Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Feb;87(4):1471–1475. doi: 10.1073/pnas.87.4.1471

Rapid morphological fusion of severed myelinated axons by polyethylene glycol.

T L Krause 1, G D Bittner 1
PMCID: PMC53497  PMID: 2304913

Abstract

We are able to morphologically fuse the severed halves of an invertebrate-myelinated axon by application of polyethylene glycol (PEG) to closely apposed cut ends. Morphological fusion of the medial giant axon (MGA) of the earthworm Lumbricus terrestris is defined as axoplasmic and axolemmal continuity in serial longitudinal sections of MGAs taken through the fusion site as viewed with light or electron microscopes. Morphological continuity is also shown by the transfer of Lucifer yellow dye between apposed MGA segments fused with PEG, but not between apposed MGA segments in normal or hypotonic saline without PEG application. PEG-induced MGA fusion rates can be as high as 80-100% with an appropriate choice of PEG concentration and molecular mass, tight apposition and careful alignment of the cut ends, and treatment with hypotonic salines containing reduced calcium and increased magnesium. A variant of this technique might produce rapid repair of severed mammalian-myelinated axons.

Full text

PDF
1471

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R., Toews A. D., Morell P. Rapid axonal transport in focally demyelinated sciatic nerve. J Neurosci. 1987 Dec;7(12):4044–4053. doi: 10.1523/JNEUROSCI.07-12-04044.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birse S. C., Bittner G. D. Regeneration of earthworm giant axons following transection or ablation. J Neurophysiol. 1981 Apr;45(4):724–742. doi: 10.1152/jn.1981.45.4.724. [DOI] [PubMed] [Google Scholar]
  3. Bittner G. D., Ballinger M. L., Raymond M. A. Reconnection of severed nerve axons with polyethylene glycol. Brain Res. 1986 Mar 5;367(1-2):351–355. doi: 10.1016/0006-8993(86)91617-3. [DOI] [PubMed] [Google Scholar]
  4. Deriemer S. A., Elliott E. J., Macagno E. R., Muller K. J. Morphological evidence that regenerating axons can fuse with severed axon segments. Brain Res. 1983 Aug 1;272(1):157–161. doi: 10.1016/0006-8993(83)90373-6. [DOI] [PubMed] [Google Scholar]
  5. Frank E., Jansen J. K., Rinvik E. A multisomatic axon in the central nervous system of the leech. J Comp Neurol. 1975 Jan 1;159(1):1–13. doi: 10.1002/cne.901590102. [DOI] [PubMed] [Google Scholar]
  6. Gallant P. E. Effects of the external ions and metabolic poisoning on the constriction of the squid giant axon after axotomy. J Neurosci. 1988 May;8(5):1479–1484. doi: 10.1523/JNEUROSCI.08-05-01479.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Günther J. Neuronal syncytia in the giant fibres of earthworms. J Neurocytol. 1975 Feb;4(1):55–62. doi: 10.1007/BF01099095. [DOI] [PubMed] [Google Scholar]
  8. Hoy R. R., Bittner G. D., Kennedy D. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science. 1967 Apr 14;156(3772):251–252. doi: 10.1126/science.156.3772.251. [DOI] [PubMed] [Google Scholar]
  9. Kensler R. W., Brink P. R., Dewey M. M. The septum of the lateral axon of the earthworm: a thin section and freeze-fracture study. J Neurocytol. 1979 Oct;8(5):565–590. doi: 10.1007/BF01208510. [DOI] [PubMed] [Google Scholar]
  10. O'Lague P. H., Huttner S. L. Physiological and morphological studies of rat pheochromocytoma cells (PC12) chemically fused and grown in culture. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1701–1705. doi: 10.1073/pnas.77.3.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Okamura N., Stoskopf M., Yamaguchi H., Kishimoto Y. Lipid composition of the nervous system of earthworms (Lumbricus terrestris). J Neurochem. 1985 Dec;45(6):1875–1879. doi: 10.1111/j.1471-4159.1985.tb10546.x. [DOI] [PubMed] [Google Scholar]
  12. Roos D. S., Choppin P. W. Biochemical studies on cell fusion. I. Lipid composition of fusion-resistant cells. J Cell Biol. 1985 Oct;101(4):1578–1590. doi: 10.1083/jcb.101.4.1578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Viancour T. A., Sheller R. A., Bittner G. D., Seshan K. R. Protein transport between crayfish lateral giant axons. Brain Res. 1988 Jan 26;439(1-2):211–221. doi: 10.1016/0006-8993(88)91477-1. [DOI] [PubMed] [Google Scholar]
  14. Yawo H., Kuno M. Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. J Neurosci. 1985 Jun;5(6):1626–1632. doi: 10.1523/JNEUROSCI.05-06-01626.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Yawo H., Kuno M. How a nerve fiber repairs its cut end: involvement of phospholipase A2. Science. 1983 Dec 23;222(4630):1351–1353. doi: 10.1126/science.6658457. [DOI] [PubMed] [Google Scholar]
  16. Zimmerman U. J., Schlaepfer W. W. Calcium-activated neutral protease (CANP) in brain and other tissues. Prog Neurobiol. 1984;23(1-2):63–78. doi: 10.1016/0301-0082(84)90012-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES