Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2018 Feb 16.
Published in final edited form as: Chembiochem. 2017 Jan 9;18(4):363–367. doi: 10.1002/cbic.201600676

OleD Loki as a Catalyst for Tertiary Amine and Hydroxamate Glycosylation

Ryan R Hughes a, Khaled A Shaaban a, Jianjun Zhang a, Hongnan Cao b, George N Phillips Jr b, Jon S Thorson a,
PMCID: PMC5355705  NIHMSID: NIHMS849645  PMID: 28067448

Abstract

We describe the ability of an engineered glycosyltransferase (OleD Loki) to catalyze the N-glycosylation of tertiary-amine-containing drugs and trichostatin hydroxamate glycosyl ester formation. As such, this study highlights the first bacterial model catalyst for tertiary-amine N-glycosylation and further expands the substrate scope and synthetic potential of engineered OleDs. In addition, this work could open the door to the discovery of similar capabilities among other permissive bacterial glycosyltransferases.

Keywords: antidepressants, drug metabolism, glucuronidation, glycosyltransferases, trichostatin

Graphical Abstract

graphic file with name nihms849645f5.jpg

Bacterial model catalyst: The use of a high-throughput colorimetric screen to identify new substrates revealed the engineered macrolide glycosyltransferase OleD Loki as the first reported bacterial glycosyltransferase capable of tertiary-amine N-glycosylation. This study also revealed the same enzyme to catalyze trichostatin hydroxamate glycosyl ester formation.


Glycosyltransferases (GTs), among which sugar nucleotide-dependent GTs (also referred to as Leloir GTs) are the most prevalent, mediate the regio- and stereospecific glycoconjugation of diverse sugars to a broad range of acceptors.[1] Although Leloir GT-catalyzed formation of O-glycosides is the most common, corresponding microbial GTs involved in the biosynthesis of C-,[2] S-,[3] and N-glycosides have also been characterized. Biochemically characterized representative native N-GTs include the indole N-modifying GTs involved in the biosynthesis of indolocarbazoles (AtmG, RebG, NokL, and StaG),[4] the streptothricin guanidino N-modifying GT StnG[5] and bacterial protein/ansamitocin asparagine side chain amide-modifying N-GTs (HMWC, NGT, and Asm25).[6] The gene encoding the putative mannopeptimycin guanidino N-modifying GT has also been reported,[7] and recent studies of the macrolide-inactivating O-GT OleD,[8] and corresponding engineered/evolved variants, revealed OleD-catalyzed N-glucosylation of model aromatic/benzyl primary and secondary amines and alkoxyamines.[9] Although examples of tertiary-amine N-glucuronidation of drugs have been reported as part of phase II metabolism,[10] to the best of our knowledge, bacterial/fungal comparators are unprecedented. Within this context, herein we describe the discovery that engineered OleDs can catalyze the N-glycosylation of a set of model tertiary-amine-containing drugs and the formation of hydroxamate glycosyl esters. As such, the work put forth further expands the substrate scope and synthetic potential of enhanced OleDs and presents a complement to conventional synthetic strategies to access quaternary amino-N-glycosides.[11]

Inspired by the general reversibility of GT-catalyzed reactions,[12] we recently used simple aromatic glycosides as efficient donors in GT-catalyzed sugar nucleotide synthesis and coupled transglycosylation reactions.[9a, 13] Importantly, the use of 2-chloro-4-nitrophenyl (ClNP) glycoside donors in this context also offered a convenient colorimetric screen to enable the directed evolution of enhanced GTs with broad substrate permissivity and the identification of new GT substrates (Figure 1 A).[9a] Using ClNP-β-d-Glc and the OleD variant Loki,[9a] this colorimetric assay was applied to a panel of 28 representative aliphatic tertiary-amine-containing drugs (Figure S1 the Supporting Information). Assays [1 mm putative acceptor, 2 mm ClNP-β-d-Glc, 0.1 mm UDP, 25 mm Tris (pH 8.0), 5 mm MgCl2, 0.25 µm OleD Loki, 20 µL total volume, 30°C, 8 h] were conducted in triplicate in 384-well plates, and progress was monitored through the change in absorbance at 410 nm (ΔA410). Each plate also contained positive (4-methylumbeliferone; 4-MeUmb)[14] and negative (no acceptor, DMSO) comparator controls. Nine putative primary hits were identified (ΔA410>2 standard deviations above the negative control) in this first-phase screen. Reaction mixtures identified as hits were subsequently subjected to HPLC, desalted,[15] and analyzed by LC-MS to confirm or refute glycoside formation. This streamlined strategy revealed eight tertiary amines as validated OleD substrates (Figure 1 B), none of which contained prototypical GT acceptor O-, S-, or N-nucleophiles. To elucidate the nature of the glycosides formed, substrates 1 and 2 were selected for subsequent scale-up and full structure elucidation based on relative turnover in analytical scale reactions (Figure 1C).

Figure 1.

Figure 1

A) Schematic of colorimetric high-throughput screen. B) Tertiary-amine-containing pharmacophores identified as putative OleD Loki substrates: chlorpromazine (1), clomipramine (2), cyclobenzaprine (3), triflupromazine (4), imipramine (5), amitriptyline (6), doxepin (7), and diltiazem (8). C) Reaction progress as monitored by ΔA410 in the standard 50 mL assay format [see (A) and main text]. Vehicle without acceptor served as the negative control, and 4-MeUmb served as the positive control. Assays were conducted in triplicate with less than 5% error between replicates.

Scaled-up reactions for the chemoenzymatic synthesis of the 1 and 2 glucosides were conducted in a total volume of 30 mL [1 mm aglycon, 2 mm ClNP-β-d-Glc, 0.1 mm UDP, 25 mm Tris (pH 8.0), 5 mm MgCl2, 0.25 µm OleD Loki, 30°C, 24 h]. Reaction progress was monitored in real time through ΔA410, and upon completion, reactants and products were captured by XAD-16 solid-phase extraction, and the resulting glucosides were subsequently purified by HPLC and size-exclusion chromatography. The molecular formulae of the corresponding products were established as C23H30ClN2O5S and C25H34ClN2O5 by HR-ESIMS; these are consistent with the glucosylation of 1 and 2, respectively. Interestingly, 1H and 13C NMR spectra of 1a and 2a also revealed signatures that are consistent with atypical glucoside formation. Closer analysis revealed 3′-CH2, 4′-CH3, and 5′-CH3 1H and 13C NMR chemical shifts and clear HMBC correlations that were consistent with quaternary aminoglucosides 3′-N-β-d-glucosylchlorpromazine (1a) and 3′-N-β-d-glucosylclomipramine (2a; Scheme 1, Tables S1 and S2). Additional COSY and HMBC correlations (Figure S5) were also consistent with this assignment.

Scheme 1.

Scheme 1

Key HMBC and COSY correlations for compounds 1a and 2a.

The discovery that OleD Loki could catalyze tertiary-amine N-glucosylation prompted a reassessment of additional tertiary-amine-bearing substrates previously identified as OleD Loki substrates—the naturally occurring HDAC inhibitor trichostatin A (9);[16] the c-Raf inhibitor ZM 336372 (10)[17] and the macrolide antibiotic timulcosin (11; Scheme 2)[18]—through colorimetric screening and LC-MS.[9a] For these selected targets, the strategies employed for reaction scale-up, product isolation, and characterization paralleled those described for 1a and 2a. The molecular formulae of the purified glycosides were established by HR-ESIMS to be C23H32N2O8, C29H33N3O8, and C52H90N2O18; these are consistent with the glucosylation of 9, 10, and 11, respectively. Unlike for 1a and 2a, the 1H and 13C NMR spectra of the isolated glucosides revealed signatures that were consistent with O-glucoside formation. Consistent with this, 1D and 2D NMR data revealed 9a to be the unique glucopyranosyl hydroxamate trichostatin C and notably highlight the first one-step synthesis of this previously reported rare natural product.[19] In a similar fashion, the 1D and 2D NMR data revealed 10a to be 4-O-β-d-glucosyl-ZM336372 and 11 a to be 2′-O-β-d-glucosyltilmicosin, the latter is consistent with the native activity of wtOleD as a macrolide-inactivating glucosyltransferase.[8b]

Scheme 2.

Scheme 2

Additional tertiary-amine-containing OleD substrates trichostatin A (9), ZM 336372 (10), and tilmicosin (11) and their products. Tertiary amines within 911 are shaded yellow, and key HMBC and COSY correlations are highlighted.

To the best of our knowledge, this study highlights the first reported example of a microbial GT that is capable of catalyzing tertiary-amine N-glycosylation. A comparison of the kinetic parameters reveals that the catalytic competencies of tertiary amine 1 (kcat/Km=2.2×10−4 µm−1 s−1) and hydroxamate 9 (kcat/Km=1.4×10−4 µm−1 s−1) rival that of the parental OleD Loki acceptor 4-MeUmb (kcat/Km=2.2×10−4 µm−1 s−1). Although tertiary-amine N-glucuronidation has been reported in the context of phase II metabolism,[10] fundamental biochemical study of the corresponding glucuronsyltransferases has been hampered by limited access to suitable in vitro models. Likewise, although sugar conjugation is known to influence small-molecule mechanisms, potency, and ADMET,[1a, e, 20] a lack of practical synthetic or chemoenzymatic access has limited studies to probe the fundamental properties of quaternary N-glycosides.[10,11] Our discovery offers a convenient new model for GT-catalyzed tertiary-amine N-glycosylation and a potential complementary synthetic platform for efficient one-step synthesis of quaternary N-glycosides. In a similar fashion, the discovery that OleD Loki is an efficient catalyst for hydroxamate glycosyl ester synthesis further extends the demonstrated synthetic utility of this permissive catalyst. Analysis of the established substrates 18 highlights a common alkyl N,N-dimethyl acceptor nucleophile that extends from a hydrophobic aromatic core reminiscent of the longer unsaturated spacer separating the 9 pharmacophore and warhead or the previously reported ability of OleD ASP to catalyze asymmetric 4′-O-glycosylation of one “arm” of mitoxantrone.[21] The lack of detectable tertiary-amine N-glycosylation with substrates 911 may be attributed to substrate orientation in the enzyme-bound complex (as suggested by the determined OleD:macrolide complex, Figure 2) and/or poor nucleophilicity (as anticipated in the context of the N, N-dimethyl aniline moiety of 9 and 10).[22] Although these examples suggest that certain substrate specificity features might infringe on OleD Loki-catalyzed tertiary-amine reactant scope, the underlying discovery also importantly implicates N, N-dimethylamino- and/or hydroxamate-functionalized small molecules as a potential acceptors to evaluate in the context of other permissive GTs.[23]

Figure 2.

Figure 2

Crystal structure of wtOleD bound to erythromycin (PDB ID: 2IYF). Dotted lines highlight the proximity of the known acceptor nucleophile (desosamine 2′-OH, which corresponds to the mycaminose 2′-OH in 11) and the closest tertiary amine (desosamine 3′-N, N-dimethyl, which corresponds to the mycaminose 3′-N, N-dimethyl in 11) to the histidine 19 side chain within the active-site H19-D110 acid–base pair.

Supplementary Material

SI

Acknowledgments

This work was supported, in part, by National Institute of Health grants R37 AI52218 (J.S.T.) and U01 GM098248 (G.N.P.), the National Center for Advancing Translational Sciences (UL1TR001998), the University of Kentucky College of Pharmacy and the University of Kentucky Center for Pharmaceutical Research and Innovation.

Footnotes

Supporting information for this article can be found under: http://dx.doi.org/10.1002/cbic.201600676.

References

  • 1.a) Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS. Chem. Soc. Rev. 2015;44:7591–7697. doi: 10.1039/c4cs00426d. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Gloster TM. Curr. Opin. Struct. Biol. 2014;28:131–141. doi: 10.1016/j.sbi.2014.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Breton C, Fournel-Gigleux S, Palcic MM. Curr. Opin. Struct. Biol. 2012;22:540–549. doi: 10.1016/j.sbi.2012.06.007. [DOI] [PubMed] [Google Scholar]; d) Chang A, Singh S, Phillips GN, Jr, Thorson JS. Curr. Opin. Biotechnol. 2011;22:800–808. doi: 10.1016/j.copbio.2011.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]; e) Gantt RW, Peltier-Pain P, Thorson JS. Nat. Prod. Rep. 2011;28:1811–1853. doi: 10.1039/c1np00045d. [DOI] [PubMed] [Google Scholar]; f) Palcic MM. Curr. Opin. Chem. Biol. 2011;15:226–233. doi: 10.1016/j.cbpa.2010.11.022. [DOI] [PubMed] [Google Scholar]; g) Roychoudhury R, Pohl NL. Curr. Opin. Chem. Biol. 2010;14:168–173. doi: 10.1016/j.cbpa.2010.01.013. [DOI] [PubMed] [Google Scholar]; h) Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu. Rev. Biochem. 2008;77:521–555. doi: 10.1146/annurev.biochem.76.061005.092322. [DOI] [PubMed] [Google Scholar]; i) Bowles D, Lim EK, Poppenberger B, Vaistij FE. Annu. Rev. Plant Biol. 2006;57:567–597. doi: 10.1146/annurev.arplant.57.032905.105429. [DOI] [PubMed] [Google Scholar]
  • 2.a) Chen D, Chen R, Wang R, Li J, Xie K, Bian C, Sun L, Zhang X, Liu J, Yang L, Ye F, Yu X, Dai J. Angew. Chem. Int. Ed. 2015;54:12678–12682. doi: 10.1002/anie.201506505. Angew. Chem. 2015, 127, 12869–12873. [DOI] [PubMed] [Google Scholar]; b) Foshag D, Campbell C, Pawelek PD. Biochim. Biophys. Acta Proteins Proteomics. 2014;1844:1619–1630. doi: 10.1016/j.bbapap.2014.06.010. [DOI] [PubMed] [Google Scholar]; c) Gutmann A, Krump C, Bungaruang L, Nidetzky B. Chem. Commun. 2014;50:5465–5468. doi: 10.1039/c4cc00536h. [DOI] [PubMed] [Google Scholar]; d) Li L, Wang P, Tang Y. J. Antibiot. 2014;67:65–70. doi: 10.1038/ja.2013.88. [DOI] [PubMed] [Google Scholar]; e) Wang F, Zhou M, Singh S, Yennamalli RM, Bingman CA, Thorson JS, Phillips GN., Jr Proteins. 2013;81:1277–1282. doi: 10.1002/prot.24289. [DOI] [PMC free article] [PubMed] [Google Scholar]; f) Gutmann A, Nidetzky B. Angew. Chem. Int. Ed. 2012;51:12879–12883. doi: 10.1002/anie.201206141. Angew. Chem. 2012, 124, 13051–13056. [DOI] [PubMed] [Google Scholar]; g) Härle J, Günther S, Lauinger B, Weber M, Kammerer B, Zechel DL, Luzhetskyy A, Bechthold A. Chem. Biol. 2011;18:520–530. doi: 10.1016/j.chembiol.2011.02.013. [DOI] [PubMed] [Google Scholar]; h) Mittler M, Bechthold A, Schulz GE. J. Mol. Biol. 2007;372:67–76. doi: 10.1016/j.jmb.2007.06.005. [DOI] [PubMed] [Google Scholar]; i) Baig I, Kharel M, Kobylyanskyy A, Zhu L, Rebets Y, Ostash B, Luzhetskyy A, Bechthold A, Fedorenko VA, Rohr J. Angew. Chem. Int. Ed. 2006;45:7842–7846. doi: 10.1002/anie.200603176. Angew. Chem. 2006, 118, 8006–8010. [DOI] [PMC free article] [PubMed] [Google Scholar]; j) Liu T, Kharel MK, Fischer C, McCormick A, Rohr J. ChemBioChem. 2006;7:1070–1077. doi: 10.1002/cbic.200600031. [DOI] [PMC free article] [PubMed] [Google Scholar]; k) Fischbach MA, Lin H, Liu DR, Walsh CT. Proc. Natl. Acad. Sci. USA. 2005;102:571–576. doi: 10.1073/pnas.0408463102. [DOI] [PMC free article] [PubMed] [Google Scholar]; l) Bililign T, Hyun CG, Williams JS, Czisny AM, Thorson JS. Chem. Biol. 2004;11:959–969. doi: 10.1016/j.chembiol.2004.04.016. [DOI] [PubMed] [Google Scholar]
  • 3.Kopycki J, Wieduwild E, Kohlschmidt J, Brandt W, Stepanova AN, Alonso JM, Pedras MS, Abel S, Grubb CD. Biochem. J. 2013;450:37–46. doi: 10.1042/BJ20121403. [DOI] [PubMed] [Google Scholar]
  • 4.a) Chiu HT, Lin YC, Lee MN, Chen YL, Wang MS, Lai CC. Mol. Biosyst. 2009;5:1192–1203. doi: 10.1039/b912395b. [DOI] [PubMed] [Google Scholar]; b) Gao Q, Zhang C, Blanchard S, Thorson JS. Chem. Biol. 2006;13:733–743. doi: 10.1016/j.chembiol.2006.05.009. [DOI] [PubMed] [Google Scholar]; c) Sánchez C, Méndez C, Salas JA. Nat. Prod. Rep. 2006;23:1007–1045. doi: 10.1039/b601930g. [DOI] [PubMed] [Google Scholar]; d) Zhang C, Albermann C, Fu X, Peters NR, Chisholm JD, Zhang G, Gilbert EJ, Wang PG, Van Vranken DL, Thorson JS. ChemBioChem. 2006;7:795–804. doi: 10.1002/cbic.200500504. [DOI] [PubMed] [Google Scholar]; e) Salas AP, Zhu L, Sánchez C, Braña AF, Rohr J, Méndez C, Salas JA. Mol. Microbiol. 2005;58:17–27. doi: 10.1111/j.1365-2958.2005.04777.x. [DOI] [PMC free article] [PubMed] [Google Scholar]; f) Hyun CG, Bililign T, Liao J, Thorson JS. ChemBioChem. 2003;4:114–117. doi: 10.1002/cbic.200390004. [DOI] [PubMed] [Google Scholar]; g) Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA. Chem. Biol. 2002;9:519–531. doi: 10.1016/s1074-5521(02)00126-6. [DOI] [PubMed] [Google Scholar]; h) Ohuchi T, Ikeda-Araki A, Watanabe-Sakamoto A, Kojiri K, Nagashima M, Okanishi M, Suda H. J. Antibiot. 2000;53:393–403. doi: 10.7164/antibiotics.53.393. [DOI] [PubMed] [Google Scholar]
  • 5.Guo Z, Li J, Qin H, Wang M, Lv X, Li X, Chen Y. Angew. Chem. Int. Ed. 2015;54:5175–5178. doi: 10.1002/anie.201412190. Angew. Chem. 2015, 127, 5264–5267. [DOI] [PubMed] [Google Scholar]
  • 6.a) Gawthorne JA, Tan NY, Bailey U-M, Davis MR, Wong LW, Naidu R, Fox KL, Jennings MP, Schulz BL. Biochem. Biophys. Res. Commun. 2014;445:633–638. doi: 10.1016/j.bbrc.2014.02.044. [DOI] [PubMed] [Google Scholar]; b) Naegeli A, Michaud G, Schubert M, Lin CW, Lizak C, Darbre T, Reymond JL, Aebi M. J. Biol. Chem. 2014;289:24521–24532. doi: 10.1074/jbc.M114.579326. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Choi KJ, Grass S, Paek S, St Geme JW, III, Yeo HJ. PLoS One. 2010;5:e15888. doi: 10.1371/journal.pone.0015888. [DOI] [PMC free article] [PubMed] [Google Scholar]; d) Grass S, Lichti CF, Townsend RR, Gross J, St Geme JW., III PLoS Pathog. 2010;6:e1000919. doi: 10.1371/journal.ppat.1000919. [DOI] [PMC free article] [PubMed] [Google Scholar]; e) Zhao P, Bai L, Ma J, Zeng Y, Li L, Zhang Y, Lu C, Dai H, Wu Z, Li Y, Wu X, Chen G, Hao X, Shen Y, Deng Z, Floss HG. Chem. Biol. 2008;15:863–874. doi: 10.1016/j.chembiol.2008.06.007. [DOI] [PubMed] [Google Scholar]
  • 7.Magarvey NA, Haltli B, He M, Greenstein M, Hucul JA. Antimicrob. Agents Chemother. 2006;50:2167–2177. doi: 10.1128/AAC.01545-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.a) Quirós LM, Aguirrezabalaga I, Olano C, Méndez C, Salas JA. Mol. Microbiol. 1998;28:1177–1185. doi: 10.1046/j.1365-2958.1998.00880.x. [DOI] [PubMed] [Google Scholar]; b) Hernández C, Olano C, Méndez C, Salas JA. Gene. 1993;134:139–140. doi: 10.1016/0378-1119(93)90189-a. [DOI] [PubMed] [Google Scholar]
  • 9.a) Gantt RW, Peltier-Pain P, Cournoyer WJ, Thorson JS. Nat. Chem. Biol. 2011;7:685–691. doi: 10.1038/nchembio.638. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Gantt RW, Goff RD, Williams GJ, Thorson JS. Angew. Chem. Int. Ed. 2008;47:8889–8892. doi: 10.1002/anie.200803508. Angew. Chem. 2008, 120, 9021–9024. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Yang M, Proctor MR, Bolam DN, Errey JC, Field RA, Gilbert HJ, Davis BG. J. Am. Chem. Soc. 2005;127:9336–9337. doi: 10.1021/ja051482n. [DOI] [PubMed] [Google Scholar]
  • 10.a) Kim HJ, Jeong ES, Seo KA, Shin KJ, Choi YJ, Lee SJ, Ghim JL, Sohn DR, Shin JG, Kim DH. Drug Metab. Dispos. 2013;41:1529–1537. doi: 10.1124/dmd.113.051862. [DOI] [PubMed] [Google Scholar]; b) Qian MR, Zeng S. Acta Pharmacol. Sin. 2006;27:623–628. doi: 10.1111/j.1745-7254.2006.00314.x. [DOI] [PubMed] [Google Scholar]; c) Green MD, King CD, Mojarrabi B, Mackenzie PI, Tephly TR. Drug Metab. Dispos. 1998;26:507–512. [PubMed] [Google Scholar]; d) Green MD, Tephly TR. Drug Metab. Dispos. 1998;26:860–867. [PubMed] [Google Scholar]; e) Hawes EM. Drug Metab. Dispos. 1998;26:830–837. [PubMed] [Google Scholar]; f) Green MD, Tephly TR. Drug Metab. Dispos. 1996;24:356–363. [PubMed] [Google Scholar]; g) Green MD, Bishop WP, Tephly TR. Drug Metab. Dispos. 1995;23:299–302. [PubMed] [Google Scholar]; h) Lehman JP, Fenselau C, Depaulo JR. Drug Metab. Dispos. 1983;11:221–225. [PubMed] [Google Scholar]; i) Lehman JP, Fenselau C. Drug Metab. Dispos. 1982;10:446–449. [PubMed] [Google Scholar]; j) Chaudhuri NK, Servando OA, Manniello MJ, Luders RC, Chao DK, Bartlett MF. Drug Metab. Dispos. 1976;4:372–378. [PubMed] [Google Scholar]; k) Porter CC, Arison BH, Gruber VF, Titus DC, Vandenheuvel WJ. Drug Metab. Dispos. 1975;3:189–197. [PubMed] [Google Scholar]
  • 11.a) Iddon L, Bragg RA, Harding JR, Pidathala C, Basca J, Kriby AJ, Stachulski AV. Tetrahedron. 2009;65:6396–6402. [Google Scholar]; b) Iddon L, Bragg RA, Harding JR, Stachulski AV. Tetrahedron. 2010;66:537–541. [Google Scholar]
  • 12.a) Zhang C, Bitto E, Goff RD, Singh S, Bingman CA, Griffith BR, Albermann C, Phillips GN, Jr, Thorson JS. Chem. Biol. 2008;15:842–853. doi: 10.1016/j.chembiol.2008.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Zhang C, Moretti R, Jiang J, Thorson JS. ChemBioChem. 2008;9:2506–2514. doi: 10.1002/cbic.200800349. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Zhang C, Fu Q, Albermann C, Li L, Thorson JS. ChemBioChem. 2007;8:385–390. doi: 10.1002/cbic.200600509. [DOI] [PubMed] [Google Scholar]; d) Zhang C, Albermann C, Fu X, Thorson JS. Am. Chem. Soc. J. 2006;128:16420–16421. doi: 10.1021/ja065950k. [DOI] [PubMed] [Google Scholar]; e) Zhang C, Griffith BR, Fu Q, Albermann C, Fu X, Lee IK, Li L, Thorson JS. Science. 2006;313:1291–1294. doi: 10.1126/science.1130028. [DOI] [PubMed] [Google Scholar]; f) Minami A, Uchida R, Eguchi T, Kakinuma K. J. Am. Chem. Soc. 2005;127:6148–6149. doi: 10.1021/ja042848j. [DOI] [PubMed] [Google Scholar]
  • 13.a) Chen Z, Zhang J, Singh S, Peltier-Pain P, Thorson JS, Hinds BJ. ACS Nano. 2014;8:8104–8112. doi: 10.1021/nn502181k. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Singh S, Peltier-Pain P, Tonelli M, Thorson JS. Org. Lett. 2014;16:3220–3223. doi: 10.1021/ol501241a. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Zhang J, Singh S, Hughes RR, Zhou M, Sunkara M, Morris AJ, Thorson JS. ChemBioChem. 2014;15:647–652. doi: 10.1002/cbic.201300779. [DOI] [PMC free article] [PubMed] [Google Scholar]; d) Gantt RW, Peltier-Pain P, Singh S, Zhou M, Thorson JS. Proc. Natl. Acad. Sci. USA. 2013;110:7648–7653. doi: 10.1073/pnas.1220220110. [DOI] [PMC free article] [PubMed] [Google Scholar]; e) Peltier-Pain P, Marchillo K, Zhou M, Andes DR, Thorson JS. Org. Lett. 2012;14:5086–5089. doi: 10.1021/ol3023374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Williams GJ, Zhang C, Thorson JS. Nat. Chem. Biol. 2007;3:657–662. doi: 10.1038/nchembio.2007.28. [DOI] [PubMed] [Google Scholar]
  • 15.Gilar M, Belenky A, Wang BH. J. Chromatogr. A. 2001;921:3–13. doi: 10.1016/s0021-9673(01)00833-0. [DOI] [PubMed] [Google Scholar]
  • 16.Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC. Clin. Cancer Res. 2001;7:971–976. [PubMed] [Google Scholar]
  • 17.a) Kappes A, Vaccaro A, Kunnimalaiyaan M, Chen H. J. Surg. Res. 2006;133:42–45. doi: 10.1016/j.jss.2006.02.002. [DOI] [PubMed] [Google Scholar]; b) Van Gompel JJ, Kunnimalaiyaan M, Holen K, Chen H. Mol. Cancer Ther. 2005;4:910–917. doi: 10.1158/1535-7163.MCT-04-0334. [DOI] [PubMed] [Google Scholar]
  • 18.a) Inamoto T, Kikuchi K, Iijima H, Kawashima Y, Nakai Y, Ogimoto K. J. Vet. Med. Sci. 1994;56:917–921. doi: 10.1292/jvms.56.917. [DOI] [PubMed] [Google Scholar]; b) Zhang N, Tao L, Chang J. Life Sci. J. 2010;7:107–110. [Google Scholar]
  • 19.Tsuji N, Kobayashi M. J. Antibiot. 1978;31:939–944. doi: 10.7164/antibiotics.31.939. [DOI] [PubMed] [Google Scholar]
  • 20.a) Calvaresi EC, Hergenrother PJ. Chem. Sci. 2013;4:2319–2333. doi: 10.1039/C3SC22205E. [DOI] [PMC free article] [PubMed] [Google Scholar]; b) Jones EM, Polt R. Front. Chem. 2015;3 doi: 10.3389/fchem.2015.00040. [DOI] [PMC free article] [PubMed] [Google Scholar]; c) Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Chem. Sci. 2016;7:2492–2500. doi: 10.1039/c5sc04392a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zhou M, Thorson JS. Org. Lett. 2011;13:2786–2788. doi: 10.1021/ol200977u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.a) Ammer J, Baidya M, Kobayashi S, Mayr H. J. Phys. Org. Chem. 2010;23:1029–1035. [Google Scholar]; b) Ofial AR, Mayr H, Phys J. Org. Chem. 2008;21:584–595. [Google Scholar]
  • 23.a) Parajuli P, Pandey RP, Trang NT, Oh TJ, Sohng JK. Carbohydr. Res. 2015;418:13–19. doi: 10.1016/j.carres.2015.09.010. [DOI] [PubMed] [Google Scholar]; b) Song C, Gu L, Liu J, Zhao S, Hong X, Schulenburg K, Schwab W. Plant Cell Physiol. 2015;56:2478–2493. doi: 10.1093/pcp/pcv151. [DOI] [PubMed] [Google Scholar]; c) Pandey RP, Parajuli P, Koirala N, Lee JH, Park YI, Sohng JK. Mol. Cells. 2014;37:172–177. doi: 10.14348/molcells.2014.2348. [DOI] [PMC free article] [PubMed] [Google Scholar]; d) Pandey RP, Gurung RB, Koirala N, Tuoi LT, Sohng JK. Carbohydr. Res. 2014;393:26–31. doi: 10.1016/j.carres.2014.03.011. [DOI] [PubMed] [Google Scholar]; e) Ono E, Homma Y, Horikawa M, Kunikane S, Imai H, Takahashi S, Kawai Y, Ishiguro M, Fukui Y, Nakayama T. Plant Cell. 2010;22:2856–2871. doi: 10.1105/tpc.110.074625. [DOI] [PMC free article] [PubMed] [Google Scholar]; f) Blanco G, Patallo EP, Braña AF, Trefzer A, Bechthold A, Rohr J, Méndez C, Salas JA. Cell Chem. Biol. 2001;8:253–263. doi: 10.1016/s1074-5521(01)00010-2. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

SI

RESOURCES