Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1990 Mar;87(5):1678–1680. doi: 10.1073/pnas.87.5.1678

1H NMR visibility of mammalian glycogen in solution.

L H Zang 1, D L Rothman 1, R G Shulman 1
PMCID: PMC53545  PMID: 2308928

Abstract

High-resolution 1H NMR spectra of rabbit liver glycogen in 2H2O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of alpha-linked diglucose molecules. The NMR relaxation times T1 and T2 of glycogen in 2H2O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton (12 +/- 2 Hz) is in excellent agreement with that calculated from T2. The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions.

Full text

PDF
1678

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avison M. J., Rothman D. L., Nadel E., Shulman R. G. Detection of human muscle glycogen by natural abundance 13C NMR. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1634–1636. doi: 10.1073/pnas.85.5.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Goldsmith E., Sprang S., Fletterick R. Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J Mol Biol. 1982 Apr 5;156(2):411–427. doi: 10.1016/0022-2836(82)90336-9. [DOI] [PubMed] [Google Scholar]
  3. Jue T., Rothman D. L., Tavitian B. A., Shulman R. G. Natural-abundance 13C NMR study of glycogen repletion in human liver and muscle. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1439–1442. doi: 10.1073/pnas.86.5.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Laughlin M. R., Petit W. A., Jr, Dizon J. M., Shulman R. G., Barrett E. J. NMR measurements of in vivo myocardial glycogen metabolism. J Biol Chem. 1988 Feb 15;263(5):2285–2291. [PubMed] [Google Scholar]
  5. Shalwitz R. A., Reo N. V., Becker N. N., Ackerman J. J. Visibility of mammalian hepatic glycogen to the NMR experiment, in vivo. Magn Reson Med. 1987 Nov;5(5):462–465. doi: 10.1002/mrm.1910050508. [DOI] [PubMed] [Google Scholar]
  6. Shalwitz R. A., Reo N. V., Becker N. N., Hill A. C., Ewy C. S., Ackerman J. J. Hepatic glycogen synthesis from duodenal glucose and alanine. An in situ 13C NMR study. J Biol Chem. 1989 Mar 5;264(7):3930–3934. [PubMed] [Google Scholar]
  7. Sillerud L. O., Shulman R. G. Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry. 1983 Mar 1;22(5):1087–1094. doi: 10.1021/bi00274a015. [DOI] [PubMed] [Google Scholar]
  8. Wanson J. C., Drochmans P. Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen beta-particles isolated by the precipitation-centrifugation method. J Cell Biol. 1968 Jul;38(1):130–150. doi: 10.1083/jcb.38.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES