Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2017 Feb 21;73(Pt 3):413–416. doi: 10.1107/S2056989017002675

Crystal structure of bis­(μ-3-nitro­benzoato)-κ3 O,O′:O3 O:O,O′-bis­[bis­(3-cyano­pyridine-κN 1)(3-nitro­benzoato-κ2 O,O′)cadmium]

Tuncer Hökelek a,*, Nurcan Akduran b, Azer Özen c, Güventürk Uğurlu c, Hacali Necefoğlu c,d
PMCID: PMC5347067  PMID: 28316822

In the title cadmium complex of 3-nitro­benzoate and 3-cyano­pyridine, binuclear centrosymmetric mol­ecules are present, with cadmium being surrounded in an N2O5 coordinaton set in a distorted penta­gonal–bipyramidal shape.

Keywords: crystal structure, cadmium, transition metal complex, benzoic acid

Abstract

The asymmetric unit of the title compound, [Cd2(C7H4NO4)4(C6H4N2)4], contains one CdII atom, two 3-nitro­benzoate (NB) anions and two 3-cyano­pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl­ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the CdII atoms are bridged by the carboxyl­ate O atoms of two symmetry-related NB anions, thus completing the distorted N2O5 penta­gonal–bipyramidal coordination sphere of each CdII atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C—H⋯N hydrogen bonds link the mol­ecules, enclosing R 2 2(26) ring motifs, in which they are further linked via C—H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π–π stacking inter­actions between parallel benzene rings and between parallel pyridine rings of adjacent mol­ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C—H⋯π inter­action, may further stabilize the crystal structure.

Chemical context  

In the last two decades, research on metal–organic frameworks (MOFs) has received considerable attention due to their extensive structural chemistry (Li et al., 2016) and their potential applications, including gas storage, nonlinear optics and ion exchange (Carlucci et al., 2003). In the syntheses of compounds having MOF structures, various carboxyl­ate ligands have been used (Li et al., 2004).graphic file with name e-73-00413-scheme1.jpg

On the other hand, transition-metal complexes with biochemically active mol­ecules show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).

The structure–function–coordination relationships of aryl­carboxyl­ate ions in ZnII complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH range and temperature of the synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974).

The structures of some dinuclear complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA; C6H6N2O) and some benzoic acid derivatives as ligands, e.g. [Zn2(C7H4FO2)4(C6H6N2O)2]·C7H5FO2 [(II); Hökelek et al., 2009], [Cu2(C8H7O3)4(C6H6N2O)2(H2O)2] [(III); Hökelek et al., 2010], [Cu2(C8H5O3)4(C6H6N2O)4] [(IV); Sertçelik et al., 2013], [Mn2(C7H4BrO2)4(C6H6N2O)2(H2O)2] [(V); Necefoğlu et al., 2011] and [Cd2(C7H4ClO2)4(C6H6N2O)2(H2O)2] [(VI); Bozkurt et al., 2013], have been determined previously. In this context, we have synthesized the CdII-containing title compound, bis(μ-3-nitro­benzoato)-κ3 O,O′:O3 O:O,O′-bis­[bis­(3-cyano­pyridine-κN)(3-nitro­benzoato-κ2 O,O′)cadmium], [Cd2(C7H4NO4)4(C6H4N2)4], and report herein its crystal structure.

Structural commentary  

The asymmetric unit of the title complex contains one CdII atom, two 3-nitro­benzoate (NB) anions and two 3-cyano­pyridine (CPy) ligands. The two CPy ligands are monodentate (through the pyridine N atoms), while both NB anions act as bidentate ligands through their carboxyl­ate O atoms (Fig. 1). The centrosymmetric dinuclear mol­ecule is completed by application of inversion symmerty. The CdII atoms are bridged by the carboxyl­ate O atoms of one NB anions (O6 and O5) and its symmetry-related counterpart [symmetry code: (i) −x, −y + 1, −z + 1]. Hence, this carboxyl­ate group not only chelates to one CdII atom but also bridges two CdII atoms (Fig. 2). Thus, each CdII atom is surrounded by three NB anions and two CPy ligands. The overall coordination sphere of the CdII atom is defined by the bridging/chelating NB anions (O5, O5i and O6), one chelating NB anion (O1 and O2) and two 3-cyano­pyridine (CPy) ligands (N3 and N5), resulting in a distorted penta­gonal–bipyramidal environment. The five carboxyl­ate O atoms (O1, O2, O5, O5i and O6) of the three NB anions around the CdII atom form a distorted penta­gonal arrangement, with an average Cd1—O bond length of 2.42 Å (Table 1). The distorted penta­gonal–bipyramidal coordination is completed by pyridine atoms N3 and N5 of the CPy ligands at distances of 2.3186 (17) and 2.3435 (17) Å, respectively, in the axial positions (Table 1; Figs. 1 and 2). The Cd1 atom lies 0.1252 (1) Å above and 0.0326 (1) Å below of planar O1/O2/C1 and O5/O6/C8 carboxyl­ate groups, respectively. The Cd1⋯Cd1i separation in the binuclear mol­ecule is 3.9360 (15) Å and is comparable to the corresponding MM distances (M is a metal) in the structurally related transition metal(II) complexes [7.1368 (3) Å in (III), 4.1554 (8) Å in (IV), 7.180 (2) Å in (V) and 7.1647 (3) Å in (VI)]. The metal atoms are bridged by two NA ligand N and O atoms in (III), (V) and (VI), while they are bridged by two carboxyl­ate O atoms in (IV).

Figure 1.

Figure 1

The asymmetric unit of the title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of the binuclear title mol­ecule. Symmetry-related atoms are related by the symmetry code (−x, −y + 1, −z + 1). H atoms have been omitted for clarity.

Table 1. Selected bond lengths (Å).

Cd1—O1 2.3017 (15) Cd1—O6 2.3264 (15)
Cd1—O2 2.5072 (18) Cd1—N3 2.3186 (17)
Cd1—O5 2.5367 (16) Cd1—N5 2.3435 (17)
Cd1—O5i 2.4716 (16)    

Symmetry code: (i) Inline graphic.

The near equalities of the C1—O1 [1.264 (3) Å], C1—O2 [1.241 (3) Å], C8—O5 [1.256 (3) Å] and C8—O6 [1.253 (3) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The O1—Cd1—O2 and O5—Cd1—O6 bite angles are reduced to 54.33 (5) and 53.47 (5)°, respectively. The corresponding O—M—O (M is a divalent metal) angles are 60.92 (12)° in (II), 53.50 (14)° in (IV), 57.61 (8)° in (V), and 54.22 (4) and 53.32 (5)° in (VI). The dihedral angles between the planar carboxyl­ate groups (O1/O2/C1 and O5/O6/C8) and the adjacent benzene [A (C2–C7) and B (C9–C14)] rings in the title structure are 17.18 (13) and 3.36 (12)°, respectively, while the benzene (A and B) and pyridine [C (N3/C15–C19) and D (N5/C21–C25)] rings are oriented at dihedral angles of A/B = 10.02 (7)°, A/C = 72.70 (7)°, A/D = 74.72 (7)°, B/C = 82.28 (7)°, B/D = 84.54 (8)° and C/D = 5.76 (9)°.

Supra­molecular features  

Intra­molecular C—Hcpy⋯Oc (cpy = cyano­pyridine and c = carboxyl­ate) and C—Hnb⋯Oc (nb = nitro­benzoate) hydrogen bonds (Table 2) link the cyano­pyridine and nitro­benzoate ligands to the carboxyl­ate O atoms. In the crystal, C—Hcpy⋯Ncpy hydrogen bonds (Table 2) link the mol­ecules, enclosing Inline graphic(26) ring motifs (Bernstein et al., 1995) (Fig. 3), in which they are further linked via additional C—Hcpy⋯Onb (nb = nitro­benzoate) hydrogen bonds (Table 2), resulting in a three-dimensional network. The π–π contacts between parallel benzene rings and between parallel pyridine rings of adjacent mol­ecules, Cg1–Cg2i and Cg3–Cg4ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, −y + 1, −z + 1; Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings A (atoms C2–C7), B (C9–C14), C (N3/C15–C19) and D (N5/C21–C25)] may further stabilize the structure, with centroid–centroid distances of 3.885 (1) and 3.712 (1) Å, respectively. A weak C—H⋯π inter­action (Table 2) is also observed.

Table 2. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the N3/C15–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.93 2.20 3.108 (3) 167
C15—H15⋯O2ii 0.93 2.32 3.111 (3) 143
C23—H23⋯N4iii 0.93 2.38 3.236 (5) 154
C25—H25⋯O6 0.93 2.58 3.242 (3) 128
C10—H10⋯Cg3ii 0.93 3.26 4.186 (3) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Part of the crystal structure. Intra­molecular (C—Hcpy⋯Oc and C—Hnb⋯Oc) and inter­molecular (C—Hcpy⋯Ncpy and C—Hcpy⋯Onb) (cpy = cyano­pyridine, c = carboxyl­ate and nb = nitro­benzoate) hydrogen bonds are shown as dashed lines. Nonbonding H atoms have been omitted for clarity.

Refinement  

The experimental details including the crystal data, data collection and refinement are summarized in Table 3. Aromatic H atoms were positioned geometrically, with C—H = 0.93 Å, and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C). The maximum and minimum electron densities were found at 1.43 and 0.80 Å from atoms O2 and Cd1, respectively.

Table 3. Experimental details.

Crystal data
Chemical formula [Cd2(C7H4NO4)4(C6H4N2)4]
M r 1305.72
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 8.5237 (3), 12.7145 (4), 13.0583 (5)
α, β, γ (°) 105.022 (3), 97.347 (3), 104.866 (2)
V3) 1292.12 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.91
Crystal size (mm) 0.28 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.615, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 65471, 6414, 5828
R int 0.029
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.072, 1.22
No. of reflections 6414
No. of parameters 370
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.75

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Synthesis and crystallization  

The title compound was prepared by the reaction of 3CdSO4·8H2O (0.64 g, 2.5 mmol) in H2O (50 ml) and 3-cyano­pyridine (0.52 g, 5 mmol) in H2O (50 ml) with sodium 3-nitro­benzoate (0.95 g, 5 mmol) in H2O (100 ml) at 333 K. The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colourless single crystals.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017002675/wm5366sup1.cif

e-73-00413-sup1.cif (36.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002675/wm5366Isup2.hkl

e-73-00413-Isup2.hkl (307.6KB, hkl)

CCDC reference: 1533101

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

supplementary crystallographic information

Crystal data

[Cd2(C7H4NO4)4(C6H4N2)4] Z = 1
Mr = 1305.72 F(000) = 652
Triclinic, P1 Dx = 1.678 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5237 (3) Å Cell parameters from 9607 reflections
b = 12.7145 (4) Å θ = 3.1–28.3°
c = 13.0583 (5) Å µ = 0.91 mm1
α = 105.022 (3)° T = 296 K
β = 97.347 (3)° Prism, colourless
γ = 104.866 (2)° 0.28 × 0.20 × 0.18 mm
V = 1292.12 (8) Å3

Data collection

Bruker APEXII CCD diffractometer 6414 independent reflections
Radiation source: fine-focus sealed tube 5828 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 28.3°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −11→11
Tmin = 0.615, Tmax = 0.746 k = −16→16
65471 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.8651P] where P = (Fo2 + 2Fc2)/3
6414 reflections (Δ/σ)max = 0.001
370 parameters Δρmax = 1.01 e Å3
0 restraints Δρmin = −0.75 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.151839 (18) 0.436274 (11) 0.419807 (11) 0.03200 (6)
O1 0.0821 (2) 0.25149 (13) 0.30752 (14) 0.0448 (4)
O2 0.3355 (2) 0.35240 (13) 0.30991 (15) 0.0480 (4)
O3 −0.0992 (3) −0.15593 (16) 0.12938 (19) 0.0675 (6)
O4 0.0033 (3) −0.22812 (15) −0.00392 (17) 0.0646 (5)
O5 0.1364 (2) 0.61626 (13) 0.55320 (14) 0.0431 (4)
O6 0.3515 (2) 0.61460 (13) 0.47720 (13) 0.0414 (3)
O7 0.8058 (3) 0.9744 (2) 0.5573 (3) 0.1093 (12)
O8 0.7807 (3) 1.13029 (18) 0.6485 (3) 0.0928 (9)
N1 0.0007 (3) −0.14806 (16) 0.07056 (17) 0.0435 (4)
N2 0.7303 (3) 1.02738 (18) 0.6099 (2) 0.0537 (5)
N3 0.2275 (2) 0.37248 (14) 0.56414 (14) 0.0320 (3)
N4 0.6329 (5) 0.5371 (3) 0.8932 (3) 0.1256 (18)
N5 0.0320 (2) 0.48389 (15) 0.27322 (14) 0.0358 (4)
N6 −0.3803 (3) 0.2705 (2) −0.0491 (2) 0.0685 (7)
C1 0.2174 (3) 0.26302 (16) 0.27548 (16) 0.0324 (4)
C2 0.2308 (3) 0.16188 (17) 0.19015 (17) 0.0322 (4)
C3 0.1160 (3) 0.05585 (17) 0.17155 (17) 0.0330 (4)
H3 0.0350 0.0469 0.2127 0.040*
C4 0.1244 (3) −0.03626 (17) 0.09058 (17) 0.0347 (4)
C5 0.2408 (3) −0.0262 (2) 0.0267 (2) 0.0459 (5)
H5 0.2429 −0.0892 −0.0279 0.055*
C6 0.3544 (4) 0.0798 (2) 0.0456 (2) 0.0535 (6)
H6 0.4340 0.0886 0.0034 0.064*
C7 0.3498 (3) 0.1736 (2) 0.1279 (2) 0.0447 (5)
H7 0.4274 0.2445 0.1410 0.054*
C8 0.2760 (2) 0.66594 (16) 0.53913 (16) 0.0315 (4)
C9 0.3550 (2) 0.79211 (16) 0.59657 (16) 0.0312 (4)
C10 0.5053 (3) 0.84920 (17) 0.57676 (18) 0.0346 (4)
H10 0.5592 0.8106 0.5294 0.042*
C11 0.5721 (3) 0.96539 (17) 0.62989 (19) 0.0384 (5)
C12 0.4989 (3) 1.02590 (19) 0.7024 (2) 0.0491 (6)
H12 0.5479 1.1036 0.7373 0.059*
C13 0.3506 (4) 0.9677 (2) 0.7217 (2) 0.0565 (7)
H13 0.2988 1.0064 0.7706 0.068*
C14 0.2785 (3) 0.8520 (2) 0.6685 (2) 0.0453 (5)
H14 0.1776 0.8140 0.6811 0.054*
C15 0.3517 (3) 0.43881 (18) 0.64654 (18) 0.0360 (4)
H15 0.4061 0.5123 0.6466 0.043*
C16 0.4023 (3) 0.4017 (2) 0.73219 (19) 0.0414 (5)
C17 0.3240 (3) 0.2918 (2) 0.7327 (2) 0.0479 (6)
H17 0.3567 0.2653 0.7894 0.058*
C18 0.1962 (3) 0.2229 (2) 0.6465 (2) 0.0503 (6)
H18 0.1411 0.1486 0.6437 0.060*
C19 0.1517 (3) 0.26648 (19) 0.56478 (19) 0.0417 (5)
H19 0.0649 0.2200 0.5072 0.050*
C20 0.5330 (4) 0.4779 (3) 0.8215 (3) 0.0706 (10)
C21 −0.0872 (3) 0.40583 (18) 0.19319 (17) 0.0375 (4)
H21 −0.1240 0.3318 0.1971 0.045*
C22 −0.1584 (3) 0.43099 (19) 0.10448 (17) 0.0373 (4)
C23 −0.1049 (3) 0.5416 (2) 0.09792 (19) 0.0462 (5)
H23 −0.1512 0.5609 0.0397 0.055*
C24 0.0186 (4) 0.6213 (2) 0.1803 (2) 0.0541 (7)
H24 0.0579 0.6960 0.1787 0.065*
C25 0.0835 (3) 0.58913 (19) 0.26552 (19) 0.0460 (6)
H25 0.1675 0.6438 0.3204 0.055*
C26 −0.2833 (3) 0.3418 (2) 0.0192 (2) 0.0484 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03932 (9) 0.02142 (7) 0.02841 (8) 0.00423 (6) 0.00100 (6) 0.00389 (5)
O1 0.0451 (9) 0.0315 (8) 0.0489 (9) 0.0062 (7) 0.0178 (7) −0.0009 (7)
O2 0.0433 (9) 0.0304 (8) 0.0549 (10) −0.0010 (7) 0.0077 (8) 0.0003 (7)
O3 0.0779 (14) 0.0390 (10) 0.0778 (14) 0.0002 (9) 0.0284 (12) 0.0163 (10)
O4 0.0769 (14) 0.0324 (9) 0.0658 (13) 0.0110 (9) 0.0042 (10) −0.0060 (8)
O5 0.0372 (8) 0.0272 (7) 0.0521 (9) −0.0040 (6) 0.0057 (7) 0.0061 (7)
O6 0.0422 (8) 0.0266 (7) 0.0437 (8) 0.0026 (6) 0.0061 (7) 0.0000 (6)
O7 0.0819 (17) 0.0595 (14) 0.155 (3) −0.0138 (12) 0.0739 (19) −0.0093 (16)
O8 0.0713 (15) 0.0345 (10) 0.141 (2) −0.0190 (10) 0.0299 (15) 0.0046 (13)
N1 0.0528 (11) 0.0276 (9) 0.0451 (11) 0.0108 (8) −0.0003 (9) 0.0091 (8)
N2 0.0436 (11) 0.0353 (10) 0.0650 (14) −0.0075 (9) 0.0087 (10) 0.0070 (10)
N3 0.0325 (8) 0.0287 (8) 0.0325 (8) 0.0070 (7) 0.0044 (7) 0.0091 (7)
N4 0.136 (3) 0.085 (2) 0.103 (3) −0.028 (2) −0.077 (2) 0.050 (2)
N5 0.0488 (10) 0.0272 (8) 0.0279 (8) 0.0093 (7) 0.0024 (7) 0.0072 (7)
N6 0.0717 (16) 0.0507 (14) 0.0597 (15) −0.0003 (12) −0.0179 (13) 0.0112 (12)
C1 0.0396 (10) 0.0240 (9) 0.0312 (9) 0.0086 (8) 0.0033 (8) 0.0072 (7)
C2 0.0361 (10) 0.0269 (9) 0.0346 (10) 0.0122 (8) 0.0055 (8) 0.0093 (8)
C3 0.0373 (10) 0.0282 (9) 0.0332 (10) 0.0105 (8) 0.0056 (8) 0.0092 (8)
C4 0.0411 (11) 0.0259 (9) 0.0348 (10) 0.0110 (8) 0.0006 (8) 0.0081 (8)
C5 0.0548 (14) 0.0371 (11) 0.0464 (13) 0.0196 (10) 0.0167 (11) 0.0048 (10)
C6 0.0565 (15) 0.0471 (14) 0.0628 (16) 0.0197 (12) 0.0313 (13) 0.0136 (12)
C7 0.0437 (12) 0.0347 (11) 0.0540 (14) 0.0086 (9) 0.0183 (10) 0.0098 (10)
C8 0.0323 (9) 0.0236 (9) 0.0298 (9) 0.0016 (7) −0.0040 (7) 0.0055 (7)
C9 0.0303 (9) 0.0221 (8) 0.0321 (9) 0.0004 (7) −0.0020 (7) 0.0045 (7)
C10 0.0331 (10) 0.0246 (9) 0.0387 (11) 0.0027 (7) 0.0041 (8) 0.0047 (8)
C11 0.0321 (10) 0.0261 (9) 0.0452 (12) −0.0034 (8) −0.0006 (9) 0.0071 (8)
C12 0.0485 (13) 0.0230 (10) 0.0587 (15) 0.0004 (9) 0.0032 (11) −0.0023 (10)
C13 0.0547 (15) 0.0342 (12) 0.0656 (17) 0.0061 (11) 0.0202 (13) −0.0062 (11)
C14 0.0387 (11) 0.0332 (11) 0.0509 (13) −0.0005 (9) 0.0118 (10) 0.0007 (10)
C15 0.0334 (10) 0.0317 (10) 0.0388 (11) 0.0042 (8) 0.0001 (8) 0.0128 (8)
C16 0.0376 (11) 0.0411 (12) 0.0431 (12) 0.0086 (9) −0.0002 (9) 0.0162 (10)
C17 0.0519 (14) 0.0486 (13) 0.0483 (13) 0.0137 (11) 0.0059 (11) 0.0269 (11)
C18 0.0567 (15) 0.0351 (12) 0.0568 (15) 0.0034 (10) 0.0089 (12) 0.0222 (11)
C19 0.0432 (12) 0.0323 (10) 0.0411 (12) 0.0017 (9) 0.0021 (9) 0.0095 (9)
C20 0.0715 (19) 0.0570 (17) 0.0665 (19) −0.0031 (14) −0.0272 (16) 0.0329 (15)
C21 0.0454 (12) 0.0296 (10) 0.0336 (10) 0.0072 (9) 0.0035 (9) 0.0093 (8)
C22 0.0408 (11) 0.0361 (11) 0.0310 (10) 0.0106 (9) 0.0019 (8) 0.0070 (8)
C23 0.0601 (15) 0.0393 (12) 0.0379 (11) 0.0157 (11) −0.0025 (10) 0.0148 (10)
C24 0.0765 (18) 0.0296 (11) 0.0472 (13) 0.0060 (11) −0.0058 (12) 0.0155 (10)
C25 0.0605 (15) 0.0284 (10) 0.0369 (11) 0.0030 (10) −0.0055 (10) 0.0075 (9)
C26 0.0533 (14) 0.0412 (12) 0.0430 (12) 0.0080 (11) −0.0028 (11) 0.0123 (10)

Geometric parameters (Å, º)

Cd1—O1 2.3017 (15) C7—H7 0.9300
Cd1—O2 2.5072 (18) C8—C9 1.511 (3)
Cd1—O5 2.5367 (16) C9—C10 1.393 (3)
Cd1—O5i 2.4716 (16) C9—C14 1.389 (3)
Cd1—O6 2.3264 (15) C10—C11 1.387 (3)
Cd1—N3 2.3186 (17) C10—H10 0.9300
Cd1—N5 2.3435 (17) C11—N2 1.470 (3)
Cd1—C1 2.733 (2) C11—C12 1.377 (3)
O1—C1 1.264 (3) C12—C13 1.381 (4)
O5—Cd1i 2.4716 (16) C12—H12 0.9300
O5—C8 1.256 (3) C13—H13 0.9300
O6—C8 1.253 (3) C14—C13 1.386 (3)
O8—N2 1.210 (3) C14—H14 0.9300
N1—O3 1.220 (3) C15—C16 1.384 (3)
N1—O4 1.219 (3) C15—H15 0.9300
N1—C4 1.472 (3) C16—C17 1.387 (3)
N2—O7 1.198 (3) C16—C20 1.438 (4)
N3—C15 1.330 (3) C17—H17 0.9300
N3—C19 1.339 (3) C18—C17 1.381 (4)
N4—C20 1.127 (4) C18—H18 0.9300
N5—C21 1.335 (3) C19—C18 1.379 (3)
N5—C25 1.331 (3) C19—H19 0.9300
C1—O2 1.241 (3) C21—C22 1.387 (3)
C1—C2 1.508 (3) C21—H21 0.9300
C2—C7 1.381 (3) C22—C23 1.391 (3)
C3—C2 1.388 (3) C22—C26 1.443 (3)
C3—C4 1.384 (3) C23—C24 1.375 (3)
C3—H3 0.9300 C23—H23 0.9300
C4—C5 1.378 (3) C24—H24 0.9300
C5—C6 1.382 (4) C25—C24 1.380 (3)
C5—H5 0.9300 C25—H25 0.9300
C6—H6 0.9300 C26—N6 1.144 (3)
C7—C6 1.397 (3)
O1—Cd1—O2 54.33 (5) C4—C5—H5 120.8
O1—Cd1—O5 161.73 (6) C6—C5—H5 120.8
O1—Cd1—O5i 85.39 (6) C5—C6—C7 120.1 (2)
O1—Cd1—O6 144.74 (6) C5—C6—H6 120.0
O1—Cd1—N3 88.63 (6) C7—C6—H6 120.0
O1—Cd1—N5 87.92 (6) C2—C7—C6 120.5 (2)
O1—Cd1—C1 27.40 (6) C2—C7—H7 119.7
O2—Cd1—O5 143.94 (5) C6—C7—H7 119.7
O2—Cd1—C1 26.95 (6) O5—C8—C9 119.48 (19)
O5i—Cd1—O2 139.57 (5) O6—C8—O5 122.10 (18)
O5i—Cd1—O5 76.40 (5) O6—C8—C9 118.41 (18)
O5—Cd1—C1 170.87 (6) C10—C9—C8 119.84 (19)
O5i—Cd1—C1 112.66 (6) C14—C9—C8 120.56 (19)
O6—Cd1—O2 90.60 (5) C14—C9—C10 119.60 (18)
O6—Cd1—O5 53.47 (5) C9—C10—H10 121.0
O6—Cd1—O5i 129.14 (5) C11—C10—C9 117.9 (2)
O6—Cd1—N5 89.46 (6) C11—C10—H10 121.0
O6—Cd1—C1 117.41 (6) C10—C11—N2 118.8 (2)
N3—Cd1—O2 93.62 (6) C12—C11—N2 117.92 (19)
N3—Cd1—O5 89.29 (6) C12—C11—C10 123.3 (2)
N3—Cd1—O5i 88.16 (6) C11—C12—C13 118.0 (2)
N3—Cd1—O6 98.23 (6) C11—C12—H12 121.0
N3—Cd1—N5 170.84 (6) C13—C12—H12 121.0
N3—Cd1—C1 92.02 (6) C12—C13—C14 120.3 (2)
N5—Cd1—O2 91.25 (6) C12—C13—H13 119.8
N5—Cd1—O5 91.33 (6) C14—C13—H13 119.8
N5—Cd1—O5i 83.11 (6) C9—C14—H14 119.6
N5—Cd1—C1 88.81 (6) C13—C14—C9 120.9 (2)
C1—O1—Cd1 95.65 (12) C13—C14—H14 119.6
C1—O2—Cd1 86.70 (13) N3—C15—C16 121.9 (2)
Cd1i—O5—Cd1 103.60 (5) N3—C15—H15 119.0
C8—O5—Cd1i 165.65 (15) C16—C15—H15 119.0
C8—O5—Cd1 87.27 (13) C15—C16—C17 119.8 (2)
C8—O6—Cd1 97.16 (12) C15—C16—C20 119.9 (2)
O3—N1—C4 118.33 (19) C17—C16—C20 120.3 (2)
O4—N1—O3 123.3 (2) C16—C17—H17 120.9
O4—N1—C4 118.4 (2) C18—C17—C16 118.1 (2)
O7—N2—O8 122.4 (2) C18—C17—H17 120.9
O7—N2—C11 119.0 (2) C17—C18—H18 120.7
O8—N2—C11 118.6 (2) C19—C18—C17 118.7 (2)
C15—N3—Cd1 120.77 (14) C19—C18—H18 120.7
C15—N3—C19 118.26 (19) N3—C19—C18 123.2 (2)
C19—N3—Cd1 120.93 (14) N3—C19—H19 118.4
C21—N5—Cd1 121.21 (14) C18—C19—H19 118.4
C25—N5—Cd1 121.09 (15) N4—C20—C16 178.3 (5)
C25—N5—C21 117.68 (19) N5—C21—C22 122.5 (2)
O1—C1—Cd1 56.96 (10) N5—C21—H21 118.7
O1—C1—C2 116.79 (18) C22—C21—H21 118.7
O2—C1—Cd1 66.35 (12) C21—C22—C23 119.3 (2)
O2—C1—O1 123.24 (19) C21—C22—C26 119.7 (2)
O2—C1—C2 120.0 (2) C23—C22—C26 121.0 (2)
C2—C1—Cd1 172.89 (15) C22—C23—H23 121.1
C3—C2—C1 118.64 (19) C24—C23—C22 117.9 (2)
C7—C2—C1 121.51 (19) C24—C23—H23 121.1
C7—C2—C3 119.80 (19) C23—C24—C25 119.2 (2)
C2—C3—H3 120.6 C23—C24—H24 120.4
C4—C3—C2 118.7 (2) C25—C24—H24 120.4
C4—C3—H3 120.6 N5—C25—C24 123.4 (2)
C3—C4—N1 118.3 (2) N5—C25—H25 118.3
C5—C4—N1 119.2 (2) C24—C25—H25 118.3
C5—C4—C3 122.4 (2) N6—C26—C22 178.8 (3)
C4—C5—C6 118.5 (2)
O2—Cd1—O1—C1 −1.60 (12) Cd1—O1—C1—C2 −176.08 (15)
O5—Cd1—O1—C1 179.36 (16) Cd1—O5—C8—O6 −0.7 (2)
O5i—Cd1—O1—C1 174.69 (14) Cd1i—O5—C8—O6 −140.5 (5)
O6—Cd1—O1—C1 5.3 (2) Cd1—O5—C8—C9 178.05 (16)
N3—Cd1—O1—C1 −97.04 (14) Cd1i—O5—C8—C9 38.3 (7)
N5—Cd1—O1—C1 91.44 (14) Cd1—O6—C8—O5 0.8 (2)
O1—Cd1—O2—C1 1.62 (12) Cd1—O6—C8—C9 −177.99 (15)
O5—Cd1—O2—C1 −178.89 (11) O3—N1—C4—C3 −3.3 (3)
O5i—Cd1—O2—C1 −4.09 (18) O3—N1—C4—C5 178.5 (2)
O6—Cd1—O2—C1 −174.39 (13) O4—N1—C4—C3 176.7 (2)
N3—Cd1—O2—C1 87.33 (13) O4—N1—C4—C5 −1.5 (3)
N5—Cd1—O2—C1 −84.92 (14) Cd1—N3—C15—C16 −178.18 (17)
O1—Cd1—O5—Cd1i −4.8 (2) C19—N3—C15—C16 −0.7 (3)
O1—Cd1—O5—C8 −175.30 (18) Cd1—N3—C19—C18 177.4 (2)
O2—Cd1—O5—Cd1i 176.53 (8) C15—N3—C19—C18 0.0 (4)
O2—Cd1—O5—C8 6.03 (18) Cd1—N5—C21—C22 −178.82 (17)
O5i—Cd1—O5—Cd1i 0.0 C25—N5—C21—C22 −0.5 (3)
O5i—Cd1—O5—C8 −170.51 (16) Cd1—N5—C25—C24 179.2 (2)
O6—Cd1—O5—Cd1i 170.93 (10) C21—N5—C25—C24 0.8 (4)
O6—Cd1—O5—C8 0.42 (12) O1—C1—O2—Cd1 −2.9 (2)
N3—Cd1—O5—Cd1i −88.28 (7) C2—C1—O2—Cd1 176.33 (17)
N3—Cd1—O5—C8 101.21 (13) O1—C1—C2—C3 −15.8 (3)
N5—Cd1—O5—Cd1i 82.58 (7) O1—C1—C2—C7 161.6 (2)
N5—Cd1—O5—C8 −87.92 (13) O2—C1—C2—C3 164.9 (2)
O1—Cd1—O6—C8 177.25 (12) O2—C1—C2—C7 −17.6 (3)
O2—Cd1—O6—C8 −177.13 (13) C1—C2—C7—C6 −176.7 (2)
O5—Cd1—O6—C8 −0.42 (12) C3—C2—C7—C6 0.7 (4)
O5i—Cd1—O6—C8 10.98 (16) C4—C3—C2—C1 177.69 (18)
N3—Cd1—O6—C8 −83.38 (13) C4—C3—C2—C7 0.2 (3)
N5—Cd1—O6—C8 91.63 (13) C2—C3—C4—N1 −179.25 (18)
C1—Cd1—O6—C8 −179.99 (12) C2—C3—C4—C5 −1.1 (3)
O1—Cd1—N3—C15 146.88 (17) N1—C4—C5—C6 179.1 (2)
O1—Cd1—N3—C19 −30.50 (17) C3—C4—C5—C6 0.9 (4)
O2—Cd1—N3—C15 92.75 (17) C4—C5—C6—C7 0.1 (4)
O2—Cd1—N3—C19 −84.63 (17) C2—C7—C6—C5 −0.9 (4)
O5—Cd1—N3—C15 −51.27 (16) O5—C8—C9—C10 −176.4 (2)
O5i—Cd1—N3—C15 −127.69 (17) O5—C8—C9—C14 3.1 (3)
O5—Cd1—N3—C19 131.34 (17) O6—C8—C9—C10 2.4 (3)
O5i—Cd1—N3—C19 54.93 (17) O6—C8—C9—C14 −178.1 (2)
O6—Cd1—N3—C15 1.62 (17) C8—C9—C10—C11 178.96 (19)
O6—Cd1—N3—C19 −175.77 (17) C14—C9—C10—C11 −0.6 (3)
C1—Cd1—N3—C15 119.69 (17) C8—C9—C14—C13 179.8 (2)
C1—Cd1—N3—C19 −57.69 (17) C10—C9—C14—C13 −0.6 (4)
O1—Cd1—N5—C21 25.91 (17) C9—C10—C11—N2 −179.8 (2)
O1—Cd1—N5—C25 −152.4 (2) C9—C10—C11—C12 1.4 (4)
O2—Cd1—N5—C21 80.15 (18) C10—C11—N2—O7 −7.6 (4)
O2—Cd1—N5—C25 −98.16 (19) C10—C11—N2—O8 173.3 (3)
O5—Cd1—N5—C21 −135.83 (17) C12—C11—N2—O7 171.3 (3)
O5—Cd1—N5—C25 45.86 (19) C12—C11—N2—O8 −7.7 (4)
O5i—Cd1—N5—C25 122.0 (2) N2—C11—C12—C13 −179.7 (3)
O5i—Cd1—N5—C21 −59.69 (17) C10—C11—C12—C13 −0.9 (4)
O6—Cd1—N5—C25 −7.57 (19) C11—C12—C13—C14 −0.4 (5)
O6—Cd1—N5—C21 170.74 (18) C9—C14—C13—C12 1.2 (5)
C1—Cd1—N5—C21 53.30 (18) N3—C15—C16—C17 0.9 (4)
C1—Cd1—N5—C25 −125.0 (2) N3—C15—C16—C20 −177.6 (3)
O1—Cd1—C1—O2 −177.1 (2) C15—C16—C17—C18 −0.2 (4)
O2—Cd1—C1—O1 177.1 (2) C20—C16—C17—C18 178.2 (3)
O5i—Cd1—C1—O1 −5.74 (15) C19—C18—C17—C16 −0.4 (4)
O5i—Cd1—C1—O2 177.13 (13) N3—C19—C18—C17 0.6 (4)
O6—Cd1—C1—O1 −176.54 (13) N5—C21—C22—C23 −0.3 (4)
O6—Cd1—C1—O2 6.33 (15) N5—C21—C22—C26 178.2 (2)
N3—Cd1—C1—O1 83.11 (14) C21—C22—C23—C24 0.6 (4)
N3—Cd1—C1—O2 −94.02 (14) C26—C22—C23—C24 −177.8 (3)
N5—Cd1—C1—O1 −87.76 (14) C22—C23—C24—C25 −0.3 (4)
N5—Cd1—C1—O2 95.10 (14) N5—C25—C24—C23 −0.5 (5)
Cd1—O1—C1—O2 3.1 (2)

Symmetry code: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1i 0.93 2.20 3.108 (3) 167
C15—H15···O2ii 0.93 2.32 3.111 (3) 143
C23—H23···N4iii 0.93 2.38 3.236 (5) 154
C25—H25···O6 0.93 2.58 3.242 (3) 128
C10—H10···Cg3ii 0.93 3.26 4.186 (3) 176

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z−1.

References

  1. Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.
  2. Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.
  3. Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.
  4. Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bozkurt, N., Dilek, N., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m389–m390. [DOI] [PMC free article] [PubMed]
  7. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  8. Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.
  9. Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.
  10. Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.
  11. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  12. Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.
  13. Hökelek, T., Süzen, Y., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m807–m808. [DOI] [PMC free article] [PubMed]
  14. Hökelek, T., Yılmaz, F., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009). Acta Cryst. E65, m1608–m1609. [DOI] [PMC free article] [PubMed]
  15. Li, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205–210.
  16. Li, X., Yang, L., Zhao, L., Wang, X. L., Shao, K. Z. & Su, Z. M. (2016). Cryst. Growth Des. 16, 4374–4382.
  17. Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.
  18. Necefoğlu, H., Özbek, F. E., Öztürk, V., Adıgüzel, V. & Hökelek, T. (2011). Acta Cryst. E67, m1128–m1129. [DOI] [PMC free article] [PubMed]
  19. Sertçelik, M., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m290–m291. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989017002675/wm5366sup1.cif

e-73-00413-sup1.cif (36.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989017002675/wm5366Isup2.hkl

e-73-00413-Isup2.hkl (307.6KB, hkl)

CCDC reference: 1533101

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES