.9801 0.0169 0.8011 0.035*
C27 0.7705 (4) 0.0853 (3) 0.7414 (3) 0.0276 (7)
H27A 0.7201 0.0160 0.7491 0.033*
C28 0.6900 (3) 0.1866 (3) 0.6996 (3) 0.0238 (6)
H28A 0.5846 0.1853 0.6803 0.029*
B1 0.6672 (3) 0.4083 (3) 0.6269 (3) 0.0181 (6)
H2N 0.359 (4) 0.227 (3) 0.376 (3) 0.035 (10)*
H1N 0.417 (4) 0.268 (3) 0.508 (4) 0.052 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0158 (11) 0.0172 (13) 0.0187 (11) −0.0024 (9) 0.0062 (9) 0.0003 (9)
N2 0.0170 (11) 0.0171 (13) 0.0173 (11) 0.0007 (9) 0.0046 (9) 0.0019 (9)
N3 0.0315 (15) 0.0320 (17) 0.0225 (14) −0.0164 (12) 0.0072 (12) −0.0018 (12)
C1 0.0202 (14) 0.0194 (17) 0.0202 (14) −0.0043 (11) 0.0048 (11) −0.0022 (11)
C2 0.0221 (14) 0.0232 (18) 0.0201 (14) −0.0028 (12) 0.0053 (11) −0.0008 (12)
C3 0.0174 (13) 0.0207 (17) 0.0200 (13) 0.0019 (11) 0.0071 (11) −0.0007 (11)
C4 0.0176 (13) 0.0166 (17) 0.0193 (14) 0.0011 (11) 0.0079 (11) 0.0030 (10)
C5 0.0168 (13) 0.0206 (16) 0.0203 (13) 0.0014 (11) 0.0084 (11) 0.0034 (11)
C6 0.0145 (13) 0.0170 (16) 0.0203 (13) 0.0004 (10) 0.0057 (10) 0.0016 (11)
C7 0.0157 (13) 0.0168 (17) 0.0240 (14) 0.0000 (11) 0.0052 (11) −0.0002 (11)
C8 0.0189 (13) 0.0185 (18) 0.0232 (15) 0.0019 (11) 0.0046 (11) −0.0023 (12)
C9 0.0168 (13) 0.0221 (17) 0.0195 (14) 0.0029 (11) 0.0031 (11) −0.0008 (11)
C10 0.042 (2) 0.034 (2) 0.0282 (16) −0.0144 (15) 0.0110 (14) −0.0074 (15)
C11 0.0289 (15) 0.0261 (18) 0.0208 (15) −0.0028 (13) 0.0120 (12) −0.0013 (11)
C12 0.055 (2) 0.044 (2) 0.0372 (19) 0.0168 (17) 0.0241 (17) 0.0187 (17)
C13 0.0289 (16) 0.0236 (18) 0.0307 (16) −0.0063 (13) 0.0095 (13) −0.0004 (13)
C14 0.0299 (17) 0.0221 (18) 0.0247 (15) −0.0037 (12) 0.0072 (13) −0.0064 (12)
C15 0.0292 (17) 0.040 (2) 0.0307 (18) −0.0052 (15) −0.0023 (14) −0.0083 (14)
C16 0.0303 (15) 0.0278 (18) 0.0209 (15) −0.0040 (13) 0.0086 (12) −0.0006 (12)
C17 0.0170 (13) 0.0158 (16) 0.0217 (14) −0.0020 (10) 0.0062 (10) −0.0024 (11)
C18 0.0237 (15) 0.0267 (18) 0.0306 (16) 0.0032 (12) 0.0094 (12) 0.0051 (13)
C19 0.0257 (16) 0.035 (2) 0.0425 (19) 0.0076 (14) 0.0074 (14) 0.0016 (15)
C20 0.0220 (15) 0.035 (2) 0.052 (2) −0.0011 (13) 0.0191 (15) −0.0099 (15)
C21 0.0334 (18) 0.040 (2) 0.0364 (18) −0.0022 (15) 0.0229 (15) 0.0010 (15)
C22 0.0236 (15) 0.0269 (19) 0.0281 (16) 0.0017 (12) 0.0090 (12) 0.0027 (12)
C23 0.0215 (14) 0.0186 (16) 0.0144 (13) −0.0013 (11) 0.0079 (11) −0.0025 (10)
C24 0.0230 (15) 0.0221 (17) 0.0279 (15) −0.0006 (12) 0.0103 (12) −0.0002 (12)
C25 0.0235 (15) 0.0296 (19) 0.0366 (18) 0.0065 (13) 0.0094 (13) −0.0004 (14)
C26 0.0336 (18) 0.0218 (19) 0.0304 (17) 0.0104 (13) 0.0071 (13) 0.0037 (13)
C27 0.0345 (17) 0.0174 (18) 0.0305 (16) 0.0002 (12) 0.0103 (13) 0.0019 (12)
C28 0.0206 (14) 0.0246 (18) 0.0249 (15) −0.0028 (12) 0.0057 (12) 0.0019 (12)
B1 0.0190 (15) 0.0184 (18) 0.0170 (15) −0.0018 (12) 0.0060 (12) 0.0017 (12)

Geometric parameters (Å, º)

N1—C1 1.334 (3) C13—H13C 0.9800
N1—C4 1.413 (3) C14—C15 1.529 (4)
N1—B1 1.594 (4) C14—H14A 0.9900
N2—C9 1.374 (3) C14—H14B 0.9900
N2—C6 1.392 (3) C15—H15A 0.9800
N2—B1 1.579 (4) C15—H15B 0.9800
N3—C1 1.335 (4) C15—H15C 0.9800
N3—H2N 0.87 (4) C16—H16A 0.9800
N3—H1N 0.87 (4) C16—H16B 0.9800
C1—C2 1.445 (4) C16—H16C 0.9800
C2—C3 1.358 (4) C17—C22 1.396 (4)
C2—C10 1.492 (4) C17—C18 1.398 (4)
C3—C4 1.446 (4) C17—B1 1.635 (4)
C3—C11 1.498 (4) C18—C19 1.389 (4)
C4—C5 1.360 (4) C18—H18A 0.9500
C5—C6 1.411 (4) C19—C20 1.382 (5)
C5—H5A 0.9500 C19—H19A 0.9500
C6—C7 1.404 (4) C20—C21 1.379 (5)
C7—C8 1.405 (4) C20—H20A 0.9500
C7—C13 1.501 (4) C21—C22 1.396 (4)
C8—C9 1.386 (4) C21—H21A 0.9500
C8—C14 1.505 (4) C22—H22A 0.9500
C9—C16 1.496 (4) C23—C28 1.403 (4)
C10—H10A 0.9800 C23—C24 1.405 (4)
C10—H10B 0.9800 C23—B1 1.626 (4)
C10—H10C 0.9800 C24—C25 1.383 (4)
C11—C12 1.523 (4) C24—H24A 0.9500
C11—H11A 0.9900 C25—C26 1.377 (5)
C11—H11B 0.9900 C25—H25A 0.9500
C12—H12A 0.9800 C26—C27 1.384 (4)
C12—H12B 0.9800 C26—H26A 0.9500
C12—H12C 0.9800 C27—C28 1.391 (4)
C13—H13A 0.9800 C27—H27A 0.9500
C13—H13B 0.9800 C28—H28A 0.9500
C1—N1—C4 106.5 (2) C8—C14—C15 112.5 (3)
C1—N1—B1 128.0 (2) C8—C14—H14A 109.1
C4—N1—B1 125.2 (2) C15—C14—H14A 109.1
C9—N2—C6 106.6 (2) C8—C14—H14B 109.1
C9—N2—B1 127.5 (2) C15—C14—H14B 109.1
C6—N2—B1 125.9 (2) H14A—C14—H14B 107.8
C1—N3—H2N 117 (2) C14—C15—H15A 109.5
C1—N3—H1N 122 (3) C14—C15—H15B 109.5
H2N—N3—H1N 118 (3) H15A—C15—H15B 109.5
N1—C1—N3 123.9 (3) C14—C15—H15C 109.5
N1—C1—C2 111.3 (2) H15A—C15—H15C 109.5
N3—C1—C2 124.8 (3) H15B—C15—H15C 109.5
C3—C2—C1 106.5 (2) C9—C16—H16A 109.5
C3—C2—C10 129.6 (3) C9—C16—H16B 109.5
C1—C2—C10 123.9 (3) H16A—C16—H16B 109.5
C2—C3—C4 107.4 (2) C9—C16—H16C 109.5
C2—C3—C11 127.9 (3) H16A—C16—H16C 109.5
C4—C3—C11 124.6 (3) H16B—C16—H16C 109.5
C5—C4—N1 120.9 (2) C22—C17—C18 115.8 (3)
C5—C4—C3 130.7 (2) C22—C17—B1 125.5 (2)
N1—C4—C3 108.3 (2) C18—C17—B1 118.7 (2)
C4—C5—C6 121.6 (3) C19—C18—C17 122.7 (3)
C4—C5—H5A 119.2 C19—C18—H18A 118.6
C6—C5—H5A 119.2 C17—C18—H18A 118.6
N2—C6—C7 109.5 (2) C20—C19—C18 119.7 (3)
N2—C6—C5 120.9 (2) C20—C19—H19A 120.2
C7—C6—C5 129.6 (3) C18—C19—H19A 120.2
C6—C7—C8 106.2 (2) C21—C20—C19 119.6 (3)
C6—C7—C13 126.7 (2) C21—C20—H20A 120.2
C8—C7—C13 127.1 (2) C19—C20—H20A 120.2
C9—C8—C7 107.6 (2) C20—C21—C22 120.0 (3)
C9—C8—C14 126.4 (3) C20—C21—H21A 120.0
C7—C8—C14 125.9 (3) C22—C21—H21A 120.0
N2—C9—C8 110.0 (2) C17—C22—C21 122.2 (3)
N2—C9—C16 122.6 (3) C17—C22—H22A 118.9
C8—C9—C16 127.3 (2) C21—C22—H22A 118.9
C2—C10—H10A 109.5 C28—C23—C24 115.5 (3)
C2—C10—H10B 109.5 C28—C23—B1 123.8 (2)
H10A—C10—H10B 109.5 C24—C23—B1 120.6 (2)
C2—C10—H10C 109.5 C25—C24—C23 122.5 (3)
H10A—C10—H10C 109.5 C25—C24—H24A 118.7
H10B—C10—H10C 109.5 C23—C24—H24A 118.7
C3—C11—C12 112.0 (3) C26—C25—C24 120.1 (3)
C3—C11—H11A 109.2 C26—C25—H25A 120.0
C12—C11—H11A 109.2 C24—C25—H25A 120.0
C3—C11—H11B 109.2 C25—C26—C27 119.7 (3)
C12—C11—H11B 109.2 C25—C26—H26A 120.2
H11A—C11—H11B 107.9 C27—C26—H26A 120.2
C11—C12—H12A 109.5 C26—C27—C28 119.7 (3)
C11—C12—H12B 109.5 C26—C27—H27A 120.1
H12A—C12—H12B 109.5 C28—C27—H27A 120.1
C11—C12—H12C 109.5 C27—C28—C23 122.4 (3)
H12A—C12—H12C 109.5 C27—C28—H28A 118.8
H12B—C12—H12C 109.5 C23—C28—H28A 118.8
C7—C13—H13A 109.5 N2—B1—N1 104.3 (2)
C7—C13—H13B 109.5 N2—B1—C23 109.8 (2)
H13A—C13—H13B 109.5 N1—B1—C23 107.8 (2)
C7—C13—H13C 109.5 N2—B1—C17 110.4 (2)
H13A—C13—H13C 109.5 N1—B1—C17 107.6 (2)
H13B—C13—H13C 109.5 C23—B1—C17 116.1 (2)
C4—N1—C1—N3 −175.8 (3) C2—C3—C11—C12 89.8 (4)
B1—N1—C1—N3 9.8 (5) C4—C3—C11—C12 −85.5 (4)
C4—N1—C1—C2 3.0 (3) C9—C8—C14—C15 91.3 (4)
B1—N1—C1—C2 −171.4 (2) C7—C8—C14—C15 −85.5 (4)
N1—C1—C2—C3 −2.6 (3) C22—C17—C18—C19 −0.2 (5)
N3—C1—C2—C3 176.2 (3) B1—C17—C18—C19 −179.6 (3)
N1—C1—C2—C10 177.9 (3) C17—C18—C19—C20 0.6 (5)
N3—C1—C2—C10 −3.3 (5) C18—C19—C20—C21 −0.6 (5)
C1—C2—C3—C4 1.0 (3) C19—C20—C21—C22 0.2 (5)
C10—C2—C3—C4 −179.5 (3) C18—C17—C22—C21 −0.3 (4)
C1—C2—C3—C11 −175.0 (3) B1—C17—C22—C21 179.0 (3)
C10—C2—C3—C11 4.5 (5) C20—C21—C22—C17 0.3 (5)
C1—N1—C4—C5 173.9 (3) C28—C23—C24—C25 0.6 (4)
B1—N1—C4—C5 −11.4 (4) B1—C23—C24—C25 −176.0 (3)
C1—N1—C4—C3 −2.3 (3) C23—C24—C25—C26 −0.1 (5)
B1—N1—C4—C3 172.3 (2) C24—C25—C26—C27 0.0 (5)
C2—C3—C4—C5 −175.0 (3) C25—C26—C27—C28 −0.4 (5)
C11—C3—C4—C5 1.1 (5) C26—C27—C28—C23 1.0 (4)
C2—C3—C4—N1 0.8 (3) C24—C23—C28—C27 −1.0 (4)
C11—C3—C4—N1 176.9 (2) B1—C23—C28—C27 175.4 (3)
N1—C4—C5—C6 2.2 (4) C9—N2—B1—N1 175.5 (2)
C3—C4—C5—C6 177.5 (3) C6—N2—B1—N1 −6.1 (3)
C9—N2—C6—C7 −2.0 (3) C9—N2—B1—C23 −69.2 (3)
B1—N2—C6—C7 179.3 (2) C6—N2—B1—C23 109.2 (3)
C9—N2—C6—C5 177.7 (2) C9—N2—B1—C17 60.1 (3)
B1—N2—C6—C5 −1.0 (4) C6—N2—B1—C17 −121.5 (3)
C4—C5—C6—N2 3.9 (4) C1—N1—B1—N2 −174.3 (3)
C4—C5—C6—C7 −176.5 (3) C4—N1—B1—N2 12.3 (3)
N2—C6—C7—C8 1.5 (3) C1—N1—B1—C23 69.0 (3)
C5—C6—C7—C8 −178.1 (3) C4—N1—B1—C23 −104.5 (3)
N2—C6—C7—C13 −176.8 (3) C1—N1—B1—C17 −57.0 (4)
C5—C6—C7—C13 3.5 (5) C4—N1—B1—C17 129.6 (3)
C6—C7—C8—C9 −0.4 (3) C28—C23—B1—N2 161.5 (2)
C13—C7—C8—C9 177.9 (3) C24—C23—B1—N2 −22.2 (3)
C6—C7—C8—C14 176.9 (3) C28—C23—B1—N1 −85.4 (3)
C13—C7—C8—C14 −4.8 (4) C24—C23—B1—N1 90.9 (3)
C6—N2—C9—C8 1.8 (3) C28—C23—B1—C17 35.3 (4)
B1—N2—C9—C8 −179.6 (2) C24—C23—B1—C17 −148.4 (2)
C6—N2—C9—C16 −174.8 (3) C22—C17—B1—N2 −104.1 (3)
B1—N2—C9—C16 3.8 (4) C18—C17—B1—N2 75.2 (3)
C7—C8—C9—N2 −0.9 (3) C22—C17—B1—N1 142.6 (3)
C14—C8—C9—N2 −178.1 (3) C18—C17—B1—N1 −38.1 (3)
C7—C8—C9—C16 175.5 (3) C22—C17—B1—C23 21.8 (4)
C14—C8—C9—C16 −1.7 (5) C18—C17—B1—C23 −158.9 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C17-C22 and N2/C6-C9 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N3—H1N···Cg1 0.87 (4) 3.07 (3) 3.772 (2) 139 (2)
N3—H2N···Cg2i 0.87 (4) 2.44 (3) 3.223 (2) 150 (2)

Symmetry code: (i) −x+1, y−1/2, −z+1.

References

  1. Baruah, M., Qin, W., Flors, C., Hofkens, J., Vallée, R. A. L., Beljonne, D., van der Auweraer, M., De Borggraeve, W. M. & Boens, B. (2006). J. Phys. Chem. A, 110, 5998–6009. [DOI] [PubMed]
  2. Bessette, A. & Hanan, G. S. (2014). Chem. Soc. Rev. 43, 3342–3405. [DOI] [PubMed]
  3. Brand, T., Nolis, P., Richter, S. & Berger, S. (2008). Magn. Reson. Chem. 46, 545–549. [DOI] [PubMed]
  4. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Celis, S., Nolis, P., Illa, O., Branchadella, V. M. & Ortuño, R. M. (2013). Org. Biomol. Chem. 11, 2839–2846. [DOI] [PubMed]
  6. Chen, S., Tang, G., Wu, B., Ma, M. & Wang, X. (2015). RSC Adv. 5, 35282–35290.
  7. Clemens, O., Basters, M., Wild, M., Wilbrand, S., Reichert, C., Bauer, M., Springborg, M. & Jung, G. (2008). J. Mol. Struct. THEOCHEM, 866, 15–20.
  8. Filarowski, A., Kluba, M., Cieślik-Boczula, K., Koll, A., Kochel, A., Pandey, L., De Borggraeve, W. M., van der Auweraer, M., Catalán, J. & Boens, N. (2010). Photochem. Photobiol. Sci. 9, 996–1008. [DOI] [PubMed]
  9. Filarowski, A., Lopatkova, M., Lipkowski, P., van der Auweraer, M., Leen, V. & Dehaen, W. (2015). J. Phys. Chem. B, 119, 2576–2584. [DOI] [PubMed]
  10. Gassensmith, J. J., Arunkumar, E., Barr, L., Baumes, J. M., DiVittorio, K. M., Johnson, J. R., Noll, B. C. & Smith, B. D. (2007). J. Am. Chem. Soc. 129, 15054–15059. [DOI] [PMC free article] [PubMed]
  11. Liras, M., Prieto, J., Pintado-Sierra, M., Arbeloa, F., Garcia-Moreno, I., Costela, A., Infantes, L., Sastre, R. & Amat-Guerri, F. (2007). Org. Lett. 9, 4183–4186. [DOI] [PubMed]
  12. Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932. [DOI] [PubMed]
  13. Lu, H., Mack, J., Yang, Y. & Shen, Z. (2014). Chem. Soc. Rev. 43, 4778–4823. [DOI] [PubMed]
  14. Miyatake, T., Shitasue, K., Omori, Y., Nakagawa, K., Fujiwara, M., Matsushita, T. & Tamiaki, H. (2005). Photosynth. Res. 86, 131–136. [DOI] [PubMed]
  15. Noth, H. & Vahrenkamp, H. (1968). J. Organomet. Chem. 11, 399–405.
  16. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  17. Rezende, L. C. D., Vaidergorn, M. M., Moraes, J. C. B. & da Silva Emery, F. (2014). J. Fluoresc. 24, 257–266. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Tram, K., Twohig, D. & Yan, H. (2011). Nucleosides Nucleotides Nucleic Acids, 30, 1–11. [DOI] [PubMed]
  23. Tram, K., Yan, H., Jenkins, H., Vassiliev, S. & Bruce, D. (2009). Dyes Pigm. 82, 392–395.
  24. Ulrich, C., Ziessel, R. & Harriman, A. (2008). Angew. Chem. Int. Ed. 47, 1184–1201. [DOI] [PubMed]
  25. Ziessel, R., Ulrich, G. & Harriman, A. (2007). New J. Chem. 31, 496–501.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989017002213/sj5520sup1.cif

e-73-00378-sup1.cif (329.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002213/sj5520Isup2.hkl

e-73-00378-Isup2.hkl (400.4KB, hkl)

CCDC reference: 1531986

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES