Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Feb;87(4):1377–1380. doi: 10.1073/pnas.87.4.1377

FMS mutations in myelodysplastic, leukemic, and normal subjects.

S A Ridge 1, M Worwood 1, D Oscier 1, A Jacobs 1, R A Padua 1
PMCID: PMC53478  PMID: 2406720

Abstract

The FMS gene encodes the functional cell surface receptor for colony-stimulating factor 1, the macrophage- and monocyte-specific growth factor. Codons 969 and 301 have been identified as potentially involved in promoting the transforming activity of FMS. Mutations at codon 301 are believed to lead to neoplastic transformation by ligand independence and constitutive tyrosine kinase activity of the receptor. The tyrosine residue at codon 969 has been shown to be involved in a negative regulatory activity, which is disrupted by amino acid substitutions. This study reports on the frequency of point mutations at these codons, in vivo, in human myeloid malignancies and in normal subjects. We studied 110 patients [67 with myelodysplasia (MDS) and 48 with acute myeloblastic leukemia (AML)], 5 patients being studied at the MDS and the later AML stage of the disease. There was a total incidence of 12.7% (14/110) with mutations in codon 969 and 1.8% (2/110) with mutations in codon 301. Two patients had mutations in the AML stage of the disease but not in the preceding MDS and one had a mutation in the MDS stage but not upon transformation of AML. This is consistent with the somatic origin of these mutations. FMS mutations were most prevalent (20%) in chronic myelomonocytic leukemia and AML type M4 (23%), both of which are characterized by monocytic differentiation. One of 51 normal subjects had a constitutional codon 969 mutation, which may represent a marker for predisposition to myeloid malignancy.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbacid M., Lauver A. V. Gene products of McDonough feline sarcoma virus have an in vitro-associated protein kinase that phosphorylates tyrosine residues: lack of detection of this enzymatic activity in vivo. J Virol. 1981 Dec;40(3):812–821. doi: 10.1128/jvi.40.3.812-821.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett J. M., Catovsky D., Daniel M. T., Flandrin G., Galton D. A., Gralnick H. R., Sultan C. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982 Jun;51(2):189–199. [PubMed] [Google Scholar]
  3. Bennett J. M., Catovsky D., Daniel M. T., Flandrin G., Galton D. A., Gralnick H. R., Sultan C. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985 Oct;103(4):620–625. doi: 10.7326/0003-4819-103-4-620. [DOI] [PubMed] [Google Scholar]
  4. Borgström G. H. Cytogenetics of the myelodysplastic syndromes. Scand J Haematol Suppl. 1986;45:74–77. doi: 10.1111/j.1600-0609.1986.tb00848.x. [DOI] [PubMed] [Google Scholar]
  5. Browning P. J., Bunn H. F., Cline A., Shuman M., Nienhuis A. W. "Replacement" of COOH-terminal truncation of v-fms with c-fms sequences markedly reduces transformation potential. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7800–7804. doi: 10.1073/pnas.83.20.7800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coussens L., Van Beveren C., Smith D., Chen E., Mitchell R. L., Isacke C. M., Verma I. M., Ullrich A. Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature. 1986 Mar 20;320(6059):277–280. doi: 10.1038/320277a0. [DOI] [PubMed] [Google Scholar]
  7. Donner L., Fedele L. A., Garon C. F., Anderson S. J., Sherr C. J. McDonough feline sarcoma virus: characterization of the molecularly cloned provirus and its feline oncogene (v-fms). J Virol. 1982 Feb;41(2):489–500. doi: 10.1128/jvi.41.2.489-500.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dubreuil P., Torrès H., Courcoul M. A., Birg F., Mannoni P. c-fms expression is a molecular marker of human acute myeloid leukemias. Blood. 1988 Sep;72(3):1081–1085. [PubMed] [Google Scholar]
  9. Hampe A., Gobet M., Sherr C. J., Galibert F. Nucleotide sequence of the feline retroviral oncogene v-fms shows unexpected homology with oncogenes encoding tyrosine-specific protein kinases. Proc Natl Acad Sci U S A. 1984 Jan;81(1):85–89. doi: 10.1073/pnas.81.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heim S., Mitelman F. Chromosome abnormalities in the myelodysplastic syndromes. Clin Haematol. 1986 Nov;15(4):1003–1021. [PubMed] [Google Scholar]
  11. Jacobs R. H., Cornbleet M. A., Vardiman J. W., Larson R. A., Le Beau M. M., Rowley J. D. Prognostic implications of morphology and karyotype in primary myelodysplastic syndromes. Blood. 1986 Jun;67(6):1765–1772. [PubMed] [Google Scholar]
  12. Le Beau M. M., Westbrook C. A., Diaz M. O., Larson R. A., Rowley J. D., Gasson J. C., Golde D. W., Sherr C. J. Evidence for the involvement of GM-CSF and FMS in the deletion (5q) in myeloid disorders. Science. 1986 Feb 28;231(4741):984–987. doi: 10.1126/science.3484837. [DOI] [PubMed] [Google Scholar]
  13. Nienhuis A. W., Bunn H. F., Turner P. H., Gopal T. V., Nash W. G., O'Brien S. J., Sherr C. J. Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q- syndrome. Cell. 1985 Sep;42(2):421–428. doi: 10.1016/0092-8674(85)90099-6. [DOI] [PubMed] [Google Scholar]
  14. Padua R. A., Carter G., Hughes D., Gow J., Farr C., Oscier D., McCormick F., Jacobs A. RAS mutations in myelodysplasia detected by amplification, oligonucleotide hybridization, and transformation. Leukemia. 1988 Aug;2(8):503–510. [PubMed] [Google Scholar]
  15. Preisler H. D., Raza A., Larson R., LeBeau M., Browman G., Goldberg J., Grunwald H., Volger R., Verkh L., Singh P. Protooncogene expression and the clinical characteristics of acute nonlymphocytic leukemia: A Leukemia Intergroup pilot study. Blood. 1989 Jan;73(1):255–262. [PubMed] [Google Scholar]
  16. Rambaldi A., Wakamiya N., Vellenga E., Horiguchi J., Warren M. K., Kufe D., Griffin J. D. Expression of the macrophage colony-stimulating factor and c-fms genes in human acute myeloblastic leukemia cells. J Clin Invest. 1988 Apr;81(4):1030–1035. doi: 10.1172/JCI113413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roussel M. F., Downing J. R., Rettenmier C. W., Sherr C. J. A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell. 1988 Dec 23;55(6):979–988. doi: 10.1016/0092-8674(88)90243-7. [DOI] [PubMed] [Google Scholar]
  18. Roussel M. F., Dull T. J., Rettenmier C. W., Ralph P., Ullrich A., Sherr C. J. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature. 1987 Feb 5;325(6104):549–552. doi: 10.1038/325549a0. [DOI] [PubMed] [Google Scholar]
  19. Roussel M. F., Sherr C. J., Barker P. E., Ruddle F. H. Molecular cloning of the c-fms locus and its assignment to human chromosome 5. J Virol. 1983 Dec;48(3):770–773. doi: 10.1128/jvi.48.3.770-773.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sariban E., Mitchell T., Kufe D. Expression of the c-fms proto-oncogene during human monocytic differentiation. Nature. 1985 Jul 4;316(6023):64–66. doi: 10.1038/316064a0. [DOI] [PubMed] [Google Scholar]
  23. Sherr C. J., Rettenmier C. W., Sacca R., Roussel M. F., Look A. T., Stanley E. R. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell. 1985 Jul;41(3):665–676. doi: 10.1016/s0092-8674(85)80047-7. [DOI] [PubMed] [Google Scholar]
  24. Tamura T., Simon E., Niemann H., Snoek G. T., Bauer H. gp140v-fms molecules expressed at the surface of cells transformed by the McDonough strain of feline sarcoma virus are phosphorylated in tyrosine and serine. Mol Cell Biol. 1986 Dec;6(12):4745–4748. doi: 10.1128/mcb.6.12.4745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woolford J., McAuliffe A., Rohrschneider L. R. Activation of the feline c-fms proto-oncogene: multiple alterations are required to generate a fully transformed phenotype. Cell. 1988 Dec 23;55(6):965–977. doi: 10.1016/0092-8674(88)90242-5. [DOI] [PubMed] [Google Scholar]
  26. Woolford J., Rothwell V., Rohrschneider L. Characterization of the human c-fms gene product and its expression in cells of the monocyte-macrophage lineage. Mol Cell Biol. 1985 Dec;5(12):3458–3466. doi: 10.1128/mcb.5.12.3458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yeung Y. G., Jubinsky P. T., Sengupta A., Yeung D. C., Stanley E. R. Purification of the colony-stimulating factor 1 receptor and demonstration of its tyrosine kinase activity. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1268–1271. doi: 10.1073/pnas.84.5.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yunis J. J., Boot A. J., Mayer M. G., Bos J. L. Mechanisms of ras mutation in myelodysplastic syndrome. Oncogene. 1989 May;4(5):609–614. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES